summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/pgo/irgraph.go
blob: 96485e33ab455029c67d9c736dc8f6ac0804a267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// A note on line numbers: when working with line numbers, we always use the
// binary-visible relative line number. i.e., the line number as adjusted by
// //line directives (ctxt.InnermostPos(ir.Node.Pos()).RelLine()). Use
// NodeLineOffset to compute line offsets.
//
// If you are thinking, "wait, doesn't that just make things more complex than
// using the real line number?", then you are 100% correct. Unfortunately,
// pprof profiles generated by the runtime always contain line numbers as
// adjusted by //line directives (because that is what we put in pclntab). Thus
// for the best behavior when attempting to match the source with the profile
// it makes sense to use the same line number space.
//
// Some of the effects of this to keep in mind:
//
//  - For files without //line directives there is no impact, as RelLine() ==
//    Line().
//  - For functions entirely covered by the same //line directive (i.e., a
//    directive before the function definition and no directives within the
//    function), there should also be no impact, as line offsets within the
//    function should be the same as the real line offsets.
//  - Functions containing //line directives may be impacted. As fake line
//    numbers need not be monotonic, we may compute negative line offsets. We
//    should accept these and attempt to use them for best-effort matching, as
//    these offsets should still match if the source is unchanged, and may
//    continue to match with changed source depending on the impact of the
//    changes on fake line numbers.
//  - Functions containing //line directives may also contain duplicate lines,
//    making it ambiguous which call the profile is referencing. This is a
//    similar problem to multiple calls on a single real line, as we don't
//    currently track column numbers.
//
// Long term it would be best to extend pprof profiles to include real line
// numbers. Until then, we have to live with these complexities. Luckily,
// //line directives that change line numbers in strange ways should be rare,
// and failing PGO matching on these files is not too big of a loss.

package pgo

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/pgo/internal/graph"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"errors"
	"fmt"
	"internal/profile"
	"os"
	"sort"
)

// IRGraph is a call graph with nodes pointing to IRs of functions and edges
// carrying weights and callsite information.
//
// Nodes for indirect calls may have missing IR (IRNode.AST == nil) if the node
// is not visible from this package (e.g., not in the transitive deps). Keeping
// these nodes allows determining the hottest edge from a call even if that
// callee is not available.
//
// TODO(prattmic): Consider merging this data structure with Graph. This is
// effectively a copy of Graph aggregated to line number and pointing to IR.
type IRGraph struct {
	// Nodes of the graph. Each node represents a function, keyed by linker
	// symbol name.
	IRNodes map[string]*IRNode
}

// IRNode represents a node (function) in the IRGraph.
type IRNode struct {
	// Pointer to the IR of the Function represented by this node.
	AST *ir.Func
	// Linker symbol name of the Function represented by this node.
	// Populated only if AST == nil.
	LinkerSymbolName string

	// Set of out-edges in the callgraph. The map uniquely identifies each
	// edge based on the callsite and callee, for fast lookup.
	OutEdges map[NamedCallEdge]*IREdge
}

// Name returns the symbol name of this function.
func (i *IRNode) Name() string {
	if i.AST != nil {
		return ir.LinkFuncName(i.AST)
	}
	return i.LinkerSymbolName
}

// IREdge represents a call edge in the IRGraph with source, destination,
// weight, callsite, and line number information.
type IREdge struct {
	// Source and destination of the edge in IRNode.
	Src, Dst       *IRNode
	Weight         int64
	CallSiteOffset int // Line offset from function start line.
}

// NamedCallEdge identifies a call edge by linker symbol names and call site
// offset.
type NamedCallEdge struct {
	CallerName     string
	CalleeName     string
	CallSiteOffset int // Line offset from function start line.
}

// NamedEdgeMap contains all unique call edges in the profile and their
// edge weight.
type NamedEdgeMap struct {
	Weight map[NamedCallEdge]int64

	// ByWeight lists all keys in Weight, sorted by edge weight.
	ByWeight []NamedCallEdge
}

// CallSiteInfo captures call-site information and its caller/callee.
type CallSiteInfo struct {
	LineOffset int // Line offset from function start line.
	Caller     *ir.Func
	Callee     *ir.Func
}

