summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/phiopt.go
blob: 037845eacf2db6afeb1fe683ce253f2ee4526e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

// phiopt eliminates boolean Phis based on the previous if.
//
// Main use case is to transform:
//
//	x := false
//	if b {
//	  x = true
//	}
//
// into x = b.
//
// In SSA code this appears as
//
//	b0
//	  If b -> b1 b2
//	b1
//	  Plain -> b2
//	b2
//	  x = (OpPhi (ConstBool [true]) (ConstBool [false]))
//
// In this case we can replace x with a copy of b.
func phiopt(f *Func) {
	sdom := f.Sdom()
	for _, b := range f.Blocks {
		if len(b.Preds) != 2 || len(b.Values) == 0 {
			// TODO: handle more than 2 predecessors, e.g. a || b || c.
			continue
		}

		pb0, b0 := b, b.Preds[0].b
		for len(b0.Succs) == 1 && len(b0.Preds) == 1 {
			pb0, b0 = b0, b0.Preds[0].b
		}
		if b0.Kind != BlockIf {
			continue
		}
		pb1, b1 := b, b.Preds[1].b
		for len(b1.Succs) == 1 && len(b1.Preds) == 1 {
			pb1, b1 = b1, b1.Preds[0].b
		}
		if b1 != b0 {
			continue
		}
		// b0 is the if block giving the boolean value.
		// reverse is the predecessor from which the truth value comes.
		var reverse int
		if b0.Succs[0].b == pb0 && b0.Succs[1].b == pb1 {
			reverse = 0
		} else if b0.Succs[0].b == pb1 && b0.Succs[1].b == pb0 {
			reverse = 1
		} else {
			b.Fatalf("invalid predecessors\n")
		}

		for _, v := range b.Values {
			if v.Op != OpPhi {
				continue
			}

			// Look for conversions from bool to 0/1.
			if v.Type.IsInteger() {
				phioptint(v, b0, reverse)
			}

			if !v.Type.IsBoolean() {
				continue
			}

			// Replaces
			//   if a { x = true } else { x = false } with x = a
			// and
			//   if a { x = false } else { x = true } with x = !a
			if v.Args[0].Op == OpConstBool && v.Args[1].Op == OpConstBool {
				if v.Args[reverse].AuxInt != v.Args[1-reverse].AuxInt {
					ops := [2]Op{OpNot, OpCopy}
					v.reset(ops[v.Args[reverse].AuxInt])
					v.AddArg(b0.Controls[0])
					if f.pass.debug > 0 {
						f.Warnl(b.Pos, "converted OpPhi to %v", v.Op)
					}
					continue
				}
			}

			// Replaces
			//   if a { x = true } else { x = value } with x = a || value.
			// Requires that value dominates x, meaning that regardless of a,
			// value is always computed. This guarantees that the side effects
			// of value are not seen if a is false.
			if v.Args[reverse].Op == OpConstBool && v.Args[reverse].AuxInt == 1 {
				if tmp := v.Args[1-reverse]; sdom.IsAncestorEq(tmp.Block, b) {
					v.reset(OpOrB)
					v.SetArgs2(b0.Controls[0], tmp)
					if f.pass.debug > 0 {
						f.Warnl(b.Pos, "converted OpPhi to %v", v.Op)
					}
					continue
				}
			}

			// Replaces
			//   if a { x = value } else { x = false } with x = a && value.
			// Requires that value dominates x, meaning that regardless of a,
			// value is always computed. This guarantees that the side effects
			// of value are not seen if a is false.
			if v.Args[1-reverse].Op == OpConstBool && v.Args[1-reverse].AuxInt == 0 {
				if tmp := v.Args[reverse]; sdom.IsAncestorEq(tmp.Block, b) {
					v.reset(OpAndB)
					v.SetArgs2(b0.Controls[0], tmp)
					if f.pass.debug > 0 {
						f.Warnl(b.Pos, "converted OpPhi to %v", v.Op)
					}
					continue
				}
			}
		}
	}
	// strengthen phi optimization.
	// Main use case is to transform:
	//   x := false
	//   if c {
	//     x = true
	//     ...
	//   }
	// into
	//   x := c
	//   if x { ... }
	//
	// For example, in SSA code a case appears as
	// b0
	//   If c -> b, sb0
	// sb0
	//   If d -> sd0, sd1
	// sd1
	//   ...
	// sd0
	//   Plain -> b
	// b
	//   x = (OpPhi (ConstBool [true]) (ConstBool [false]))
	//
	// In this case we can also replace x with a copy of c.
	//
	// The optimization idea:
	// 1. block b has a phi value x, x = OpPhi (ConstBool [true]) (ConstBool [false]),
	//    and len(b.Preds) is equal to 2.
	// 2. find the common dominator(b0) of the predecessors(pb0, pb1) of block b, and the
	//    dominator(b0) is a If block.
	//    Special case: one of the predecessors(pb0 or pb1) is the dominator(b0).
	// 3. the successors(sb0, sb1) of the dominator need to dominate the predecessors(pb0, pb1)
	//    of block b respectively.
	// 4. replace this boolean Phi based on dominator block.
	//
	//     b0(pb0)            b0(pb1)          b0
	//    |  \               /  |             /  \
	//    |  sb1           sb0  |           sb0  sb1
	//    |  ...           ...  |           ...   ...
	//    |  pb1           pb0  |           pb0  pb1
	//    |  /               \  |            \   /
	//     b                   b               b
	//
	var lca *lcaRange
	for _, b := range f.Blocks {
		if len(b.Preds) != 2 || len(b.Values) == 0 {
			// TODO: handle more than 2 predecessors, e.g. a || b || c.
			continue
		}

