1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"fmt"
"go/constant"
"internal/abi"
"internal/buildcfg"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/rttype"
"cmd/compile/internal/staticdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
)
// The result of walkExpr MUST be assigned back to n, e.g.
//
// n.Left = walkExpr(n.Left, init)
func walkExpr(n ir.Node, init *ir.Nodes) ir.Node {
if n == nil {
return n
}
if n, ok := n.(ir.InitNode); ok && init == n.PtrInit() {
// not okay to use n->ninit when walking n,
// because we might replace n with some other node
// and would lose the init list.
base.Fatalf("walkExpr init == &n->ninit")
}
if len(n.Init()) != 0 {
walkStmtList(n.Init())
init.Append(ir.TakeInit(n)...)
}
lno := ir.SetPos(n)
if base.Flag.LowerW > 1 {
ir.Dump("before walk expr", n)
}
if n.Typecheck() != 1 {
base.Fatalf("missed typecheck: %+v", n)
}
if n.Type().IsUntyped() {
base.Fatalf("expression has untyped type: %+v", n)
}
n = walkExpr1(n, init)
// Eagerly compute sizes of all expressions for the back end.
if typ := n.Type(); typ != nil && typ.Kind() != types.TBLANK && !typ.IsFuncArgStruct() {
types.CheckSize(typ)
}
if n, ok := n.(*ir.Name); ok && n.Heapaddr != nil {
types.CheckSize(n.Heapaddr.Type())
}
if ir.IsConst(n, constant.String) {
// Emit string symbol now to avoid emitting
// any concurrently during the backend.
_ = staticdata.StringSym(n.Pos(), constant.StringVal(n.Val()))
}
if base.Flag.LowerW != 0 && n != nil {
ir.Dump("after walk expr", n)
}
base.Pos = lno
return n
}
func walkExpr1(n ir.Node, init *ir.Nodes) ir.Node {
switch n.Op() {
default:
ir.Dump("walk", n)
base.Fatalf("walkExpr: switch 1 unknown op %+v", n.Op())
panic("unreachable")
case ir.OGETG, ir.OGETCALLERPC, ir.OGETCALLERSP:
return n
case ir.OTYPE, ir.ONAME, ir.OLITERAL, ir.ONIL, ir.OLINKSYMOFFSET:
// TODO(mdempsky): Just return n; see discussion on CL 38655.
// Perhaps refactor to use Node.mayBeShared for these instead.
// If these return early, make sure to still call
// StringSym for constant strings.
return n
case ir.OMETHEXPR:
// TODO(mdempsky): Do this right after type checking.
n := n.(*ir.SelectorExpr)
return n.FuncName()
case ir.OMIN, ir.OMAX:
n := n.(*ir.CallExpr)
return walkMinMax(n, init)
case ir.ONOT, ir.ONEG, ir.OPLUS, ir.OBITNOT, ir.OREAL, ir.OIMAG, ir.OSPTR, ir.OITAB, ir.OIDATA:
n := n.(*ir.UnaryExpr)
n.X = walkExpr(n.X, init)
return n
case ir.ODOTMETH, ir.ODOTINTER:
n := n.(*ir.SelectorExpr)
n.X = walkExpr(n.X, init)
return n
case ir.OADDR:
n := n.(*ir.AddrExpr)
n.X = walkExpr(n.X, init)
return n
case ir.ODEREF:
n := n.(*ir.StarExpr)
n.X = walkExpr(n.X, init)
return n
case ir.OMAKEFACE, ir.OAND, ir.OANDNOT, ir.OSUB, ir.OMUL, ir.OADD, ir.OOR, ir.OXOR, ir.OLSH, ir.ORSH,
ir.OUNSAFEADD:
n := n.(*ir.BinaryExpr)
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
return n
case ir.OUNSAFESLICE:
n := n.(*ir.BinaryExpr)
return walkUnsafeSlice(n, init)
