1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
)
func postExpandCallsDecompose(f *Func) {
decomposeUser(f) // redo user decompose to cleanup after expand calls
decomposeBuiltIn(f) // handles both regular decomposition and cleanup.
}
func expandCalls(f *Func) {
// Convert each aggregate arg to a call into "dismantle aggregate, store/pass parts"
// Convert each aggregate result from a call into "assemble aggregate from parts"
// Convert each multivalue exit into "dismantle aggregate, store/return parts"
// Convert incoming aggregate arg into assembly of parts.
// Feed modified AST to decompose.
sp, _ := f.spSb()
x := &expandState{
f: f,
debug: f.pass.debug,
regSize: f.Config.RegSize,
sp: sp,
typs: &f.Config.Types,
wideSelects: make(map[*Value]*Value),
commonArgs: make(map[selKey]*Value),
commonSelectors: make(map[selKey]*Value),
memForCall: make(map[ID]*Value),
}
// For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness.
if f.Config.BigEndian {
x.firstOp = OpInt64Hi
x.secondOp = OpInt64Lo
x.firstType = x.typs.Int32
x.secondType = x.typs.UInt32
} else {
x.firstOp = OpInt64Lo
x.secondOp = OpInt64Hi
x.firstType = x.typs.UInt32
x.secondType = x.typs.Int32
}
// Defer select processing until after all calls and selects are seen.
var selects []*Value
var calls []*Value
var args []*Value
var exitBlocks []*Block
var m0 *Value
// Accumulate lists of calls, args, selects, and exit blocks to process,
// note "wide" selects consumed by stores,
// rewrite mem for each call,
// rewrite each OpSelectNAddr.
for _, b := range f.Blocks {
for _, v := range b.Values {
switch v.Op {
case OpInitMem:
m0 = v
case OpClosureLECall, OpInterLECall, OpStaticLECall, OpTailLECall:
calls = append(calls, v)
case OpArg:
args = append(args, v)
case OpStore:
if a := v.Args[1]; a.Op == OpSelectN && !CanSSA(a.Type) {
if a.Uses > 1 {
panic(fmt.Errorf("Saw double use of wide SelectN %s operand of Store %s",
a.LongString(), v.LongString()))
}
x.wideSelects[a] = v
}
case OpSelectN:
if v.Type == types.TypeMem {
// rewrite the mem selector in place
call := v.Args[0]
aux := call.Aux.(*AuxCall)
mem := x.memForCall[call.ID]
if mem == nil {
v.AuxInt = int64(aux.abiInfo.OutRegistersUsed())
x.memForCall[call.ID] = v
} else {
panic(fmt.Errorf("Saw two memories for call %v, %v and %v", call, mem, v))
}
} else {
selects = append(selects, v)
}
case OpSelectNAddr:
call := v.Args[0]
which := v.AuxInt
aux := call.Aux.(*AuxCall)
pt := v.Type
off := x.offsetFrom(x.f.Entry, x.sp, aux.OffsetOfResult(which), pt)
v.copyOf(off)
}
}
// rewrite function results from an exit block
// values returned by function need to be split out into registers.
if isBlockMultiValueExit(b) {
exitBlocks = append(exitBlocks, b)
}
}
// Convert each aggregate arg into Make of its parts (and so on, to primitive types)
for _, v := range args {
var rc registerCursor
a := x.prAssignForArg(v)
aux := x.f.OwnAux
regs := a.Registers
var offset int64
if len(regs) == 0 {
offset = a.FrameOffset(aux.abiInfo)
}
auxBase := x.offsetFrom(x.f.Entry, x.sp, offset, types.NewPtr(v.Type))
rc.init(regs, aux.abiInfo, nil, auxBase, 0)
x.rewriteSelectOrArg(f.Entry.Pos, f.Entry, v, v, m0, v.Type, rc)
}
// Rewrite selects of results (which may be aggregates) into make-aggregates of register/memory-targeted selects
for _, v := range selects {
if v.Op == OpInvalid {
continue
}
call := v.Args[0]
aux := call.Aux.(*AuxCall)
mem := x.memForCall[call.ID]
if mem == nil {
mem = call.Block.NewValue1I(call.Pos, OpSelectN, types.TypeMem, int64(aux.abiInfo.OutRegistersUsed()), call)
x.memForCall[call.ID] = mem
}
i := v.AuxInt
regs := aux.RegsOfResult(i)
// If this select cannot fit into SSA and is stored, either disaggregate to register stores, or mem-mem move.