		for _, v := range b.Values {
			// find a phi value v = OpPhi (ConstBool [true]) (ConstBool [false]).
			// TODO: v = OpPhi (ConstBool [true]) (Arg <bool> {value})
			if v.Op != OpPhi {
				continue
			}
			if v.Args[0].Op != OpConstBool || v.Args[1].Op != OpConstBool {
				continue
			}
			if v.Args[0].AuxInt == v.Args[1].AuxInt {
				continue
			}

			pb0 := b.Preds[0].b
			pb1 := b.Preds[1].b
			if pb0.Kind == BlockIf && pb0 == sdom.Parent(b) {
				// special case: pb0 is the dominator block b0.
				//     b0(pb0)
				//    |  \
				//    |  sb1
				//    |  ...
				//    |  pb1
				//    |  /
				//     b
				// if another successor sb1 of b0(pb0) dominates pb1, do replace.
				ei := b.Preds[0].i
				sb1 := pb0.Succs[1-ei].b
				if sdom.IsAncestorEq(sb1, pb1) {
					convertPhi(pb0, v, ei)
					break
				}
			} else if pb1.Kind == BlockIf && pb1 == sdom.Parent(b) {
				// special case: pb1 is the dominator block b0.
				//       b0(pb1)
				//     /   |
				//    sb0  |
				//    ...  |
				//    pb0  |
				//      \  |
				//        b
				// if another successor sb0 of b0(pb0) dominates pb0, do replace.
				ei := b.Preds[1].i
				sb0 := pb1.Succs[1-ei].b
				if sdom.IsAncestorEq(sb0, pb0) {
					convertPhi(pb1, v, 1-ei)
					break
				}
			} else {
				//      b0
				//     /   \
				//    sb0  sb1
				//    ...  ...
				//    pb0  pb1
				//      \   /
				//        b
				//
				// Build data structure for fast least-common-ancestor queries.
				if lca == nil {
					lca = makeLCArange(f)
				}
				b0 := lca.find(pb0, pb1)
				if b0.Kind != BlockIf {
					break
				}
				sb0 := b0.Succs[0].b
				sb1 := b0.Succs[1].b
				var reverse int
				if sdom.IsAncestorEq(sb0, pb0) && sdom.IsAncestorEq(sb1, pb1) {
					reverse = 0
				} else if sdom.IsAncestorEq(sb1, pb0) && sdom.IsAncestorEq(sb0, pb1) {
					reverse = 1
				} else {
					break
				}
				if len(sb0.Preds) != 1 || len(sb1.Preds) != 1 {
					// we can not replace phi value x in the following case.
					//   if gp == nil || sp < lo { x = true}
					//   if a || b { x = true }
					// so the if statement can only have one condition.
					break
				}
				convertPhi(b0, v, reverse)
			}
		}
	}
}

func phioptint(v *Value, b0 *Block, reverse int) {
	a0 := v.Args[0]
	a1 := v.Args[1]
	if a0.Op != a1.Op {
		return
	}

	switch a0.Op {
	case OpConst8, OpConst16, OpConst32, OpConst64:
	default:
		return
	}

	negate := false
	switch {
	case a0.AuxInt == 0 && a1.AuxInt == 1:
		negate = true
	case a0.AuxInt == 1 && a1.AuxInt == 0:
	default:
		return
	}

	if reverse == 1 {
		negate = !negate
	}

	a := b0.Controls[0]
	if negate {
		a = v.Block.NewValue1(v.Pos, OpNot, a.Type, a)
	}
	v.AddArg(a)

	cvt := v.Block.NewValue1(v.Pos, OpCvtBoolToUint8, v.Block.Func.Config.Types.UInt8, a)
	switch v.Type.Size() {
	case 1:
		v.reset(OpCopy)
	case 2:
		v.reset(OpZeroExt8to16)
	case 4:
		v.reset(OpZeroExt8to32)
	case 8:
		v.reset(OpZeroExt8to64)
	default:
		v.Fatalf("bad int size %d", v.Type.Size())
	}
	v.AddArg(cvt)

	f := b0.Func
	if f.pass.debug > 0 {
		f.Warnl(v.Block.Pos, "converted OpPhi bool -> int%d", v.Type.Size()*8)
	}
}

// b is the If block giving the boolean value.
// v is the phi value v = (OpPhi (ConstBool [true]) (ConstBool [false])).
// reverse is the predecessor from which the truth value comes.
func convertPhi(b *Block, v *Value, reverse int) {
	f := b.Func
	ops := [2]Op{OpNot, OpCopy}
	v.reset(ops[v.Args[reverse].AuxInt])
	v.AddArg(b.Controls[0])
	if f.pass.debug > 0 {
		f.Warnl(b.Pos, "converted OpPhi to %v", v.Op)
	}
}