summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/sccp.go
blob: 77a6f509618af659efa1e715db7ab4f0823dbaa5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"fmt"
)

// ----------------------------------------------------------------------------
// Sparse Conditional Constant Propagation
//
// Described in
// Mark N. Wegman, F. Kenneth Zadeck: Constant Propagation with Conditional Branches.
// TOPLAS 1991.
//
// This algorithm uses three level lattice for SSA value
//
//      Top        undefined
//     / | \
// .. 1  2  3 ..   constant
//     \ | /
//     Bottom      not constant
//
// It starts with optimistically assuming that all SSA values are initially Top
// and then propagates constant facts only along reachable control flow paths.
// Since some basic blocks are not visited yet, corresponding inputs of phi become
// Top, we use the meet(phi) to compute its lattice.
//
// 	  Top ∩ any = any
// 	  Bottom ∩ any = Bottom
// 	  ConstantA ∩ ConstantA = ConstantA
// 	  ConstantA ∩ ConstantB = Bottom
//
// Each lattice value is lowered most twice(Top to Constant, Constant to Bottom)
// due to lattice depth, resulting in a fast convergence speed of the algorithm.
// In this way, sccp can discover optimization opportunities that cannot be found
// by just combining constant folding and constant propagation and dead code
// elimination separately.

// Three level lattice holds compile time knowledge about SSA value
const (
	top      int8 = iota // undefined
	constant             // constant
	bottom               // not a constant
)

type lattice struct {
	tag int8   // lattice type
	val *Value // constant value
}

type worklist struct {
	f            *Func               // the target function to be optimized out
	edges        []Edge              // propagate constant facts through edges
	uses         []*Value            // re-visiting set
	visited      map[Edge]bool       // visited edges
	latticeCells map[*Value]lattice  // constant lattices
	defUse       map[*Value][]*Value // def-use chains for some values
	defBlock     map[*Value][]*Block // use blocks of def
	visitedBlock []bool              // visited block
}

// sccp stands for sparse conditional constant propagation, it propagates constants
// through CFG conditionally and applies constant folding, constant replacement and
// dead code elimination all together.
func sccp(f *Func) {
	var t worklist
	t.f = f
	t.edges = make([]Edge, 0)
	t.visited = make(map[Edge]bool)
	t.edges = append(t.edges, Edge{f.Entry, 0})
	t.defUse = make(map[*Value][]*Value)
	t.defBlock = make(map[*Value][]*Block)
	t.latticeCells = make(map[*Value]lattice)
	t.visitedBlock = f.Cache.allocBoolSlice(f.NumBlocks())
	defer f.Cache.freeBoolSlice(t.visitedBlock)

	// build it early since we rely heavily on the def-use chain later
	t.buildDefUses()

	// pick up either an edge or SSA value from worklilst, process it
	for {
		if len(t.edges) > 0 {
			edge := t.edges[0]
			t.edges = t.edges[1:]
			if _, exist := t.visited[edge]; !exist {
				dest := edge.b
				destVisited := t.visitedBlock[dest.ID]

				// mark edge as visited
				t.visited[edge] = true
				t.visitedBlock[dest.ID] = true
				for _, val := range dest.Values {
					if val.Op == OpPhi || !destVisited {
						t.visitValue(val)
					}
				}
				// propagates constants facts through CFG, taking condition test
				// into account
				if !destVisited {
					t.propagate(dest)
				}
			}
			continue
		}
		if len(t.uses) > 0 {
			use := t.uses[0]
			t.uses = t.uses[1:]
			t.visitValue(use)
			continue
		}
		break
	}

	// apply optimizations based on discovered constants
	constCnt, rewireCnt := t.replaceConst()
	if f.pass.debug > 0 {
		if constCnt > 0 || rewireCnt > 0 {
			fmt.Printf("Phase SCCP for %v : %v constants, %v dce\n", f.Name, constCnt, rewireCnt)
		}
	}
}

func equals(a, b lattice) bool {
	if a == b {
		// fast path
		return true
	}
	if a.tag != b.tag {
		return false
	}
	if a.tag == constant {
		// The same content of const value may be different, we should
		// compare with auxInt instead
		v1 := a.val
		v2 := b.val
		if v1.Op == v2.Op && v1.AuxInt == v2.AuxInt {
			return true
		} else {
			return false
		}
	}
	return true
}