if store := x.wideSelects[v]; store != nil {
// Use the mem that comes from the store operation.
storeAddr := store.Args[0]
mem := store.Args[2]
if len(regs) > 0 {
// Cannot do a rewrite that builds up a result from pieces; instead, copy pieces to the store operation.
var rc registerCursor
rc.init(regs, aux.abiInfo, nil, storeAddr, 0)
mem = x.rewriteWideSelectToStores(call.Pos, call.Block, v, mem, v.Type, rc)
store.copyOf(mem)
} else {
// Move directly from AuxBase to store target; rewrite the store instruction.
offset := aux.OffsetOfResult(i)
auxBase := x.offsetFrom(x.f.Entry, x.sp, offset, types.NewPtr(v.Type))
// was Store dst, v, mem
// now Move dst, auxBase, mem
move := store.Block.NewValue3A(store.Pos, OpMove, types.TypeMem, v.Type, storeAddr, auxBase, mem)
move.AuxInt = v.Type.Size()
store.copyOf(move)
}
continue
}
var auxBase *Value
if len(regs) == 0 {
offset := aux.OffsetOfResult(i)
auxBase = x.offsetFrom(x.f.Entry, x.sp, offset, types.NewPtr(v.Type))
}
var rc registerCursor
rc.init(regs, aux.abiInfo, nil, auxBase, 0)
x.rewriteSelectOrArg(call.Pos, call.Block, v, v, mem, v.Type, rc)
}
rewriteCall := func(v *Value, newOp Op, argStart int) {
// Break aggregate args passed to call into smaller pieces.
x.rewriteCallArgs(v, argStart)
v.Op = newOp
rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
v.Type = types.NewResults(append(rts, types.TypeMem))
}
// Rewrite calls
for _, v := range calls {
switch v.Op {
case OpStaticLECall:
rewriteCall(v, OpStaticCall, 0)
case OpTailLECall:
rewriteCall(v, OpTailCall, 0)
case OpClosureLECall:
rewriteCall(v, OpClosureCall, 2)
case OpInterLECall:
rewriteCall(v, OpInterCall, 1)
}
}
// Rewrite results from exit blocks
for _, b := range exitBlocks {
v := b.Controls[0]
x.rewriteFuncResults(v, b, f.OwnAux)
b.SetControl(v)
}
}
func (x *expandState) rewriteFuncResults(v *Value, b *Block, aux *AuxCall) {
// This is very similar to rewriteCallArgs
// differences:
// firstArg + preArgs
// sp vs auxBase
m0 := v.MemoryArg()
mem := m0
allResults := []*Value{}
var oldArgs []*Value
argsWithoutMem := v.Args[:len(v.Args)-1]
for j, a := range argsWithoutMem {
oldArgs = append(oldArgs, a)
i := int64(j)
auxType := aux.TypeOfResult(i)
auxBase := b.NewValue2A(v.Pos, OpLocalAddr, types.NewPtr(auxType), aux.NameOfResult(i), x.sp, mem)
auxOffset := int64(0)
aRegs := aux.RegsOfResult(int64(j))
if a.Op == OpDereference {
a.Op = OpLoad
}
var rc registerCursor
var result *[]*Value
if len(aRegs) > 0 {
result = &allResults
} else {
if a.Op == OpLoad && a.Args[0].Op == OpLocalAddr {
addr := a.Args[0]
if addr.MemoryArg() == a.MemoryArg() && addr.Aux == aux.NameOfResult(i) {
continue // Self move to output parameter
}
}
}
rc.init(aRegs, aux.abiInfo, result, auxBase, auxOffset)
mem = x.decomposeAsNecessary(v.Pos, b, a, mem, rc)
}
v.resetArgs()
v.AddArgs(allResults...)
v.AddArg(mem)
for _, a := range oldArgs {
if a.Uses == 0 {
if x.debug > 1 {
x.Printf("...marking %v unused\n", a.LongString())
}
x.invalidateRecursively(a)
}
}
v.Type = types.NewResults(append(abi.RegisterTypes(aux.abiInfo.OutParams()), types.TypeMem))
return
}
func (x *expandState) rewriteCallArgs(v *Value, firstArg int) {
if x.debug > 1 {
x.indent(3)
defer x.indent(-3)
x.Printf("rewriteCallArgs(%s; %d)\n", v.LongString(), firstArg)
}
// Thread the stores on the memory arg
aux := v.Aux.(*AuxCall)
m0 := v.MemoryArg()
mem := m0
allResults := []*Value{}
oldArgs := []*Value{}
argsWithoutMem := v.Args[firstArg : len(v.Args)-1] // Also strip closure/interface Op-specific args
sp := x.sp
if v.Op == OpTailLECall {
// For tail call, we unwind the frame before the call so we'll use the caller's
// SP.