case ir.OUNSAFESTRING:
n := n.(*ir.BinaryExpr)
return walkUnsafeString(n, init)
case ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
n := n.(*ir.UnaryExpr)
return walkUnsafeData(n, init)
case ir.ODOT, ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
return walkDot(n, init)
case ir.ODOTTYPE, ir.ODOTTYPE2:
n := n.(*ir.TypeAssertExpr)
return walkDotType(n, init)
case ir.ODYNAMICDOTTYPE, ir.ODYNAMICDOTTYPE2:
n := n.(*ir.DynamicTypeAssertExpr)
return walkDynamicDotType(n, init)
case ir.OLEN, ir.OCAP:
n := n.(*ir.UnaryExpr)
return walkLenCap(n, init)
case ir.OCOMPLEX:
n := n.(*ir.BinaryExpr)
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
return n
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
n := n.(*ir.BinaryExpr)
return walkCompare(n, init)
case ir.OANDAND, ir.OOROR:
n := n.(*ir.LogicalExpr)
return walkLogical(n, init)
case ir.OPRINT, ir.OPRINTLN:
return walkPrint(n.(*ir.CallExpr), init)
case ir.OPANIC:
n := n.(*ir.UnaryExpr)
return mkcall("gopanic", nil, init, n.X)
case ir.ORECOVERFP:
return walkRecoverFP(n.(*ir.CallExpr), init)
case ir.OCFUNC:
return n
case ir.OCALLINTER, ir.OCALLFUNC:
n := n.(*ir.CallExpr)
return walkCall(n, init)
case ir.OAS, ir.OASOP:
return walkAssign(init, n)
case ir.OAS2:
n := n.(*ir.AssignListStmt)
return walkAssignList(init, n)
// a,b,... = fn()
case ir.OAS2FUNC:
n := n.(*ir.AssignListStmt)
return walkAssignFunc(init, n)
// x, y = <-c
// order.stmt made sure x is addressable or blank.
case ir.OAS2RECV:
n := n.(*ir.AssignListStmt)
return walkAssignRecv(init, n)
// a,b = m[i]
case ir.OAS2MAPR:
n := n.(*ir.AssignListStmt)
return walkAssignMapRead(init, n)
case ir.ODELETE:
n := n.(*ir.CallExpr)
return walkDelete(init, n)
case ir.OAS2DOTTYPE:
n := n.(*ir.AssignListStmt)
return walkAssignDotType(n, init)
case ir.OCONVIFACE:
n := n.(*ir.ConvExpr)
return walkConvInterface(n, init)
case ir.OCONV, ir.OCONVNOP:
n := n.(*ir.ConvExpr)
return walkConv(n, init)
case ir.OSLICE2ARR:
n := n.(*ir.ConvExpr)
return walkSliceToArray(n, init)
case ir.OSLICE2ARRPTR:
n := n.(*ir.ConvExpr)
n.X = walkExpr(n.X, init)
return n
case ir.ODIV, ir.OMOD:
n := n.(*ir.BinaryExpr)
return walkDivMod(n, init)
case ir.OINDEX:
n := n.(*ir.IndexExpr)
return walkIndex(n, init)
case ir.OINDEXMAP:
n := n.(*ir.IndexExpr)
return walkIndexMap(n, init)
case ir.ORECV:
base.Fatalf("walkExpr ORECV") // should see inside OAS only
panic("unreachable")
case ir.OSLICEHEADER:
n := n.(*ir.SliceHeaderExpr)
return walkSliceHeader(n, init)
case ir.OSTRINGHEADER:
n := n.(*ir.StringHeaderExpr)
return walkStringHeader(n, init)
case ir.OSLICE, ir.OSLICEARR, ir.OSLICESTR, ir.OSLICE3, ir.OSLICE3ARR:
n := n.(*ir.SliceExpr)
return walkSlice(n, init)
case ir.ONEW:
n := n.(*ir.UnaryExpr)
return walkNew(n, init)
case ir.OADDSTR:
return walkAddString(n.(*ir.AddStringExpr), init)
case ir.OAPPEND:
// order should make sure we only see OAS(node, OAPPEND), which we handle above.