// possibleConst checks if Value can be fold to const. For those Values that can
// never become constants(e.g. StaticCall), we don't make futile efforts.
func possibleConst(val *Value) bool {
	if isConst(val) {
		return true
	}
	switch val.Op {
	case OpCopy:
		return true
	case OpPhi:
		return true
	case
		// negate
		OpNeg8, OpNeg16, OpNeg32, OpNeg64, OpNeg32F, OpNeg64F,
		OpCom8, OpCom16, OpCom32, OpCom64,
		// math
		OpFloor, OpCeil, OpTrunc, OpRoundToEven, OpSqrt,
		// conversion
		OpTrunc16to8, OpTrunc32to8, OpTrunc32to16, OpTrunc64to8,
		OpTrunc64to16, OpTrunc64to32, OpCvt32to32F, OpCvt32to64F,
		OpCvt64to32F, OpCvt64to64F, OpCvt32Fto32, OpCvt32Fto64,
		OpCvt64Fto32, OpCvt64Fto64, OpCvt32Fto64F, OpCvt64Fto32F,
		OpCvtBoolToUint8,
		OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64, OpZeroExt16to32,
		OpZeroExt16to64, OpZeroExt32to64, OpSignExt8to16, OpSignExt8to32,
		OpSignExt8to64, OpSignExt16to32, OpSignExt16to64, OpSignExt32to64,
		// bit
		OpCtz8, OpCtz16, OpCtz32, OpCtz64,
		// mask
		OpSlicemask,
		// safety check
		OpIsNonNil,
		// not
		OpNot:
		return true
	case
		// add
		OpAdd64, OpAdd32, OpAdd16, OpAdd8,
		OpAdd32F, OpAdd64F,
		// sub
		OpSub64, OpSub32, OpSub16, OpSub8,
		OpSub32F, OpSub64F,
		// mul
		OpMul64, OpMul32, OpMul16, OpMul8,
		OpMul32F, OpMul64F,
		// div
		OpDiv32F, OpDiv64F,
		OpDiv8, OpDiv16, OpDiv32, OpDiv64,
		OpDiv8u, OpDiv16u, OpDiv32u, OpDiv64u,
		OpMod8, OpMod16, OpMod32, OpMod64,
		OpMod8u, OpMod16u, OpMod32u, OpMod64u,
		// compare
		OpEq64, OpEq32, OpEq16, OpEq8,
		OpEq32F, OpEq64F,
		OpLess64, OpLess32, OpLess16, OpLess8,
		OpLess64U, OpLess32U, OpLess16U, OpLess8U,
		OpLess32F, OpLess64F,
		OpLeq64, OpLeq32, OpLeq16, OpLeq8,
		OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U,
		OpLeq32F, OpLeq64F,
		OpEqB, OpNeqB,
		// shift
		OpLsh64x64, OpRsh64x64, OpRsh64Ux64, OpLsh32x64,
		OpRsh32x64, OpRsh32Ux64, OpLsh16x64, OpRsh16x64,
		OpRsh16Ux64, OpLsh8x64, OpRsh8x64, OpRsh8Ux64,
		// safety check
		OpIsInBounds, OpIsSliceInBounds,
		// bit
		OpAnd8, OpAnd16, OpAnd32, OpAnd64,
		OpOr8, OpOr16, OpOr32, OpOr64,
		OpXor8, OpXor16, OpXor32, OpXor64:
		return true
	default:
		return false
	}
}

func (t *worklist) getLatticeCell(val *Value) lattice {
	if !possibleConst(val) {
		// they are always worst
		return lattice{bottom, nil}
	}
	lt, exist := t.latticeCells[val]
	if !exist {
		return lattice{top, nil} // optimistically for un-visited value
	}
	return lt
}

func isConst(val *Value) bool {
	switch val.Op {
	case OpConst64, OpConst32, OpConst16, OpConst8,
		OpConstBool, OpConst32F, OpConst64F:
		return true
	default:
		return false
	}
}