// Profile contains the processed PGO profile and weighted call graph used for
// PGO optimizations.
type Profile struct {
	// Aggregated edge weights across the profile. This helps us determine
	// the percentage threshold for hot/cold partitioning.
	TotalWeight int64

	// NamedEdgeMap contains all unique call edges in the profile and their
	// edge weight.
	NamedEdgeMap NamedEdgeMap

	// WeightedCG represents the IRGraph built from profile, which we will
	// update as part of inlining.
	WeightedCG *IRGraph
}

// New generates a profile-graph from the profile.
func New(profileFile string) (*Profile, error) {
	f, err := os.Open(profileFile)
	if err != nil {
		return nil, fmt.Errorf("error opening profile: %w", err)
	}
	defer f.Close()
	p, err := profile.Parse(f)
	if errors.Is(err, profile.ErrNoData) {
		// Treat a completely empty file the same as a profile with no
		// samples: nothing to do.
		return nil, nil
	} else if err != nil {
		return nil, fmt.Errorf("error parsing profile: %w", err)
	}

	if len(p.Sample) == 0 {
		// We accept empty profiles, but there is nothing to do.
		return nil, nil
	}

	valueIndex := -1
	for i, s := range p.SampleType {
		// Samples count is the raw data collected, and CPU nanoseconds is just
		// a scaled version of it, so either one we can find is fine.
		if (s.Type == "samples" && s.Unit == "count") ||
			(s.Type == "cpu" && s.Unit == "nanoseconds") {
			valueIndex = i
			break
		}
	}

	if valueIndex == -1 {
		return nil, fmt.Errorf(`profile does not contain a sample index with value/type "samples/count" or cpu/nanoseconds"`)
	}

	g := graph.NewGraph(p, &graph.Options{
		SampleValue: func(v []int64) int64 { return v[valueIndex] },
	})

	namedEdgeMap, totalWeight, err := createNamedEdgeMap(g)
	if err != nil {
		return nil, err
	}

	if totalWeight == 0 {
		return nil, nil // accept but ignore profile with no samples.
	}

	// Create package-level call graph with weights from profile and IR.
	wg := createIRGraph(namedEdgeMap)

	return &Profile{
		TotalWeight:  totalWeight,
		NamedEdgeMap: namedEdgeMap,
		WeightedCG:   wg,
	}, nil
}

// createNamedEdgeMap builds a map of callsite-callee edge weights from the
// profile-graph.
//
// Caller should ignore the profile if totalWeight == 0.
func createNamedEdgeMap(g *graph.Graph) (edgeMap NamedEdgeMap, totalWeight int64, err error) {
	seenStartLine := false

	// Process graph and build various node and edge maps which will
	// be consumed by AST walk.
	weight := make(map[NamedCallEdge]int64)
	for _, n := range g.Nodes {
		seenStartLine = seenStartLine || n.Info.StartLine != 0

		canonicalName := n.Info.Name
		// Create the key to the nodeMapKey.
		namedEdge := NamedCallEdge{
			CallerName:     canonicalName,
			CallSiteOffset: n.Info.Lineno - n.Info.StartLine,
		}

		for _, e := range n.Out {
			totalWeight += e.WeightValue()
			namedEdge.CalleeName = e.Dest.Info.Name
			// Create new entry or increment existing entry.
			weight[namedEdge] += e.WeightValue()
		}
	}

	if totalWeight == 0 {
		return NamedEdgeMap{}, 0, nil // accept but ignore profile with no samples.
	}

	if !seenStartLine {
		// TODO(prattmic): If Function.start_line is missing we could
		// fall back to using absolute line numbers, which is better
		// than nothing.
		return NamedEdgeMap{}, 0, fmt.Errorf("profile missing Function.start_line data (Go version of profiled application too old? Go 1.20+ automatically adds this to profiles)")
	}

	byWeight := make([]NamedCallEdge, 0, len(weight))
	for namedEdge := range weight {
		byWeight = append(byWeight, namedEdge)
	}
	sort.Slice(byWeight, func(i, j int) bool {
		ei, ej := byWeight[i], byWeight[j]
		if wi, wj := weight[ei], weight[ej]; wi != wj {
			return wi > wj // want larger weight first
		}
		// same weight, order by name/line number
		if ei.CallerName != ej.CallerName {
			return ei.CallerName < ej.CallerName
		}
		if ei.CalleeName != ej.CalleeName {
			return ei.CalleeName < ej.CalleeName
		}
		return ei.CallSiteOffset < ej.CallSiteOffset
	})

	edgeMap = NamedEdgeMap{
		Weight:   weight,
		ByWeight: byWeight,
	}

	return edgeMap, totalWeight, nil
}

// initializeIRGraph builds the IRGraph by visiting all the ir.Func in decl list
// of a package.
func createIRGraph(namedEdgeMap NamedEdgeMap) *IRGraph {
	g := &IRGraph{
		IRNodes: make(map[string]*IRNode),
	}