base.Fatalf("append outside assignment")
panic("unreachable")
case ir.OCOPY:
return walkCopy(n.(*ir.BinaryExpr), init, base.Flag.Cfg.Instrumenting && !base.Flag.CompilingRuntime)
case ir.OCLEAR:
n := n.(*ir.UnaryExpr)
return walkClear(n)
case ir.OCLOSE:
n := n.(*ir.UnaryExpr)
return walkClose(n, init)
case ir.OMAKECHAN:
n := n.(*ir.MakeExpr)
return walkMakeChan(n, init)
case ir.OMAKEMAP:
n := n.(*ir.MakeExpr)
return walkMakeMap(n, init)
case ir.OMAKESLICE:
n := n.(*ir.MakeExpr)
return walkMakeSlice(n, init)
case ir.OMAKESLICECOPY:
n := n.(*ir.MakeExpr)
return walkMakeSliceCopy(n, init)
case ir.ORUNESTR:
n := n.(*ir.ConvExpr)
return walkRuneToString(n, init)
case ir.OBYTES2STR, ir.ORUNES2STR:
n := n.(*ir.ConvExpr)
return walkBytesRunesToString(n, init)
case ir.OBYTES2STRTMP:
n := n.(*ir.ConvExpr)
return walkBytesToStringTemp(n, init)
case ir.OSTR2BYTES:
n := n.(*ir.ConvExpr)
return walkStringToBytes(n, init)
case ir.OSTR2BYTESTMP:
n := n.(*ir.ConvExpr)
return walkStringToBytesTemp(n, init)
case ir.OSTR2RUNES:
n := n.(*ir.ConvExpr)
return walkStringToRunes(n, init)
case ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT, ir.OSTRUCTLIT, ir.OPTRLIT:
return walkCompLit(n, init)
case ir.OSEND:
n := n.(*ir.SendStmt)
return walkSend(n, init)
case ir.OCLOSURE:
return walkClosure(n.(*ir.ClosureExpr), init)
case ir.OMETHVALUE:
return walkMethodValue(n.(*ir.SelectorExpr), init)
}
// No return! Each case must return (or panic),
// to avoid confusion about what gets returned
// in the presence of type assertions.
}
// walk the whole tree of the body of an
// expression or simple statement.
// the types expressions are calculated.
// compile-time constants are evaluated.
// complex side effects like statements are appended to init.
func walkExprList(s []ir.Node, init *ir.Nodes) {
for i := range s {
s[i] = walkExpr(s[i], init)
}
}
func walkExprListCheap(s []ir.Node, init *ir.Nodes) {
for i, n := range s {
s[i] = cheapExpr(n, init)
s[i] = walkExpr(s[i], init)
}
}
func walkExprListSafe(s []ir.Node, init *ir.Nodes) {
for i, n := range s {
s[i] = safeExpr(n, init)
s[i] = walkExpr(s[i], init)
}
}
// return side-effect free and cheap n, appending side effects to init.
// result may not be assignable.
func cheapExpr(n ir.Node, init *ir.Nodes) ir.Node {
switch n.Op() {
case ir.ONAME, ir.OLITERAL, ir.ONIL:
return n
}
return copyExpr(n, n.Type(), init)
}
// return side effect-free n, appending side effects to init.
// result is assignable if n is.
func safeExpr(n ir.Node, init *ir.Nodes) ir.Node {
if n == nil {
return nil
}
if len(n.Init()) != 0 {
walkStmtList(n.Init())
init.Append(ir.TakeInit(n)...)
}
switch n.Op() {
case ir.ONAME, ir.OLITERAL, ir.ONIL, ir.OLINKSYMOFFSET:
return n
case ir.OLEN, ir.OCAP:
n := n.(*ir.UnaryExpr)
l := safeExpr(n.X, init)
if l == n.X {
return n
}
a := ir.Copy(n).(*ir.UnaryExpr)
a.X = l
return walkExpr(typecheck.Expr(a), init)
case ir.ODOT, ir.ODOTPTR:
n := n.(*ir.SelectorExpr)
l := safeExpr(n.X, init)
if l == n.X {
return n
}
a := ir.Copy(n).(*ir.SelectorExpr)
a.X = l
return walkExpr(typecheck.Expr(a), init)
case ir.ODEREF:
n := n.(*ir.StarExpr)
l := safeExpr(n.X, init)
if l == n.X {
return n
}
a := ir.Copy(n).(*ir.StarExpr)
a.X = l
return walkExpr(typecheck.Expr(a), init)
case ir.OINDEX, ir.OINDEXMAP:
n := n.(*ir.IndexExpr)
l := safeExpr(n.X, init)
r := safeExpr(n.Index, init)
if l == n.X && r == n.Index {
return n
}
a := ir.Copy(n).(*ir.IndexExpr)
a.X = l
a.Index = r
return walkExpr(typecheck.Expr(a), init)
case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
n := n.(*ir.CompLitExpr)
if isStaticCompositeLiteral(n) {
return n
}
}
// make a copy; must not be used as an lvalue
if ir.IsAddressable(n) {
base.Fatalf("missing lvalue case in safeExpr: %v", n)
}
return cheapExpr(n, init)
}
func copyExpr(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
l := typecheck.TempAt(base.Pos, ir.CurFunc, t)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, l, n))
return l
}
func walkAddString(n *ir.AddStringExpr, init *ir.Nodes) ir.Node {
c := len(n.List)
if c < 2 {
base.Fatalf("walkAddString count %d too small", c)
}
buf := typecheck.NodNil()
if n.Esc() == ir.EscNone {
sz := int64(0)
for _, n1 := range n.List {
if n1.Op() == ir.OLITERAL {
sz += int64(len(ir.StringVal(n1)))
}
}
// Don't allocate the buffer if the result won't fit.
