1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package staticdata
import (
"encoding/base64"
"fmt"
"go/constant"
"io"
"os"
"sort"
"strconv"
"sync"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/types"
"cmd/internal/notsha256"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
)
// InitAddrOffset writes the static name symbol lsym to n, it does not modify n.
// It's the caller responsibility to make sure lsym is from ONAME/PEXTERN node.
func InitAddrOffset(n *ir.Name, noff int64, lsym *obj.LSym, off int64) {
if n.Op() != ir.ONAME {
base.Fatalf("InitAddr n op %v", n.Op())
}
if n.Sym() == nil {
base.Fatalf("InitAddr nil n sym")
}
s := n.Linksym()
s.WriteAddr(base.Ctxt, noff, types.PtrSize, lsym, off)
}
// InitAddr is InitAddrOffset, with offset fixed to 0.
func InitAddr(n *ir.Name, noff int64, lsym *obj.LSym) {
InitAddrOffset(n, noff, lsym, 0)
}
// InitSlice writes a static slice symbol {lsym, lencap, lencap} to n+noff, it does not modify n.
// It's the caller responsibility to make sure lsym is from ONAME node.
func InitSlice(n *ir.Name, noff int64, lsym *obj.LSym, lencap int64) {
s := n.Linksym()
s.WriteAddr(base.Ctxt, noff, types.PtrSize, lsym, 0)
s.WriteInt(base.Ctxt, noff+types.SliceLenOffset, types.PtrSize, lencap)
s.WriteInt(base.Ctxt, noff+types.SliceCapOffset, types.PtrSize, lencap)
}
func InitSliceBytes(nam *ir.Name, off int64, s string) {
if nam.Op() != ir.ONAME {
base.Fatalf("InitSliceBytes %v", nam)
}
InitSlice(nam, off, slicedata(nam.Pos(), s), int64(len(s)))
}
const (
stringSymPrefix = "go:string."
stringSymPattern = ".gostring.%d.%s"
)
// shortHashString converts the hash to a string for use with stringSymPattern.
// We cut it to 16 bytes and then base64-encode to make it even smaller.
func shortHashString(hash []byte) string {
return base64.StdEncoding.EncodeToString(hash[:16])
}
// StringSym returns a symbol containing the string s.
// The symbol contains the string data, not a string header.
func StringSym(pos src.XPos, s string) (data *obj.LSym) {
var symname string
if len(s) > 100 {
// Huge strings are hashed to avoid long names in object files.
// Indulge in some paranoia by writing the length of s, too,
// as protection against length extension attacks.
// Same pattern is known to fileStringSym below.
h := notsha256.New()
io.WriteString(h, s)
symname = fmt.Sprintf(stringSymPattern, len(s), shortHashString(h.Sum(nil)))
} else {
// Small strings get named directly by their contents.
symname = strconv.Quote(s)
}
symdata := base.Ctxt.Lookup(stringSymPrefix + symname)
if !symdata.OnList() {
off := dstringdata(symdata, 0, s, pos, "string")
objw.Global(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
symdata.Set(obj.AttrContentAddressable, true)
}
return symdata
}
// StringSymNoCommon is like StringSym, but produces a symbol that is not content-
// addressable. This symbol is not supposed to appear in the final binary, it is
// only used to pass string arguments to the linker like R_USENAMEDMETHOD does.
func StringSymNoCommon(s string) (data *obj.LSym) {
var nameSym obj.LSym
nameSym.WriteString(base.Ctxt, 0, len(s), s)
objw.Global(&nameSym, int32(len(s)), obj.RODATA)
return &nameSym
}
// maxFileSize is the maximum file size permitted by the linker
// (see issue #9862).
const maxFileSize = int64(2e9)
// fileStringSym returns a symbol for the contents and the size of file.
// If readonly is true, the symbol shares storage with any literal string
// or other file with the same content and is placed in a read-only section.
// If readonly is false, the symbol is a read-write copy separate from any other,
// for use as the backing store of a []byte.
// The content hash of file is copied into hash. (If hash is nil, nothing is copied.)
// The returned symbol contains the data itself, not a string header.
func fileStringSym(pos src.XPos, file string, readonly bool, hash []byte) (*obj.LSym, int64, error) {
f, err := os.Open(file)
if err != nil {
return nil, 0, err
}
defer f.Close()
info, err := f.Stat()
if err != nil {
return nil, 0, err
}
if !info.Mode().IsRegular() {
return nil, 0, fmt.Errorf("not a regular file")
}
size := info.Size()
if size <= 1*1024 {
data, err := io.ReadAll(f)
if err != nil {
return nil, 0, err
}
if int64(len(data)) != size {
return nil, 0, fmt.Errorf("file changed between reads")
}
var sym *obj.LSym
if readonly {
sym = StringSym(pos, string(data))
} else {
sym = slicedata(pos, string(data))
}
if len(hash) > 0 {
sum := notsha256.Sum256(data)
copy(hash, sum[:])
}
return sym, size, nil
}
if size > maxFileSize {
// ggloblsym takes an int32,
// and probably the rest of the toolchain
// can't handle such big symbols either.
// See golang.org/issue/9862.
return nil, 0, fmt.Errorf("file too large (%d bytes > %d bytes)", size, maxFileSize)
}
// File is too big to read and keep in memory.
// Compute hash if needed for read-only content hashing or if the caller wants it.
var sum []byte
if readonly || len(hash) > 0 {
h := notsha256.New()
n, err := io.Copy(h, f)
if err != nil {
return nil, 0, err
}
if n != size {
return nil, 0, fmt.Errorf("file changed between reads")
}
sum = h.Sum(nil)
copy(hash, sum)
}
var symdata *obj.LSym
if readonly {
symname := fmt.Sprintf(stringSymPattern, size, shortHashString(sum))
symdata = base.Ctxt.Lookup(stringSymPrefix + symname)
if !symdata.OnList() {
info := symdata.NewFileInfo()
info.Name = file
info.Size = size
objw.Global(symdata, int32(size), obj.DUPOK|obj.RODATA|obj.LOCAL)
// Note: AttrContentAddressable cannot be set here,
// because the content-addressable-handling code
// does not know about file symbols.