	// Bottomup walk over the function to create IRGraph.
	ir.VisitFuncsBottomUp(typecheck.Target.Funcs, func(list []*ir.Func, recursive bool) {
		for _, fn := range list {
			visitIR(fn, namedEdgeMap, g)
		}
	})

	// Add additional edges for indirect calls. This must be done second so
	// that IRNodes is fully populated (see the dummy node TODO in
	// addIndirectEdges).
	//
	// TODO(prattmic): visitIR above populates the graph via direct calls
	// discovered via the IR. addIndirectEdges populates the graph via
	// calls discovered via the profile. This combination of opposite
	// approaches is a bit awkward, particularly because direct calls are
	// discoverable via the profile as well. Unify these into a single
	// approach.
	addIndirectEdges(g, namedEdgeMap)

	return g
}

// visitIR traverses the body of each ir.Func adds edges to g from ir.Func to
// any called function in the body.
func visitIR(fn *ir.Func, namedEdgeMap NamedEdgeMap, g *IRGraph) {
	name := ir.LinkFuncName(fn)
	node, ok := g.IRNodes[name]
	if !ok {
		node = &IRNode{
			AST: fn,
		}
		g.IRNodes[name] = node
	}

	// Recursively walk over the body of the function to create IRGraph edges.
	createIRGraphEdge(fn, node, name, namedEdgeMap, g)
}

// createIRGraphEdge traverses the nodes in the body of ir.Func and adds edges
// between the callernode which points to the ir.Func and the nodes in the
// body.
func createIRGraphEdge(fn *ir.Func, callernode *IRNode, name string, namedEdgeMap NamedEdgeMap, g *IRGraph) {
	ir.VisitList(fn.Body, func(n ir.Node) {
		switch n.Op() {
		case ir.OCALLFUNC:
			call := n.(*ir.CallExpr)
			// Find the callee function from the call site and add the edge.
			callee := DirectCallee(call.Fun)
			if callee != nil {
				addIREdge(callernode, name, n, callee, namedEdgeMap, g)
			}
		case ir.OCALLMETH:
			call := n.(*ir.CallExpr)
			// Find the callee method from the call site and add the edge.
			callee := ir.MethodExprName(call.Fun).Func
			addIREdge(callernode, name, n, callee, namedEdgeMap, g)
		}
	})
}

// NodeLineOffset returns the line offset of n in fn.
func NodeLineOffset(n ir.Node, fn *ir.Func) int {
	// See "A note on line numbers" at the top of the file.
	line := int(base.Ctxt.InnermostPos(n.Pos()).RelLine())
	startLine := int(base.Ctxt.InnermostPos(fn.Pos()).RelLine())
	return line - startLine
}

// addIREdge adds an edge between caller and new node that points to `callee`
// based on the profile-graph and NodeMap.
func addIREdge(callerNode *IRNode, callerName string, call ir.Node, callee *ir.Func, namedEdgeMap NamedEdgeMap, g *IRGraph) {
	calleeName := ir.LinkFuncName(callee)
	calleeNode, ok := g.IRNodes[calleeName]
	if !ok {
		calleeNode = &IRNode{
			AST: callee,
		}
		g.IRNodes[calleeName] = calleeNode
	}

	namedEdge := NamedCallEdge{
		CallerName:     callerName,
		CalleeName:     calleeName,
		CallSiteOffset: NodeLineOffset(call, callerNode.AST),
	}

	// Add edge in the IRGraph from caller to callee.
	edge := &IREdge{
		Src:            callerNode,
		Dst:            calleeNode,
		Weight:         namedEdgeMap.Weight[namedEdge],
		CallSiteOffset: namedEdge.CallSiteOffset,
	}

	if callerNode.OutEdges == nil {
		callerNode.OutEdges = make(map[NamedCallEdge]*IREdge)
	}
	callerNode.OutEdges[namedEdge] = edge
}