if sz < tmpstringbufsize {
// Create temporary buffer for result string on stack.
buf = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
}
}
// build list of string arguments
args := []ir.Node{buf}
for _, n2 := range n.List {
args = append(args, typecheck.Conv(n2, types.Types[types.TSTRING]))
}
var fn string
if c <= 5 {
// small numbers of strings use direct runtime helpers.
// note: order.expr knows this cutoff too.
fn = fmt.Sprintf("concatstring%d", c)
} else {
// large numbers of strings are passed to the runtime as a slice.
fn = "concatstrings"
t := types.NewSlice(types.Types[types.TSTRING])
// args[1:] to skip buf arg
slice := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, t, args[1:])
slice.Prealloc = n.Prealloc
args = []ir.Node{buf, slice}
slice.SetEsc(ir.EscNone)
}
cat := typecheck.LookupRuntime(fn)
r := ir.NewCallExpr(base.Pos, ir.OCALL, cat, nil)
r.Args = args
r1 := typecheck.Expr(r)
r1 = walkExpr(r1, init)
r1.SetType(n.Type())
return r1
}
type hookInfo struct {
paramType types.Kind
argsNum int
runtimeFunc string
}
var hooks = map[string]hookInfo{
"strings.EqualFold": {paramType: types.TSTRING, argsNum: 2, runtimeFunc: "libfuzzerHookEqualFold"},
}
// walkCall walks an OCALLFUNC or OCALLINTER node.
func walkCall(n *ir.CallExpr, init *ir.Nodes) ir.Node {
if n.Op() == ir.OCALLMETH {
base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
}
if n.Op() == ir.OCALLINTER || n.Fun.Op() == ir.OMETHEXPR {
// We expect both interface call reflect.Type.Method and concrete
// call reflect.(*rtype).Method.
usemethod(n)
}
if n.Op() == ir.OCALLINTER {
reflectdata.MarkUsedIfaceMethod(n)
}
if n.Op() == ir.OCALLFUNC && n.Fun.Op() == ir.OCLOSURE {
directClosureCall(n)
}
if ir.IsFuncPCIntrinsic(n) {
// For internal/abi.FuncPCABIxxx(fn), if fn is a defined function, rewrite
// it to the address of the function of the ABI fn is defined.
name := n.Fun.(*ir.Name).Sym().Name
arg := n.Args[0]
var wantABI obj.ABI
switch name {
case "FuncPCABI0":
wantABI = obj.ABI0
case "FuncPCABIInternal":
wantABI = obj.ABIInternal
}
if n.Type() != types.Types[types.TUINTPTR] {
base.FatalfAt(n.Pos(), "FuncPC intrinsic should return uintptr, got %v", n.Type()) // as expected by typecheck.FuncPC.
}
n := ir.FuncPC(n.Pos(), arg, wantABI)
return walkExpr(n, init)
}
if name, ok := n.Fun.(*ir.Name); ok {
sym := name.Sym()
if sym.Pkg.Path == "go.runtime" && sym.Name == "deferrangefunc" {
// Call to runtime.deferrangefunc is being shared with a range-over-func
// body that might add defers to this frame, so we cannot use open-coded defers
// and we need to call deferreturn even if we don't see any other explicit defers.