// buildDefUses builds def-use chain for some values early, because once the
// lattice of a value is changed, we need to update lattices of use. But we don't
// need all uses of it, only uses that can become constants would be added into
// re-visit worklist since no matter how many times they are revisited, uses which
// can't become constants lattice remains unchanged, i.e. Bottom.
func (t *worklist) buildDefUses() {
	for _, block := range t.f.Blocks {
		for _, val := range block.Values {
			for _, arg := range val.Args {
				// find its uses, only uses that can become constants take into account
				if possibleConst(arg) && possibleConst(val) {
					if _, exist := t.defUse[arg]; !exist {
						t.defUse[arg] = make([]*Value, 0, arg.Uses)
					}
					t.defUse[arg] = append(t.defUse[arg], val)
				}
			}
		}
		for _, ctl := range block.ControlValues() {
			// for control values that can become constants, find their use blocks
			if possibleConst(ctl) {
				t.defBlock[ctl] = append(t.defBlock[ctl], block)
			}
		}
	}
}

// addUses finds all uses of value and appends them into work list for further process
func (t *worklist) addUses(val *Value) {
	for _, use := range t.defUse[val] {
		if val == use {
			// Phi may refer to itself as uses, ignore them to avoid re-visiting phi
			// for performance reason
			continue
		}
		t.uses = append(t.uses, use)
	}
	for _, block := range t.defBlock[val] {
		if t.visitedBlock[block.ID] {
			t.propagate(block)
		}
	}
}

// meet meets all of phi arguments and computes result lattice
func (t *worklist) meet(val *Value) lattice {
	optimisticLt := lattice{top, nil}
	for i := 0; i < len(val.Args); i++ {
		edge := Edge{val.Block, i}
		// If incoming edge for phi is not visited, assume top optimistically.
		// According to rules of meet:
		// 		Top ∩ any = any
		// Top participates in meet() but does not affect the result, so here
		// we will ignore Top and only take other lattices into consideration.
		if _, exist := t.visited[edge]; exist {
			lt := t.getLatticeCell(val.Args[i])
			if lt.tag == constant {
				if optimisticLt.tag == top {
					optimisticLt = lt
				} else {
					if !equals(optimisticLt, lt) {
						// ConstantA ∩ ConstantB = Bottom
						return lattice{bottom, nil}
					}
				}
			} else if lt.tag == bottom {
				// Bottom ∩ any = Bottom
				return lattice{bottom, nil}
			} else {
				// Top ∩ any = any
			}
		} else {
			// Top ∩ any = any
		}
	}

	// ConstantA ∩ ConstantA = ConstantA or Top ∩ any = any
	return optimisticLt
}

func computeLattice(f *Func, val *Value, args ...*Value) lattice {
	// In general, we need to perform constant evaluation based on constant args:
	//
	//  res := lattice{constant, nil}
	// 	switch op {
	// 	case OpAdd16:
	//		res.val = newConst(argLt1.val.AuxInt16() + argLt2.val.AuxInt16())
	// 	case OpAdd32:
	// 		res.val = newConst(argLt1.val.AuxInt32() + argLt2.val.AuxInt32())
	//	case OpDiv8:
	//		if !isDivideByZero(argLt2.val.AuxInt8()) {
	//			res.val = newConst(argLt1.val.AuxInt8() / argLt2.val.AuxInt8())
	//		}
	//  ...
	// 	}
	//
	// However, this would create a huge switch for all opcodes that can be
	// evaluated during compile time. Moreover, some operations can be evaluated
	// only if its arguments satisfy additional conditions(e.g. divide by zero).
	// It's fragile and error prone. We did a trick by reusing the existing rules
	// in generic rules for compile-time evaluation. But generic rules rewrite
	// original value, this behavior is undesired, because the lattice of values
	// may change multiple times, once it was rewritten, we lose the opportunity
	// to change it permanently, which can lead to errors. For example, We cannot
	// change its value immediately after visiting Phi, because some of its input
	// edges may still not be visited at this moment.
	constValue := f.newValue(val.Op, val.Type, f.Entry, val.Pos)
	constValue.AddArgs(args...)
	matched := rewriteValuegeneric(constValue)
	if matched {
		if isConst(constValue) {
			return lattice{constant, constValue}
		}
	}
	// Either we can not match generic rules for given value or it does not
	// satisfy additional constraints(e.g. divide by zero), in these cases, clean
	// up temporary value immediately in case they are not dominated by their args.
	constValue.reset(OpInvalid)
	return lattice{bottom, nil}
}