// LookupFunc looks up a function or method in export data. It is expected to
// be overridden by package noder, to break a dependency cycle.
var LookupFunc = func(fullName string) (*ir.Func, error) {
	base.Fatalf("pgo.LookupMethodFunc not overridden")
	panic("unreachable")
}

// addIndirectEdges adds indirect call edges found in the profile to the graph,
// to be used for devirtualization.
//
// N.B. despite the name, addIndirectEdges will add any edges discovered via
// the profile. We don't know for sure that they are indirect, but assume they
// are since direct calls would already be added. (e.g., direct calls that have
// been deleted from source since the profile was taken would be added here).
//
// TODO(prattmic): Devirtualization runs before inlining, so we can't devirtualize
// calls inside inlined call bodies. If we did add that, we'd need edges from
// inlined bodies as well.
func addIndirectEdges(g *IRGraph, namedEdgeMap NamedEdgeMap) {
	// g.IRNodes is populated with the set of functions in the local
	// package build by VisitIR. We want to filter for local functions
	// below, but we also add unknown callees to IRNodes as we go. So make
	// an initial copy of IRNodes to recall just the local functions.
	localNodes := make(map[string]*IRNode, len(g.IRNodes))
	for k, v := range g.IRNodes {
		localNodes[k] = v
	}

	// N.B. We must consider edges in a stable order because export data
	// lookup order (LookupMethodFunc, below) can impact the export data of
	// this package, which must be stable across different invocations for
	// reproducibility.
	//
	// The weight ordering of ByWeight is irrelevant, it just happens to be
	// an ordered list of edges that is already available.
	for _, key := range namedEdgeMap.ByWeight {
		weight := namedEdgeMap.Weight[key]
		// All callers in the local package build were added to IRNodes
		// in VisitIR. If a caller isn't in the local package build we
		// can skip adding edges, since we won't be devirtualizing in
		// them anyway. This keeps the graph smaller.
		callerNode, ok := localNodes[key.CallerName]
		if !ok {
			continue
		}

		// Already handled this edge?
		if _, ok := callerNode.OutEdges[key]; ok {
			continue
		}

		calleeNode, ok := g.IRNodes[key.CalleeName]
		if !ok {
			// IR is missing for this callee. VisitIR populates
			// IRNodes with all functions discovered via local
			// package function declarations and calls. This
			// function may still be available from export data of
			// a transitive dependency.
			//
			// TODO(prattmic): Parameterized types/functions are
			// not supported.
			//
			// TODO(prattmic): This eager lookup during graph load
			// is simple, but wasteful. We are likely to load many
			// functions that we never need. We could delay load
			// until we actually need the method in
			// devirtualization. Instantiation of generic functions
			// will likely need to be done at the devirtualization
			// site, if at all.
			fn, err := LookupFunc(key.CalleeName)
			if err == nil {
				if base.Debug.PGODebug >= 3 {
					fmt.Printf("addIndirectEdges: %s found in export data\n", key.CalleeName)
				}
				calleeNode = &IRNode{AST: fn}

				// N.B. we could call createIRGraphEdge to add
				// direct calls in this newly-imported
				// function's body to the graph. Similarly, we
				// could add to this function's queue to add
				// indirect calls. However, those would be
				// useless given the visit order of inlining,
				// and the ordering of PGO devirtualization and
				// inlining. This function can only be used as
				// an inlined body. We will never do PGO
				// devirtualization inside an inlined call. Nor
				// will we perform inlining inside an inlined
				// call.
			} else {
				// Still not found. Most likely this is because
				// the callee isn't in the transitive deps of
				// this package.
				//
				// Record this call anyway. If this is the hottest,
				// then we want to skip devirtualization rather than
				// devirtualizing to the second most common callee.
				if base.Debug.PGODebug >= 3 {
					fmt.Printf("addIndirectEdges: %s not found in export data: %v\n", key.CalleeName, err)
				}
				calleeNode = &IRNode{LinkerSymbolName: key.CalleeName}
			}