ir.CurFunc.SetHasDefer(true)
ir.CurFunc.SetOpenCodedDeferDisallowed(true)
}
}
walkCall1(n, init)
return n
}
func walkCall1(n *ir.CallExpr, init *ir.Nodes) {
if n.Walked() {
return // already walked
}
n.SetWalked(true)
if n.Op() == ir.OCALLMETH {
base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
}
args := n.Args
params := n.Fun.Type().Params()
n.Fun = walkExpr(n.Fun, init)
walkExprList(args, init)
for i, arg := range args {
// Validate argument and parameter types match.
param := params[i]
if !types.Identical(arg.Type(), param.Type) {
base.FatalfAt(n.Pos(), "assigning %L to parameter %v (type %v)", arg, param.Sym, param.Type)
}
// For any argument whose evaluation might require a function call,
// store that argument into a temporary variable,
// to prevent that calls from clobbering arguments already on the stack.
if mayCall(arg) {
// assignment of arg to Temp
tmp := typecheck.TempAt(base.Pos, ir.CurFunc, param.Type)
init.Append(convas(typecheck.Stmt(ir.NewAssignStmt(base.Pos, tmp, arg)).(*ir.AssignStmt), init))
// replace arg with temp
args[i] = tmp
}
}
funSym := n.Fun.Sym()
if base.Debug.Libfuzzer != 0 && funSym != nil {
if hook, found := hooks[funSym.Pkg.Path+"."+funSym.Name]; found {
if len(args) != hook.argsNum {
panic(fmt.Sprintf("%s.%s expects %d arguments, but received %d", funSym.Pkg.Path, funSym.Name, hook.argsNum, len(args)))
}
var hookArgs []ir.Node
for _, arg := range args {
hookArgs = append(hookArgs, tracecmpArg(arg, types.Types[hook.paramType], init))
}
hookArgs = append(hookArgs, fakePC(n))
init.Append(mkcall(hook.runtimeFunc, nil, init, hookArgs...))
}
}
}
// walkDivMod walks an ODIV or OMOD node.
func walkDivMod(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
// rewrite complex div into function call.
et := n.X.Type().Kind()
if types.IsComplex[et] && n.Op() == ir.ODIV {
t := n.Type()
call := mkcall("complex128div", types.Types[types.TCOMPLEX128], init, typecheck.Conv(n.X, types.Types[types.TCOMPLEX128]), typecheck.Conv(n.Y, types.Types[types.TCOMPLEX128]))
return typecheck.Conv(call, t)
}
// Nothing to do for float divisions.
if types.IsFloat[et] {
return n
}
// rewrite 64-bit div and mod on 32-bit architectures.
// TODO: Remove this code once we can introduce
// runtime calls late in SSA processing.
if types.RegSize < 8 && (et == types.TINT64 || et == types.TUINT64) {
if n.Y.Op() == ir.OLITERAL {
// Leave div/mod by constant powers of 2 or small 16-bit constants.
// The SSA backend will handle those.
switch et {
case types.TINT64:
c := ir.Int64Val(n.Y)
if c < 0 {
c = -c
}
if c != 0 && c&(c-1) == 0 {
return n
}
case types.TUINT64:
c := ir.Uint64Val(n.Y)
if c < 1<<16 {
return n
}
if c != 0 && c&(c-1) == 0 {
return n
}
}
}
var fn string
if et == types.TINT64 {
fn = "int64"
} else {
fn = "uint64"
}
if n.Op() == ir.ODIV {
fn += "div"
} else {
fn += "mod"
}
return mkcall(fn, n.Type(), init, typecheck.Conv(n.X, types.Types[et]), typecheck.Conv(n.Y, types.Types[et]))
}
return n
}
// walkDot walks an ODOT or ODOTPTR node.
func walkDot(n *ir.SelectorExpr, init *ir.Nodes) ir.Node {
usefield(n)
n.X = walkExpr(n.X, init)
return n
}
// walkDotType walks an ODOTTYPE or ODOTTYPE2 node.
func walkDotType(n *ir.TypeAssertExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
// Set up interface type addresses for back end.
if !n.Type().IsInterface() && !n.X.Type().IsEmptyInterface() {
n.ITab = reflectdata.ITabAddrAt(base.Pos, n.Type(), n.X.Type())
}
if n.X.Type().IsInterface() && n.Type().IsInterface() && !n.Type().IsEmptyInterface() {
// This kind of conversion needs a runtime call. Allocate
// a descriptor for that call.
n.Descriptor = makeTypeAssertDescriptor(n.Type(), n.Op() == ir.ODOTTYPE2)
}
return n
}
func makeTypeAssertDescriptor(target *types.Type, canFail bool) *obj.LSym {
// When converting from an interface to a non-empty interface. Needs a runtime call.