sp = x.f.Entry.NewValue1(src.NoXPos, OpGetCallerSP, x.typs.Uintptr, mem)
}
for i, a := range argsWithoutMem { // skip leading non-parameter SSA Args and trailing mem SSA Arg.
oldArgs = append(oldArgs, a)
auxI := int64(i)
aRegs := aux.RegsOfArg(auxI)
aType := aux.TypeOfArg(auxI)
if a.Op == OpDereference {
a.Op = OpLoad
}
var rc registerCursor
var result *[]*Value
var aOffset int64
if len(aRegs) > 0 {
result = &allResults
} else {
aOffset = aux.OffsetOfArg(auxI)
}
if v.Op == OpTailLECall && a.Op == OpArg && a.AuxInt == 0 {
// It's common for a tail call passing the same arguments (e.g. method wrapper),
// so this would be a self copy. Detect this and optimize it out.
n := a.Aux.(*ir.Name)
if n.Class == ir.PPARAM && n.FrameOffset()+x.f.Config.ctxt.Arch.FixedFrameSize == aOffset {
continue
}
}
if x.debug > 1 {
x.Printf("...storeArg %s, %v, %d\n", a.LongString(), aType, aOffset)
}
rc.init(aRegs, aux.abiInfo, result, sp, aOffset)
mem = x.decomposeAsNecessary(v.Pos, v.Block, a, mem, rc)
}
var preArgStore [2]*Value
preArgs := append(preArgStore[:0], v.Args[0:firstArg]...)
v.resetArgs()
v.AddArgs(preArgs...)
v.AddArgs(allResults...)
v.AddArg(mem)
for _, a := range oldArgs {
if a.Uses == 0 {
x.invalidateRecursively(a)
}
}
return
}
func (x *expandState) decomposePair(pos src.XPos, b *Block, a, mem *Value, t0, t1 *types.Type, o0, o1 Op, rc *registerCursor) *Value {
e := b.NewValue1(pos, o0, t0, a)
pos = pos.WithNotStmt()
mem = x.decomposeAsNecessary(pos, b, e, mem, rc.next(t0))
e = b.NewValue1(pos, o1, t1, a)
mem = x.decomposeAsNecessary(pos, b, e, mem, rc.next(t1))
return mem
}
func (x *expandState) decomposeOne(pos src.XPos, b *Block, a, mem *Value, t0 *types.Type, o0 Op, rc *registerCursor) *Value {
e := b.NewValue1(pos, o0, t0, a)
pos = pos.WithNotStmt()
mem = x.decomposeAsNecessary(pos, b, e, mem, rc.next(t0))
return mem
}
// decomposeAsNecessary converts a value (perhaps an aggregate) passed to a call or returned by a function,
// into the appropriate sequence of stores and register assignments to transmit that value in a given ABI, and
// returns the current memory after this convert/rewrite (it may be the input memory, perhaps stores were needed.)
// 'pos' is the source position all this is tied to
// 'b' is the enclosing block
// 'a' is the value to decompose
// 'm0' is the input memory arg used for the first store (or returned if there are no stores)
// 'rc' is a registerCursor which identifies the register/memory destination for the value
func (x *expandState) decomposeAsNecessary(pos src.XPos, b *Block, a, m0 *Value, rc registerCursor) *Value {
if x.debug > 1 {
x.indent(3)
defer x.indent(-3)
}
at := a.Type
if at.Size() == 0 {
return m0
}
if a.Op == OpDereference {
a.Op = OpLoad // For purposes of parameter passing expansion, a Dereference is a Load.