			// Add dummy node back to IRNodes. We don't need this
			// directly, but PrintWeightedCallGraphDOT uses these
			// to print nodes.
			g.IRNodes[key.CalleeName] = calleeNode
		}
		edge := &IREdge{
			Src:            callerNode,
			Dst:            calleeNode,
			Weight:         weight,
			CallSiteOffset: key.CallSiteOffset,
		}

		if callerNode.OutEdges == nil {
			callerNode.OutEdges = make(map[NamedCallEdge]*IREdge)
		}
		callerNode.OutEdges[key] = edge
	}
}

// WeightInPercentage converts profile weights to a percentage.
func WeightInPercentage(value int64, total int64) float64 {
	return (float64(value) / float64(total)) * 100
}

// PrintWeightedCallGraphDOT prints IRGraph in DOT format.
func (p *Profile) PrintWeightedCallGraphDOT(edgeThreshold float64) {
	fmt.Printf("\ndigraph G {\n")
	fmt.Printf("forcelabels=true;\n")

	// List of functions in this package.
	funcs := make(map[string]struct{})
	ir.VisitFuncsBottomUp(typecheck.Target.Funcs, func(list []*ir.Func, recursive bool) {
		for _, f := range list {
			name := ir.LinkFuncName(f)
			funcs[name] = struct{}{}
		}
	})

	// Determine nodes of DOT.
	//
	// Note that ir.Func may be nil for functions not visible from this
	// package.
	nodes := make(map[string]*ir.Func)
	for name := range funcs {
		if n, ok := p.WeightedCG.IRNodes[name]; ok {
			for _, e := range n.OutEdges {
				if _, ok := nodes[e.Src.Name()]; !ok {
					nodes[e.Src.Name()] = e.Src.AST
				}
				if _, ok := nodes[e.Dst.Name()]; !ok {
					nodes[e.Dst.Name()] = e.Dst.AST
				}
			}
			if _, ok := nodes[n.Name()]; !ok {
				nodes[n.Name()] = n.AST
			}
		}
	}

	// Print nodes.
	for name, ast := range nodes {
		if _, ok := p.WeightedCG.IRNodes[name]; ok {
			style := "solid"
			if ast == nil {
				style = "dashed"
			}

			if ast != nil && ast.Inl != nil {
				fmt.Printf("\"%v\" [color=black, style=%s, label=\"%v,inl_cost=%d\"];\n", name, style, name, ast.Inl.Cost)
			} else {
				fmt.Printf("\"%v\" [color=black, style=%s, label=\"%v\"];\n", name, style, name)
			}
		}
	}
	// Print edges.
	ir.VisitFuncsBottomUp(typecheck.Target.Funcs, func(list []*ir.Func, recursive bool) {
		for _, f := range list {
			name := ir.LinkFuncName(f)
			if n, ok := p.WeightedCG.IRNodes[name]; ok {
				for _, e := range n.OutEdges {
					style := "solid"
					if e.Dst.AST == nil {
						style = "dashed"
					}
					color := "black"
					edgepercent := WeightInPercentage(e.Weight, p.TotalWeight)
					if edgepercent > edgeThreshold {
						color = "red"
					}

					fmt.Printf("edge [color=%s, style=%s];\n", color, style)
					fmt.Printf("\"%v\" -> \"%v\" [label=\"%.2f\"];\n", n.Name(), e.Dst.Name(), edgepercent)
				}
			}
		}
	})
	fmt.Printf("}\n")
}

// DirectCallee takes a function-typed expression and returns the underlying
// function that it refers to if statically known. Otherwise, it returns nil.
//
// Equivalent to inline.inlCallee without calling CanInline on closures.
func DirectCallee(fn ir.Node) *ir.Func {
	fn = ir.StaticValue(fn)
	switch fn.Op() {
	case ir.OMETHEXPR:
		fn := fn.(*ir.SelectorExpr)
		n := ir.MethodExprName(fn)
		// Check that receiver type matches fn.X.
		// TODO(mdempsky): Handle implicit dereference
		// of pointer receiver argument?
		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
			return nil
		}
		return n.Func
	case ir.ONAME:
		fn := fn.(*ir.Name)
		if fn.Class == ir.PFUNC {
			return fn.Func
		}
	case ir.OCLOSURE:
		fn := fn.(*ir.ClosureExpr)
		c := fn.Func
		return c
	}
	return nil
}