// Allocate an internal/abi.TypeAssert descriptor for that call.
lsym := types.LocalPkg.Lookup(fmt.Sprintf(".typeAssert.%d", typeAssertGen)).LinksymABI(obj.ABI0)
typeAssertGen++
c := rttype.NewCursor(lsym, 0, rttype.TypeAssert)
c.Field("Cache").WritePtr(typecheck.LookupRuntimeVar("emptyTypeAssertCache"))
c.Field("Inter").WritePtr(reflectdata.TypeSym(target).Linksym())
c.Field("CanFail").WriteBool(canFail)
objw.Global(lsym, int32(rttype.TypeAssert.Size()), obj.LOCAL)
lsym.Gotype = reflectdata.TypeLinksym(rttype.TypeAssert)
return lsym
}
var typeAssertGen int
// walkDynamicDotType walks an ODYNAMICDOTTYPE or ODYNAMICDOTTYPE2 node.
func walkDynamicDotType(n *ir.DynamicTypeAssertExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
n.RType = walkExpr(n.RType, init)
n.ITab = walkExpr(n.ITab, init)
// Convert to non-dynamic if we can.
if n.RType != nil && n.RType.Op() == ir.OADDR {
addr := n.RType.(*ir.AddrExpr)
if addr.X.Op() == ir.OLINKSYMOFFSET {
r := ir.NewTypeAssertExpr(n.Pos(), n.X, n.Type())
if n.Op() == ir.ODYNAMICDOTTYPE2 {
r.SetOp(ir.ODOTTYPE2)
}
r.SetType(n.Type())
r.SetTypecheck(1)
return walkExpr(r, init)
}
}
return n
}
// walkIndex walks an OINDEX node.
func walkIndex(n *ir.IndexExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
// save the original node for bounds checking elision.
// If it was a ODIV/OMOD walk might rewrite it.
r := n.Index
n.Index = walkExpr(n.Index, init)
// if range of type cannot exceed static array bound,
// disable bounds check.
if n.Bounded() {
return n
}
t := n.X.Type()
if t != nil && t.IsPtr() {
t = t.Elem()
}
if t.IsArray() {
n.SetBounded(bounded(r, t.NumElem()))
if base.Flag.LowerM != 0 && n.Bounded() && !ir.IsConst(n.Index, constant.Int) {
base.Warn("index bounds check elided")
}
} else if ir.IsConst(n.X, constant.String) {
n.SetBounded(bounded(r, int64(len(ir.StringVal(n.X)))))
if base.Flag.LowerM != 0 && n.Bounded() && !ir.IsConst(n.Index, constant.Int) {
base.Warn("index bounds check elided")
}
}
return n
}
// mapKeyArg returns an expression for key that is suitable to be passed
// as the key argument for runtime map* functions.
// n is the map indexing or delete Node (to provide Pos).
func mapKeyArg(fast int, n, key ir.Node, assigned bool) ir.Node {
if fast == mapslow {
// standard version takes key by reference.
// orderState.expr made sure key is addressable.
return typecheck.NodAddr(key)
}
if assigned {
// mapassign does distinguish pointer vs. integer key.
return key
}
// mapaccess and mapdelete don't distinguish pointer vs. integer key.
switch fast {
case mapfast32ptr:
return ir.NewConvExpr(n.Pos(), ir.OCONVNOP, types.Types[types.TUINT32], key)
case mapfast64ptr:
return ir.NewConvExpr(n.Pos(), ir.OCONVNOP, types.Types[types.TUINT64], key)
default:
// fast version takes key by value.
return key
}
}
// walkIndexMap walks an OINDEXMAP node.