}
if !rc.hasRegs() && !CanSSA(at) {
dst := x.offsetFrom(b, rc.storeDest, rc.storeOffset, types.NewPtr(at))
if x.debug > 1 {
x.Printf("...recur store %s at %s\n", a.LongString(), dst.LongString())
}
if a.Op == OpLoad {
m0 = b.NewValue3A(pos, OpMove, types.TypeMem, at, dst, a.Args[0], m0)
m0.AuxInt = at.Size()
return m0
} else {
panic(fmt.Errorf("Store of not a load"))
}
}
mem := m0
switch at.Kind() {
case types.TARRAY:
et := at.Elem()
for i := int64(0); i < at.NumElem(); i++ {
e := b.NewValue1I(pos, OpArraySelect, et, i, a)
pos = pos.WithNotStmt()
mem = x.decomposeAsNecessary(pos, b, e, mem, rc.next(et))
}
return mem
case types.TSTRUCT:
for i := 0; i < at.NumFields(); i++ {
et := at.Field(i).Type // might need to read offsets from the fields
e := b.NewValue1I(pos, OpStructSelect, et, int64(i), a)
pos = pos.WithNotStmt()
if x.debug > 1 {
x.Printf("...recur decompose %s, %v\n", e.LongString(), et)
}
mem = x.decomposeAsNecessary(pos, b, e, mem, rc.next(et))
}
return mem
case types.TSLICE:
mem = x.decomposeOne(pos, b, a, mem, at.Elem().PtrTo(), OpSlicePtr, &rc)
pos = pos.WithNotStmt()
mem = x.decomposeOne(pos, b, a, mem, x.typs.Int, OpSliceLen, &rc)
return x.decomposeOne(pos, b, a, mem, x.typs.Int, OpSliceCap, &rc)
case types.TSTRING:
return x.decomposePair(pos, b, a, mem, x.typs.BytePtr, x.typs.Int, OpStringPtr, OpStringLen, &rc)
case types.TINTER:
mem = x.decomposeOne(pos, b, a, mem, x.typs.Uintptr, OpITab, &rc)
pos = pos.WithNotStmt()
// Immediate interfaces cause so many headaches.
if a.Op == OpIMake {
data := a.Args[1]
for data.Op == OpStructMake1 || data.Op == OpArrayMake1 {
data = data.Args[0]
}
return x.decomposeAsNecessary(pos, b, data, mem, rc.next(data.Type))
}
return x.decomposeOne(pos, b, a, mem, x.typs.BytePtr, OpIData, &rc)
case types.TCOMPLEX64:
return x.decomposePair(pos, b, a, mem, x.typs.Float32, x.typs.Float32, OpComplexReal, OpComplexImag, &rc)
case types.TCOMPLEX128:
return x.decomposePair(pos, b, a, mem, x.typs.Float64, x.typs.Float64, OpComplexReal, OpComplexImag, &rc)
case types.TINT64:
if at.Size() > x.regSize {
return x.decomposePair(pos, b, a, mem, x.firstType, x.secondType, x.firstOp, x.secondOp, &rc)
}
case types.TUINT64:
if at.Size() > x.regSize {
return x.decomposePair(pos, b, a, mem, x.typs.UInt32, x.typs.UInt32, x.firstOp, x.secondOp, &rc)
}
}
// An atomic type, either record the register or store it and update the memory.
if rc.hasRegs() {
if x.debug > 1 {
x.Printf("...recur addArg %s\n", a.LongString())
}
rc.addArg(a)
} else {
dst := x.offsetFrom(b, rc.storeDest, rc.storeOffset, types.NewPtr(at))
if x.debug > 1 {
x.Printf("...recur store %s at %s\n", a.LongString(), dst.LongString())
}
mem = b.NewValue3A(pos, OpStore, types.TypeMem, at, dst, a, mem)
}
return mem
}
// Convert scalar OpArg into the proper OpWhateverArg instruction
// Convert scalar OpSelectN into perhaps-differently-indexed OpSelectN
// Convert aggregate OpArg into Make of its parts (which are eventually scalars)
// Convert aggregate OpSelectN into Make of its parts (which are eventually scalars)
// Returns the converted value.
//
// - "pos" the position for any generated instructions
// - "b" the block for any generated instructions
// - "container" the outermost OpArg/OpSelectN
// - "a" the instruction to overwrite, if any (only the outermost caller)
// - "m0" the memory arg for any loads that are necessary
// - "at" the type of the Arg/part
// - "rc" the register/memory cursor locating the various parts of the Arg.
func (x *expandState) rewriteSelectOrArg(pos src.XPos, b *Block, container, a, m0 *Value, at *types.Type, rc registerCursor) *Value {
if at == types.TypeMem {
a.copyOf(m0)
return a
}
makeOf := func(a *Value, op Op, args []*Value) *Value {
if a == nil {
a = b.NewValue0(pos, op, at)
a.AddArgs(args...)