func (t *worklist) visitValue(val *Value) {
	if !possibleConst(val) {
		// fast fail for always worst Values, i.e. there is no lowering happen
		// on them, their lattices must be initially worse Bottom.
		return
	}

	oldLt := t.getLatticeCell(val)
	defer func() {
		// re-visit all uses of value if its lattice is changed
		newLt := t.getLatticeCell(val)
		if !equals(newLt, oldLt) {
			if int8(oldLt.tag) > int8(newLt.tag) {
				t.f.Fatalf("Must lower lattice\n")
			}
			t.addUses(val)
		}
	}()

	switch val.Op {
	// they are constant values, aren't they?
	case OpConst64, OpConst32, OpConst16, OpConst8,
		OpConstBool, OpConst32F, OpConst64F: //TODO: support ConstNil ConstString etc
		t.latticeCells[val] = lattice{constant, val}
	// lattice value of copy(x) actually means lattice value of (x)
	case OpCopy:
		t.latticeCells[val] = t.getLatticeCell(val.Args[0])
	// phi should be processed specially
	case OpPhi:
		t.latticeCells[val] = t.meet(val)
	// fold 1-input operations:
	case
		// negate
		OpNeg8, OpNeg16, OpNeg32, OpNeg64, OpNeg32F, OpNeg64F,
		OpCom8, OpCom16, OpCom32, OpCom64,
		// math
		OpFloor, OpCeil, OpTrunc, OpRoundToEven, OpSqrt,
		// conversion
		OpTrunc16to8, OpTrunc32to8, OpTrunc32to16, OpTrunc64to8,
		OpTrunc64to16, OpTrunc64to32, OpCvt32to32F, OpCvt32to64F,
		OpCvt64to32F, OpCvt64to64F, OpCvt32Fto32, OpCvt32Fto64,
		OpCvt64Fto32, OpCvt64Fto64, OpCvt32Fto64F, OpCvt64Fto32F,
		OpCvtBoolToUint8,
		OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64, OpZeroExt16to32,
		OpZeroExt16to64, OpZeroExt32to64, OpSignExt8to16, OpSignExt8to32,
		OpSignExt8to64, OpSignExt16to32, OpSignExt16to64, OpSignExt32to64,
		// bit
		OpCtz8, OpCtz16, OpCtz32, OpCtz64,
		// mask
		OpSlicemask,
		// safety check
		OpIsNonNil,
		// not
		OpNot:
		lt1 := t.getLatticeCell(val.Args[0])

		if lt1.tag == constant {
			// here we take a shortcut by reusing generic rules to fold constants
			t.latticeCells[val] = computeLattice(t.f, val, lt1.val)
		} else {
			t.latticeCells[val] = lattice{lt1.tag, nil}
		}
	// fold 2-input operations
	case
		// add
		OpAdd64, OpAdd32, OpAdd16, OpAdd8,
		OpAdd32F, OpAdd64F,
		// sub
		OpSub64, OpSub32, OpSub16, OpSub8,
		OpSub32F, OpSub64F,
		// mul
		OpMul64, OpMul32, OpMul16, OpMul8,
		OpMul32F, OpMul64F,
		// div
		OpDiv32F, OpDiv64F,
		OpDiv8, OpDiv16, OpDiv32, OpDiv64,
		OpDiv8u, OpDiv16u, OpDiv32u, OpDiv64u, //TODO: support div128u
		// mod
		OpMod8, OpMod16, OpMod32, OpMod64,
		OpMod8u, OpMod16u, OpMod32u, OpMod64u,
		// compare
		OpEq64, OpEq32, OpEq16, OpEq8,
		OpEq32F, OpEq64F,
		OpLess64, OpLess32, OpLess16, OpLess8,
		OpLess64U, OpLess32U, OpLess16U, OpLess8U,
		OpLess32F, OpLess64F,
		OpLeq64, OpLeq32, OpLeq16, OpLeq8,
		OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U,
		OpLeq32F, OpLeq64F,
		OpEqB, OpNeqB,
		// shift
		OpLsh64x64, OpRsh64x64, OpRsh64Ux64, OpLsh32x64,
		OpRsh32x64, OpRsh32Ux64, OpLsh16x64, OpRsh16x64,
		OpRsh16Ux64, OpLsh8x64, OpRsh8x64, OpRsh8Ux64,
		// safety check
		OpIsInBounds, OpIsSliceInBounds,
		// bit
		OpAnd8, OpAnd16, OpAnd32, OpAnd64,
		OpOr8, OpOr16, OpOr32, OpOr64,
		OpXor8, OpXor16, OpXor32, OpXor64:
		lt1 := t.getLatticeCell(val.Args[0])
		lt2 := t.getLatticeCell(val.Args[1])

