summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/walk/order.go
blob: de180a4a8d77978861c938c43e07e2bedfb99b9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"fmt"
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/staticinit"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/objabi"
	"cmd/internal/src"
)

// Rewrite tree to use separate statements to enforce
// order of evaluation. Makes walk easier, because it
// can (after this runs) reorder at will within an expression.
//
// Rewrite m[k] op= r into m[k] = m[k] op r if op is / or %.
//
// Introduce temporaries as needed by runtime routines.
// For example, the map runtime routines take the map key
// by reference, so make sure all map keys are addressable
// by copying them to temporaries as needed.
// The same is true for channel operations.
//
// Arrange that map index expressions only appear in direct
// assignments x = m[k] or m[k] = x, never in larger expressions.
//
// Arrange that receive expressions only appear in direct assignments
// x = <-c or as standalone statements <-c, never in larger expressions.

// orderState holds state during the ordering process.
type orderState struct {
	out  []ir.Node             // list of generated statements
	temp []*ir.Name            // stack of temporary variables
	free map[string][]*ir.Name // free list of unused temporaries, by type.LinkString().
	edit func(ir.Node) ir.Node // cached closure of o.exprNoLHS
}

// order rewrites fn.Nbody to apply the ordering constraints
// described in the comment at the top of the file.
func order(fn *ir.Func) {
	if base.Flag.W > 1 {
		s := fmt.Sprintf("\nbefore order %v", fn.Sym())
		ir.DumpList(s, fn.Body)
	}
	ir.SetPos(fn) // Set reasonable position for instrumenting code. See issue 53688.
	orderBlock(&fn.Body, map[string][]*ir.Name{})
}

// append typechecks stmt and appends it to out.
func (o *orderState) append(stmt ir.Node) {
	o.out = append(o.out, typecheck.Stmt(stmt))
}

// newTemp allocates a new temporary with the given type,
// pushes it onto the temp stack, and returns it.
// If clear is true, newTemp emits code to zero the temporary.
func (o *orderState) newTemp(t *types.Type, clear bool) *ir.Name {
	var v *ir.Name
	key := t.LinkString()
	if a := o.free[key]; len(a) > 0 {
		v = a[len(a)-1]
		if !types.Identical(t, v.Type()) {
			base.Fatalf("expected %L to have type %v", v, t)
		}
		o.free[key] = a[:len(a)-1]
	} else {
		v = typecheck.TempAt(base.Pos, ir.CurFunc, t)
	}
	if clear {
		o.append(ir.NewAssignStmt(base.Pos, v, nil))
	}

	o.temp = append(o.temp, v)
	return v
}

// copyExpr behaves like newTemp but also emits
// code to initialize the temporary to the value n.
func (o *orderState) copyExpr(n ir.Node) *ir.Name {
	return o.copyExpr1(n, false)
}

// copyExprClear is like copyExpr but clears the temp before assignment.
// It is provided for use when the evaluation of tmp = n turns into
// a function call that is passed a pointer to the temporary as the output space.
// If the call blocks before tmp has been written,
// the garbage collector will still treat the temporary as live,
// so we must zero it before entering that call.
// Today, this only happens for channel receive operations.
// (The other candidate would be map access, but map access
// returns a pointer to the result data instead of taking a pointer
// to be filled in.)
func (o *orderState) copyExprClear(n ir.Node) *ir.Name {
	return o.copyExpr1(n, true)
}

func (o *orderState) copyExpr1(n ir.Node, clear bool) *ir.Name {
	t := n.Type()
	v := o.newTemp(t, clear)
	o.append(ir.NewAssignStmt(base.Pos, v, n))
	return v
}

// cheapExpr returns a cheap version of n.
// The definition of cheap is that n is a variable or constant.
// If not, cheapExpr allocates a new tmp, emits tmp = n,
// and then returns tmp.
func (o *orderState) cheapExpr(n ir.Node) ir.Node {
	if n == nil {
		return nil
	}

	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return n
	case ir.OLEN, ir.OCAP:
		n := n.(*ir.UnaryExpr)
		l := o.cheapExpr(n.X)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.UnaryExpr)
		a.X = l
		return typecheck.Expr(a)
	}

	return o.copyExpr(n)
}

// safeExpr returns a safe version of n.
// The definition of safe is that n can appear multiple times
// without violating the semantics of the original program,
// and that assigning to the safe version has the same effect
// as assigning to the original n.
//
// The intended use is to apply to x when rewriting x += y into x = x + y.
func (o *orderState) safeExpr(n ir.Node) ir.Node {
	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return n

	case ir.OLEN, ir.OCAP:
		n := n.(*ir.UnaryExpr)
		l := o.safeExpr(n.X)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.UnaryExpr)
		a.X = l
		return typecheck.Expr(a)