} else {
a.resetArgs()
a.Aux, a.AuxInt = nil, 0
a.Pos, a.Op, a.Type = pos, op, at
a.AddArgs(args...)
}
return a
}
if at.Size() == 0 {
// For consistency, create these values even though they'll ultimately be unused
if at.IsArray() {
return makeOf(a, OpArrayMake0, nil)
}
if at.IsStruct() {
return makeOf(a, OpStructMake0, nil)
}
return a
}
sk := selKey{from: container, size: 0, offsetOrIndex: rc.storeOffset, typ: at}
dupe := x.commonSelectors[sk]
if dupe != nil {
if a == nil {
return dupe
}
a.copyOf(dupe)
return a
}
var argStore [10]*Value
args := argStore[:0]
addArg := func(a0 *Value) {
if a0 == nil {
as := "<nil>"
if a != nil {
as = a.LongString()
}
panic(fmt.Errorf("a0 should not be nil, a=%v, container=%v, at=%v", as, container.LongString(), at))
}
args = append(args, a0)
}
switch at.Kind() {
case types.TARRAY:
et := at.Elem()
for i := int64(0); i < at.NumElem(); i++ {
e := x.rewriteSelectOrArg(pos, b, container, nil, m0, et, rc.next(et))
addArg(e)
}
a = makeOf(a, OpArrayMake1, args)
x.commonSelectors[sk] = a
return a
case types.TSTRUCT:
// Assume ssagen/ssa.go (in buildssa) spills large aggregates so they won't appear here.
for i := 0; i < at.NumFields(); i++ {
et := at.Field(i).Type
e := x.rewriteSelectOrArg(pos, b, container, nil, m0, et, rc.next(et))
if e == nil {
panic(fmt.Errorf("nil e, et=%v, et.Size()=%d, i=%d", et, et.Size(), i))
}
addArg(e)
pos = pos.WithNotStmt()
}
if at.NumFields() > 4 {
panic(fmt.Errorf("Too many fields (%d, %d bytes), container=%s", at.NumFields(), at.Size(), container.LongString()))
}
a = makeOf(a, StructMakeOp(at.NumFields()), args)
x.commonSelectors[sk] = a
return a
case types.TSLICE:
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, at.Elem().PtrTo(), rc.next(x.typs.BytePtr)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Int, rc.next(x.typs.Int)))
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Int, rc.next(x.typs.Int)))
a = makeOf(a, OpSliceMake, args)
x.commonSelectors[sk] = a
return a
case types.TSTRING:
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.BytePtr, rc.next(x.typs.BytePtr)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Int, rc.next(x.typs.Int)))
a = makeOf(a, OpStringMake, args)
x.commonSelectors[sk] = a
return a
case types.TINTER:
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Uintptr, rc.next(x.typs.Uintptr)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.BytePtr, rc.next(x.typs.BytePtr)))
a = makeOf(a, OpIMake, args)
x.commonSelectors[sk] = a
return a
case types.TCOMPLEX64:
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Float32, rc.next(x.typs.Float32)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Float32, rc.next(x.typs.Float32)))
a = makeOf(a, OpComplexMake, args)
x.commonSelectors[sk] = a
return a
case types.TCOMPLEX128:
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Float64, rc.next(x.typs.Float64)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.Float64, rc.next(x.typs.Float64)))
a = makeOf(a, OpComplexMake, args)
x.commonSelectors[sk] = a
return a
case types.TINT64:
if at.Size() > x.regSize {
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.firstType, rc.next(x.firstType)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.secondType, rc.next(x.secondType)))
if !x.f.Config.BigEndian {
// Int64Make args are big, little
args[0], args[1] = args[1], args[0]
}
a = makeOf(a, OpInt64Make, args)
x.commonSelectors[sk] = a
return a
}
case types.TUINT64:
if at.Size() > x.regSize {
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.UInt32, rc.next(x.typs.UInt32)))
pos = pos.WithNotStmt()
addArg(x.rewriteSelectOrArg(pos, b, container, nil, m0, x.typs.UInt32, rc.next(x.typs.UInt32)))
if !x.f.Config.BigEndian {
// Int64Make args are big, little
args[0], args[1] = args[1], args[0]
}
a = makeOf(a, OpInt64Make, args)
x.commonSelectors[sk] = a
return a
}
}
// An atomic type, either record the register or store it and update the memory.