}
} else {
// Emit a zero-length data symbol
// and then fix up length and content to use file.
symdata = slicedata(pos, "")
symdata.Size = size
symdata.Type = objabi.SNOPTRDATA
info := symdata.NewFileInfo()
info.Name = file
info.Size = size
}
return symdata, size, nil
}
var slicedataGen int
func slicedata(pos src.XPos, s string) *obj.LSym {
slicedataGen++
symname := fmt.Sprintf(".gobytes.%d", slicedataGen)
lsym := types.LocalPkg.Lookup(symname).LinksymABI(obj.ABI0)
off := dstringdata(lsym, 0, s, pos, "slice")
objw.Global(lsym, int32(off), obj.NOPTR|obj.LOCAL)
return lsym
}
func dstringdata(s *obj.LSym, off int, t string, pos src.XPos, what string) int {
// Objects that are too large will cause the data section to overflow right away,
// causing a cryptic error message by the linker. Check for oversize objects here
// and provide a useful error message instead.
if int64(len(t)) > 2e9 {
base.ErrorfAt(pos, 0, "%v with length %v is too big", what, len(t))
return 0
}
s.WriteString(base.Ctxt, int64(off), len(t), t)
return off + len(t)
}
var (
funcsymsmu sync.Mutex // protects funcsyms and associated package lookups (see func funcsym)
funcsyms []*ir.Name // functions that need function value symbols
)
// FuncLinksym returns n·f, the function value symbol for n.
func FuncLinksym(n *ir.Name) *obj.LSym {
if n.Op() != ir.ONAME || n.Class != ir.PFUNC {
base.Fatalf("expected func name: %v", n)
}
s := n.Sym()
// funcsymsmu here serves to protect not just mutations of funcsyms (below),
// but also the package lookup of the func sym name,
// since this function gets called concurrently from the backend.
// There are no other concurrent package lookups in the backend,
// except for the types package, which is protected separately.
// Reusing funcsymsmu to also cover this package lookup
// avoids a general, broader, expensive package lookup mutex.
funcsymsmu.Lock()
sf, existed := s.Pkg.LookupOK(ir.FuncSymName(s))
if !existed {
funcsyms = append(funcsyms, n)
}
funcsymsmu.Unlock()
return sf.Linksym()
}
func GlobalLinksym(n *ir.Name) *obj.LSym {
if n.Op() != ir.ONAME || n.Class != ir.PEXTERN {
base.Fatalf("expected global variable: %v", n)
}
return n.Linksym()
}
func WriteFuncSyms() {
sort.Slice(funcsyms, func(i, j int) bool {
return funcsyms[i].Linksym().Name < funcsyms[j].Linksym().Name
})
for _, nam := range funcsyms {
s := nam.Sym()
sf := s.Pkg.Lookup(ir.FuncSymName(s)).Linksym()
// While compiling package runtime, we might try to create
// funcsyms for functions from both types.LocalPkg and
// ir.Pkgs.Runtime.
if base.Flag.CompilingRuntime && sf.OnList() {
continue
}
// Function values must always reference ABIInternal
// entry points.
target := s.Linksym()
if target.ABI() != obj.ABIInternal {
base.Fatalf("expected ABIInternal: %v has %v", target, target.ABI())
}
objw.SymPtr(sf, 0, target, 0)
objw.Global(sf, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
}
}
// InitConst writes the static literal c to n.
// Neither n nor c is modified.
func InitConst(n *ir.Name, noff int64, c ir.Node, wid int) {
if n.Op() != ir.ONAME {
base.Fatalf("InitConst n op %v", n.Op())
}
if n.Sym() == nil {
base.Fatalf("InitConst nil n sym")
}
if c.Op() == ir.ONIL {
return
}
if c.Op() != ir.OLITERAL {
base.Fatalf("InitConst c op %v", c.Op())
}
s := n.Linksym()
switch u := c.Val(); u.Kind() {
case constant.Bool:
i := int64(obj.Bool2int(constant.BoolVal(u)))
s.WriteInt(base.Ctxt, noff, wid, i)
case constant.Int:
s.WriteInt(base.Ctxt, noff, wid, ir.IntVal(c.Type(), u))
case constant.Float:
f, _ := constant.Float64Val(u)
switch c.Type().Kind() {
case types.TFLOAT32:
s.WriteFloat32(base.Ctxt, noff, float32(f))
case types.TFLOAT64:
s.WriteFloat64(base.Ctxt, noff, f)
}
case constant.Complex:
re, _ := constant.Float64Val(constant.Real(u))
im, _ := constant.Float64Val(constant.Imag(u))
switch c.Type().Kind() {
case types.TCOMPLEX64:
s.WriteFloat32(base.Ctxt, noff, float32(re))
s.WriteFloat32(base.Ctxt, noff+4, float32(im))
case types.TCOMPLEX128:
s.WriteFloat64(base.Ctxt, noff, re)
s.WriteFloat64(base.Ctxt, noff+8, im)
}
case constant.String:
i := constant.StringVal(u)
symdata := StringSym(n.Pos(), i)
s.WriteAddr(base.Ctxt, noff, types.PtrSize, symdata, 0)
s.WriteInt(base.Ctxt, noff+int64(types.PtrSize), types.PtrSize, int64(len(i)))
default:
base.Fatalf("InitConst unhandled OLITERAL %v", c)
}
}
|