// It replaces m[k] with *map{access1,assign}(maptype, m, &k)
func walkIndexMap(n *ir.IndexExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
n.Index = walkExpr(n.Index, init)
map_ := n.X
t := map_.Type()
fast := mapfast(t)
key := mapKeyArg(fast, n, n.Index, n.Assigned)
args := []ir.Node{reflectdata.IndexMapRType(base.Pos, n), map_, key}
var mapFn ir.Node
switch {
case n.Assigned:
mapFn = mapfn(mapassign[fast], t, false)
case t.Elem().Size() > abi.ZeroValSize:
args = append(args, reflectdata.ZeroAddr(t.Elem().Size()))
mapFn = mapfn("mapaccess1_fat", t, true)
default:
mapFn = mapfn(mapaccess1[fast], t, false)
}
call := mkcall1(mapFn, nil, init, args...)
call.SetType(types.NewPtr(t.Elem()))
call.MarkNonNil() // mapaccess1* and mapassign always return non-nil pointers.
star := ir.NewStarExpr(base.Pos, call)
star.SetType(t.Elem())
star.SetTypecheck(1)
return star
}
// walkLogical walks an OANDAND or OOROR node.
func walkLogical(n *ir.LogicalExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
// cannot put side effects from n.Right on init,
// because they cannot run before n.Left is checked.
// save elsewhere and store on the eventual n.Right.
var ll ir.Nodes
n.Y = walkExpr(n.Y, &ll)
n.Y = ir.InitExpr(ll, n.Y)
return n
}
// walkSend walks an OSEND node.
func walkSend(n *ir.SendStmt, init *ir.Nodes) ir.Node {
n1 := n.Value
n1 = typecheck.AssignConv(n1, n.Chan.Type().Elem(), "chan send")
n1 = walkExpr(n1, init)
n1 = typecheck.NodAddr(n1)
return mkcall1(chanfn("chansend1", 2, n.Chan.Type()), nil, init, n.Chan, n1)
}
// walkSlice walks an OSLICE, OSLICEARR, OSLICESTR, OSLICE3, or OSLICE3ARR node.
func walkSlice(n *ir.SliceExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
n.Low = walkExpr(n.Low, init)
if n.Low != nil && ir.IsZero(n.Low) {
// Reduce x[0:j] to x[:j] and x[0:j:k] to x[:j:k].
n.Low = nil
}
n.High = walkExpr(n.High, init)
n.Max = walkExpr(n.Max, init)
if (n.Op() == ir.OSLICE || n.Op() == ir.OSLICESTR) && n.Low == nil && n.High == nil {
// Reduce x[:] to x.
if base.Debug.Slice > 0 {
base.Warn("slice: omit slice operation")
}
return n.X
}
return n
}
// walkSliceHeader walks an OSLICEHEADER node.
func walkSliceHeader(n *ir.SliceHeaderExpr, init *ir.Nodes) ir.Node {
n.Ptr = walkExpr(n.Ptr, init)
n.Len = walkExpr(n.Len, init)
n.Cap = walkExpr(n.Cap, init)
return n
}
// walkStringHeader walks an OSTRINGHEADER node.
func walkStringHeader(n *ir.StringHeaderExpr, init *ir.Nodes) ir.Node {
n.Ptr = walkExpr(n.Ptr, init)
n.Len = walkExpr(n.Len, init)
return n
}
// return 1 if integer n must be in range [0, max), 0 otherwise.
func bounded(n ir.Node, max int64) bool {
if n.Type() == nil || !n.Type().IsInteger() {
return false
}
sign := n.Type().IsSigned()
bits := int32(8 * n.Type().Size())
if ir.IsSmallIntConst(n) {
v := ir.Int64Val(n)
return 0 <= v && v < max
}
switch n.Op() {
case ir.OAND, ir.OANDNOT:
n := n.(*ir.BinaryExpr)
v := int64(-1)
switch {
case ir.IsSmallIntConst(n.X):
v = ir.Int64Val(n.X)
case ir.IsSmallIntConst(n.Y):
v = ir.Int64Val(n.Y)
if n.Op() == ir.OANDNOT {
v = ^v
if !sign {
v &= 1<<uint(bits) - 1
}
}
}
if 0 <= v && v < max {
return true
}
case ir.OMOD:
n := n.(*ir.BinaryExpr)
if !sign && ir.IsSmallIntConst(n.Y) {
v := ir.Int64Val(n.Y)
if 0 <= v && v <= max {
return true
}
}
case ir.ODIV:
n := n.(*ir.BinaryExpr)
if !sign && ir.IsSmallIntConst(n.Y) {
v := ir.Int64Val(n.Y)
for bits > 0 && v >= 2 {
bits--
v >>= 1
}
}
case ir.ORSH:
n := n.(*ir.BinaryExpr)
if !sign && ir.IsSmallIntConst(n.Y) {
v := ir.Int64Val(n.Y)
if v > int64(bits) {
return true
}
bits -= int32(v)
}
}
if !sign && bits <= 62 && 1<<uint(bits) <= max {
return true
}
return false
}
// usemethod checks calls for uses of Method and MethodByName of reflect.Value,
// reflect.Type, reflect.(*rtype), and reflect.(*interfaceType).
func usemethod(n *ir.CallExpr) {
// Don't mark reflect.(*rtype).Method, etc. themselves in the reflect package.