// Depending on the container Op, the leaves are either OpSelectN or OpArg{Int,Float}Reg
if container.Op == OpArg {
if rc.hasRegs() {
op, i := rc.ArgOpAndRegisterFor()
name := container.Aux.(*ir.Name)
a = makeOf(a, op, nil)
a.AuxInt = i
a.Aux = &AuxNameOffset{name, rc.storeOffset}
} else {
key := selKey{container, rc.storeOffset, at.Size(), at}
w := x.commonArgs[key]
if w != nil && w.Uses != 0 {
if a == nil {
a = w
} else {
a.copyOf(w)
}
} else {
if a == nil {
aux := container.Aux
auxInt := container.AuxInt + rc.storeOffset
a = container.Block.NewValue0IA(container.Pos, OpArg, at, auxInt, aux)
} else {
// do nothing, the original should be okay.
}
x.commonArgs[key] = a
}
}
} else if container.Op == OpSelectN {
call := container.Args[0]
aux := call.Aux.(*AuxCall)
which := container.AuxInt
if at == types.TypeMem {
if a != m0 || a != x.memForCall[call.ID] {
panic(fmt.Errorf("Memories %s, %s, and %s should all be equal after %s", a.LongString(), m0.LongString(), x.memForCall[call.ID], call.LongString()))
}
} else if rc.hasRegs() {
firstReg := uint32(0)
for i := 0; i < int(which); i++ {
firstReg += uint32(len(aux.abiInfo.OutParam(i).Registers))
}
reg := int64(rc.nextSlice + Abi1RO(firstReg))
a = makeOf(a, OpSelectN, []*Value{call})
a.AuxInt = reg
} else {
off := x.offsetFrom(x.f.Entry, x.sp, rc.storeOffset+aux.OffsetOfResult(which), types.NewPtr(at))
a = makeOf(a, OpLoad, []*Value{off, m0})
}
} else {
panic(fmt.Errorf("Expected container OpArg or OpSelectN, saw %v instead", container.LongString()))
}
x.commonSelectors[sk] = a
return a
}
// rewriteWideSelectToStores handles the case of a SelectN'd result from a function call that is too large for SSA,
// but is transferred in registers. In this case the register cursor tracks both operands; the register sources and
// the memory destinations.
// This returns the memory flowing out of the last store
func (x *expandState) rewriteWideSelectToStores(pos src.XPos, b *Block, container, m0 *Value, at *types.Type, rc registerCursor) *Value {
if at.Size() == 0 {
return m0
}
switch at.Kind() {
case types.TARRAY:
et := at.Elem()
for i := int64(0); i < at.NumElem(); i++ {
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, et, rc.next(et))
}
return m0
case types.TSTRUCT:
// Assume ssagen/ssa.go (in buildssa) spills large aggregates so they won't appear here.
for i := 0; i < at.NumFields(); i++ {
et := at.Field(i).Type
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, et, rc.next(et))
pos = pos.WithNotStmt()
}
return m0
case types.TSLICE:
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, at.Elem().PtrTo(), rc.next(x.typs.BytePtr))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Int, rc.next(x.typs.Int))
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Int, rc.next(x.typs.Int))
return m0
case types.TSTRING:
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.BytePtr, rc.next(x.typs.BytePtr))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Int, rc.next(x.typs.Int))
return m0
case types.TINTER:
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Uintptr, rc.next(x.typs.Uintptr))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.BytePtr, rc.next(x.typs.BytePtr))
return m0
case types.TCOMPLEX64:
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Float32, rc.next(x.typs.Float32))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Float32, rc.next(x.typs.Float32))
return m0
case types.TCOMPLEX128:
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Float64, rc.next(x.typs.Float64))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.Float64, rc.next(x.typs.Float64))
return m0
case types.TINT64:
if at.Size() > x.regSize {
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.firstType, rc.next(x.firstType))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.secondType, rc.next(x.secondType))
return m0
}
case types.TUINT64:
if at.Size() > x.regSize {
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.UInt32, rc.next(x.typs.UInt32))
pos = pos.WithNotStmt()
m0 = x.rewriteWideSelectToStores(pos, b, container, m0, x.typs.UInt32, rc.next(x.typs.UInt32))
return m0
}
}
// TODO could change treatment of too-large OpArg, would deal with it here.