		if lt1.tag == constant && lt2.tag == constant {
			// here we take a shortcut by reusing generic rules to fold constants
			t.latticeCells[val] = computeLattice(t.f, val, lt1.val, lt2.val)
		} else {
			if lt1.tag == bottom || lt2.tag == bottom {
				t.latticeCells[val] = lattice{bottom, nil}
			} else {
				t.latticeCells[val] = lattice{top, nil}
			}
		}
	default:
		// Any other type of value cannot be a constant, they are always worst(Bottom)
	}
}

// propagate propagates constants facts through CFG. If the block has single successor,
// add the successor anyway. If the block has multiple successors, only add the
// branch destination corresponding to lattice value of condition value.
func (t *worklist) propagate(block *Block) {
	switch block.Kind {
	case BlockExit, BlockRet, BlockRetJmp, BlockInvalid:
		// control flow ends, do nothing then
		break
	case BlockDefer:
		// we know nothing about control flow, add all branch destinations
		t.edges = append(t.edges, block.Succs...)
	case BlockFirst:
		fallthrough // always takes the first branch
	case BlockPlain:
		t.edges = append(t.edges, block.Succs[0])
	case BlockIf, BlockJumpTable:
		cond := block.ControlValues()[0]
		condLattice := t.getLatticeCell(cond)
		if condLattice.tag == bottom {
			// we know nothing about control flow, add all branch destinations
			t.edges = append(t.edges, block.Succs...)
		} else if condLattice.tag == constant {
			// add branchIdx destinations depends on its condition
			var branchIdx int64
			if block.Kind == BlockIf {
				branchIdx = 1 - condLattice.val.AuxInt
			} else {
				branchIdx = condLattice.val.AuxInt
			}
			t.edges = append(t.edges, block.Succs[branchIdx])
		} else {
			// condition value is not visited yet, don't propagate it now
		}
	default:
		t.f.Fatalf("All kind of block should be processed above.")
	}
}

// rewireSuccessor rewires corresponding successors according to constant value
// discovered by previous analysis. As the result, some successors become unreachable
// and thus can be removed in further deadcode phase
func rewireSuccessor(block *Block, constVal *Value) bool {
	switch block.Kind {
	case BlockIf:
		block.removeEdge(int(constVal.AuxInt))
		block.Kind = BlockPlain
		block.Likely = BranchUnknown
		block.ResetControls()
		return true
	case BlockJumpTable:
		// Remove everything but the known taken branch.
		idx := int(constVal.AuxInt)
		if idx < 0 || idx >= len(block.Succs) {
			// This can only happen in unreachable code,
			// as an invariant of jump tables is that their
			// input index is in range.
			// See issue 64826.
			return false
		}
		block.swapSuccessorsByIdx(0, idx)
		for len(block.Succs) > 1 {
			block.removeEdge(1)
		}
		block.Kind = BlockPlain
		block.Likely = BranchUnknown
		block.ResetControls()
		return true
	default:
		return false
	}
}

// replaceConst will replace non-constant values that have been proven by sccp
// to be constants.
func (t *worklist) replaceConst() (int, int) {
	constCnt, rewireCnt := 0, 0
	for val, lt := range t.latticeCells {
		if lt.tag == constant {
			if !isConst(val) {
				if t.f.pass.debug > 0 {
					fmt.Printf("Replace %v with %v\n", val.LongString(), lt.val.LongString())
				}
				val.reset(lt.val.Op)
				val.AuxInt = lt.val.AuxInt
				constCnt++
			}
			// If const value controls this block, rewires successors according to its value
			ctrlBlock := t.defBlock[val]
			for _, block := range ctrlBlock {
				if rewireSuccessor(block, lt.val) {
					rewireCnt++
					if t.f.pass.debug > 0 {
						fmt.Printf("Rewire %v %v successors\n", block.Kind, block)
					}
				}
			}
		}
	}
	return constCnt, rewireCnt
}