// Those functions may be alive via the itab, which should not cause all methods
// alive. We only want to mark their callers.
if base.Ctxt.Pkgpath == "reflect" {
// TODO: is there a better way than hardcoding the names?
switch fn := ir.CurFunc.Nname.Sym().Name; {
case fn == "(*rtype).Method", fn == "(*rtype).MethodByName":
return
case fn == "(*interfaceType).Method", fn == "(*interfaceType).MethodByName":
return
case fn == "Value.Method", fn == "Value.MethodByName":
return
}
}
dot, ok := n.Fun.(*ir.SelectorExpr)
if !ok {
return
}
// looking for either direct method calls and interface method calls of:
// reflect.Type.Method - func(int) reflect.Method
// reflect.Type.MethodByName - func(string) (reflect.Method, bool)
//
// reflect.Value.Method - func(int) reflect.Value
// reflect.Value.MethodByName - func(string) reflect.Value
methodName := dot.Sel.Name
t := dot.Selection.Type
// Check the number of arguments and return values.
if t.NumParams() != 1 || (t.NumResults() != 1 && t.NumResults() != 2) {
return
}
// Check the type of the argument.
switch pKind := t.Param(0).Type.Kind(); {
case methodName == "Method" && pKind == types.TINT,
methodName == "MethodByName" && pKind == types.TSTRING:
default:
// not a call to Method or MethodByName of reflect.{Type,Value}.
return
}
// Check that first result type is "reflect.Method" or "reflect.Value".
// Note that we have to check sym name and sym package separately, as
// we can't check for exact string "reflect.Method" reliably
// (e.g., see #19028 and #38515).
switch s := t.Result(0).Type.Sym(); {
case s != nil && types.ReflectSymName(s) == "Method",
s != nil && types.ReflectSymName(s) == "Value":
default:
// not a call to Method or MethodByName of reflect.{Type,Value}.
return
}
var targetName ir.Node
switch dot.Op() {
case ir.ODOTINTER:
if methodName == "MethodByName" {
targetName = n.Args[0]
}
case ir.OMETHEXPR:
if methodName == "MethodByName" {
targetName = n.Args[1]
}
default:
base.FatalfAt(dot.Pos(), "usemethod: unexpected dot.Op() %s", dot.Op())
}
if ir.IsConst(targetName, constant.String) {
name := constant.StringVal(targetName.Val())
r := obj.Addrel(ir.CurFunc.LSym)
r.Type = objabi.R_USENAMEDMETHOD
r.Sym = staticdata.StringSymNoCommon(name)
} else {
ir.CurFunc.LSym.Set(obj.AttrReflectMethod, true)
}
}
func usefield(n *ir.SelectorExpr) {
if !buildcfg.Experiment.FieldTrack {
return
}
switch n.Op() {
default:
base.Fatalf("usefield %v", n.Op())
case ir.ODOT, ir.ODOTPTR:
break
}
field := n.Selection
if field == nil {
base.Fatalf("usefield %v %v without paramfld", n.X.Type(), n.Sel)
}
if field.Sym != n.Sel {
base.Fatalf("field inconsistency: %v != %v", field.Sym, n.Sel)
}
if !strings.Contains(field.Note, "go:\"track\"") {
return
}
outer := n.X.Type()
if outer.IsPtr() {
outer = outer.Elem()
}
if outer.Sym() == nil {
base.Errorf("tracked field must be in named struct type")
}
sym := reflectdata.TrackSym(outer, field)
if ir.CurFunc.FieldTrack == nil {
ir.CurFunc.FieldTrack = make(map[*obj.LSym]struct{})
}
ir.CurFunc.FieldTrack[sym] = struct{}{}
}
|