if container.Op == OpSelectN {
call := container.Args[0]
aux := call.Aux.(*AuxCall)
which := container.AuxInt
if rc.hasRegs() {
firstReg := uint32(0)
for i := 0; i < int(which); i++ {
firstReg += uint32(len(aux.abiInfo.OutParam(i).Registers))
}
reg := int64(rc.nextSlice + Abi1RO(firstReg))
a := b.NewValue1I(pos, OpSelectN, at, reg, call)
dst := x.offsetFrom(b, rc.storeDest, rc.storeOffset, types.NewPtr(at))
m0 = b.NewValue3A(pos, OpStore, types.TypeMem, at, dst, a, m0)
} else {
panic(fmt.Errorf("Expected rc to have registers"))
}
} else {
panic(fmt.Errorf("Expected container OpSelectN, saw %v instead", container.LongString()))
}
return m0
}
func isBlockMultiValueExit(b *Block) bool {
return (b.Kind == BlockRet || b.Kind == BlockRetJmp) && b.Controls[0] != nil && b.Controls[0].Op == OpMakeResult
}
type Abi1RO uint8 // An offset within a parameter's slice of register indices, for abi1.
// A registerCursor tracks which register is used for an Arg or regValues, or a piece of such.
type registerCursor struct {
storeDest *Value // if there are no register targets, then this is the base of the store.
storeOffset int64
regs []abi.RegIndex // the registers available for this Arg/result (which is all in registers or not at all)
nextSlice Abi1RO // the next register/register-slice offset
config *abi.ABIConfig
regValues *[]*Value // values assigned to registers accumulate here
}
func (c *registerCursor) String() string {
dest := "<none>"
if c.storeDest != nil {
dest = fmt.Sprintf("%s+%d", c.storeDest.String(), c.storeOffset)
}
regs := "<none>"
if c.regValues != nil {
regs = ""
for i, x := range *c.regValues {
if i > 0 {
regs = regs + "; "
}
regs = regs + x.LongString()
}
}
// not printing the config because that has not been useful
return fmt.Sprintf("RCSR{storeDest=%v, regsLen=%d, nextSlice=%d, regValues=[%s]}", dest, len(c.regs), c.nextSlice, regs)
}
// next effectively post-increments the register cursor; the receiver is advanced,
// the (aligned) old value is returned.
func (c *registerCursor) next(t *types.Type) registerCursor {
c.storeOffset = types.RoundUp(c.storeOffset, t.Alignment())
rc := *c
c.storeOffset = types.RoundUp(c.storeOffset+t.Size(), t.Alignment())
if int(c.nextSlice) < len(c.regs) {
w := c.config.NumParamRegs(t)
c.nextSlice += Abi1RO(w)
}
return rc
}
// plus returns a register cursor offset from the original, without modifying the original.
func (c *registerCursor) plus(regWidth Abi1RO) registerCursor {
rc := *c
rc.nextSlice += regWidth
return rc
}
// at returns the register cursor for component i of t, where the first
// component is numbered 0.
func (c *registerCursor) at(t *types.Type, i int) registerCursor {
rc := *c
if i == 0 || len(c.regs) == 0 {
return rc
}
if t.IsArray() {
w := c.config.NumParamRegs(t.Elem())
rc.nextSlice += Abi1RO(i * w)
return rc
}
if t.IsStruct() {
for j := 0; j < i; j++ {
rc.next(t.FieldType(j))
}
return rc
}
panic("Haven't implemented this case yet, do I need to?")
}
func (c *registerCursor) init(regs []abi.RegIndex, info *abi.ABIParamResultInfo, result *[]*Value, storeDest *Value, storeOffset int64) {
c.regs = regs
c.nextSlice = 0
c.storeOffset = storeOffset
c.storeDest = storeDest
c.config = info.Config()
c.regValues = result
}
func (c *registerCursor) addArg(v *Value) {
*c.regValues = append(*c.regValues, v)
}
func (c *registerCursor) hasRegs() bool {
return len(c.regs) > 0
}
func (c *registerCursor) ArgOpAndRegisterFor() (Op, int64) {
r := c.regs[c.nextSlice]
return ArgOpAndRegisterFor(r, c.config)
}
// ArgOpAndRegisterFor converts an abi register index into an ssa Op and corresponding
// arg register index.
func ArgOpAndRegisterFor(r abi.RegIndex, abiConfig *abi.ABIConfig) (Op, int64) {
i := abiConfig.FloatIndexFor(r)
if i >= 0 { // float PR
return OpArgFloatReg, i
}
return OpArgIntReg, int64(r)
}
type selKey struct {
from *Value // what is selected from
offsetOrIndex int64 // whatever is appropriate for the selector
size int64
typ *types.Type
}
type expandState struct {
f *Func
debug int // odd values log lost statement markers, so likely settings are 1 (stmts), 2 (expansion), and 3 (both)
regSize int64
sp *Value
typs *Types
firstOp Op // for 64-bit integers on 32-bit machines, first word in memory
secondOp Op // for 64-bit integers on 32-bit machines, second word in memory
firstType *types.Type // first half type, for Int64
secondType *types.Type // second half type, for Int64
wideSelects map[*Value]*Value // Selects that are not SSA-able, mapped to consuming stores.
commonSelectors map[selKey]*Value // used to de-dupe selectors
commonArgs map[selKey]*Value // used to de-dupe OpArg/OpArgIntReg/OpArgFloatReg
memForCall map[ID]*Value // For a call, need to know the unique selector that gets the mem.
indentLevel int // Indentation for debugging recursion
}
// intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target
// that has no 64-bit integer registers.
func (x *expandState) intPairTypes(et types.Kind) (tHi, tLo *types.Type) {
tHi = x.typs.UInt32
if et == types.TINT64 {
tHi = x.typs.Int32
}
tLo = x.typs.UInt32
return
}
// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
func (x *expandState) offsetFrom(b *Block, from *Value, offset int64, pt *types.Type) *Value {
ft := from.Type
if offset == 0 {
if ft == pt {
return from
}
// This captures common, (apparently) safe cases. The unsafe cases involve ft == uintptr
if (ft.IsPtr() || ft.IsUnsafePtr()) && pt.IsPtr() {
return from
}
}
// Simplify, canonicalize
for from.Op == OpOffPtr {
offset += from.AuxInt
from = from.Args[0]
}
if from == x.sp {
return x.f.ConstOffPtrSP(pt, offset, x.sp)
}
return b.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
}
func (x *expandState) regWidth(t *types.Type) Abi1RO {
return Abi1RO(x.f.ABI1.NumParamRegs(t))
}
// regOffset returns the register offset of the i'th element of type t
func (x *expandState) regOffset(t *types.Type, i int) Abi1RO {
// TODO maybe cache this in a map if profiling recommends.
if i == 0 {
return 0
}
if t.IsArray() {
return Abi1RO(i) * x.regWidth(t.Elem())
}
if t.IsStruct() {
k := Abi1RO(0)
for j := 0; j < i; j++ {
k += x.regWidth(t.FieldType(j))
}
return k
}
panic("Haven't implemented this case yet, do I need to?")
}
// prAssignForArg returns the ABIParamAssignment for v, assumed to be an OpArg.
func (x *expandState) prAssignForArg(v *Value) *abi.ABIParamAssignment {
if v.Op != OpArg {
panic(fmt.Errorf("Wanted OpArg, instead saw %s", v.LongString()))
}
return ParamAssignmentForArgName(x.f, v.Aux.(*ir.Name))
}
// ParamAssignmentForArgName returns the ABIParamAssignment for f's arg with matching name.
func ParamAssignmentForArgName(f *Func, name *ir.Name) *abi.ABIParamAssignment {
abiInfo := f.OwnAux.abiInfo
ip := abiInfo.InParams()
for i, a := range ip {
if a.Name == name {
return &ip[i]
}
}
panic(fmt.Errorf("Did not match param %v in prInfo %+v", name, abiInfo.InParams()))
}
// indent increments (or decrements) the indentation.
func (x *expandState) indent(n int) {
x.indentLevel += n
}
// Printf does an indented fmt.Printf on the format and args.
func (x *expandState) Printf(format string, a ...interface{}) (n int, err error) {
if x.indentLevel > 0 {
fmt.Printf("%[1]*s", x.indentLevel, "")
}
return fmt.Printf(format, a...)
}
func (x *expandState) invalidateRecursively(a *Value) {
var s string
if x.debug > 0 {
plus := " "
if a.Pos.IsStmt() == src.PosIsStmt {
plus = " +"
}
s = a.String() + plus + a.Pos.LineNumber() + " " + a.LongString()
if x.debug > 1 {
x.Printf("...marking %v unused\n", s)
}
}
lost := a.invalidateRecursively()
if x.debug&1 != 0 && lost { // For odd values of x.debug, do this.
x.Printf("Lost statement marker in %s on former %s\n", base.Ctxt.Pkgpath+"."+x.f.Name, s)
}
}
|