	case ir.ODOT:
		n := n.(*ir.SelectorExpr)
		l := o.safeExpr(n.X)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.SelectorExpr)
		a.X = l
		return typecheck.Expr(a)

	case ir.ODOTPTR:
		n := n.(*ir.SelectorExpr)
		l := o.cheapExpr(n.X)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.SelectorExpr)
		a.X = l
		return typecheck.Expr(a)

	case ir.ODEREF:
		n := n.(*ir.StarExpr)
		l := o.cheapExpr(n.X)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.StarExpr)
		a.X = l
		return typecheck.Expr(a)

	case ir.OINDEX, ir.OINDEXMAP:
		n := n.(*ir.IndexExpr)
		var l ir.Node
		if n.X.Type().IsArray() {
			l = o.safeExpr(n.X)
		} else {
			l = o.cheapExpr(n.X)
		}
		r := o.cheapExpr(n.Index)
		if l == n.X && r == n.Index {
			return n
		}
		a := ir.Copy(n).(*ir.IndexExpr)
		a.X = l
		a.Index = r
		return typecheck.Expr(a)

	default:
		base.Fatalf("order.safeExpr %v", n.Op())
		return nil // not reached
	}
}

// addrTemp ensures that n is okay to pass by address to runtime routines.
// If the original argument n is not okay, addrTemp creates a tmp, emits
// tmp = n, and then returns tmp.
// The result of addrTemp MUST be assigned back to n, e.g.
//
//	n.Left = o.addrTemp(n.Left)
func (o *orderState) addrTemp(n ir.Node) ir.Node {
	if n.Op() == ir.OLITERAL || n.Op() == ir.ONIL {
		// TODO: expand this to all static composite literal nodes?
		n = typecheck.DefaultLit(n, nil)
		types.CalcSize(n.Type())
		vstat := readonlystaticname(n.Type())
		var s staticinit.Schedule
		s.StaticAssign(vstat, 0, n, n.Type())
		if s.Out != nil {
			base.Fatalf("staticassign of const generated code: %+v", n)
		}
		vstat = typecheck.Expr(vstat).(*ir.Name)
		return vstat
	}

	// Prevent taking the address of an SSA-able local variable (#63332).
	//
	// TODO(mdempsky): Note that OuterValue unwraps OCONVNOPs, but
	// IsAddressable does not. It should be possible to skip copying for
	// at least some of these OCONVNOPs (e.g., reinsert them after the
	// OADDR operation), but at least walkCompare needs to be fixed to
	// support that (see trybot failures on go.dev/cl/541715, PS1).
	if ir.IsAddressable(n) {
		if name, ok := ir.OuterValue(n).(*ir.Name); ok && name.Op() == ir.ONAME {
			if name.Class == ir.PAUTO && !name.Addrtaken() && ssa.CanSSA(name.Type()) {
				goto Copy
			}
		}

		return n
	}

Copy:
	return o.copyExpr(n)
}

// mapKeyTemp prepares n to be a key in a map runtime call and returns n.
// The first parameter is the position of n's containing node, for use in case
// that n's position is not unique (e.g., if n is an ONAME).
func (o *orderState) mapKeyTemp(outerPos src.XPos, t *types.Type, n ir.Node) ir.Node {
	pos := outerPos
	if ir.HasUniquePos(n) {
		pos = n.Pos()
	}
	// Most map calls need to take the address of the key.
	// Exception: map*_fast* calls. See golang.org/issue/19015.
	alg := mapfast(t)
	if alg == mapslow {
		return o.addrTemp(n)
	}
	var kt *types.Type
	switch alg {
	case mapfast32:
		kt = types.Types[types.TUINT32]
	case mapfast64:
		kt = types.Types[types.TUINT64]
	case mapfast32ptr, mapfast64ptr:
		kt = types.Types[types.TUNSAFEPTR]
	case mapfaststr:
		kt = types.Types[types.TSTRING]
	}
	nt := n.Type()
	switch {
	case nt == kt:
		return n
	case nt.Kind() == kt.Kind(), nt.IsPtrShaped() && kt.IsPtrShaped():
		// can directly convert (e.g. named type to underlying type, or one pointer to another)
		return typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, kt, n))
	case nt.IsInteger() && kt.IsInteger():
		// can directly convert (e.g. int32 to uint32)
		if n.Op() == ir.OLITERAL && nt.IsSigned() {
			// avoid constant overflow error
			n = ir.NewConstExpr(constant.MakeUint64(uint64(ir.Int64Val(n))), n)
			n.SetType(kt)
			return n
		}
		return typecheck.Expr(ir.NewConvExpr(pos, ir.OCONV, kt, n))
	default:
		// Unsafe cast through memory.
		// We'll need to do a load with type kt. Create a temporary of type kt to
		// ensure sufficient alignment. nt may be under-aligned.
		if uint8(kt.Alignment()) < uint8(nt.Alignment()) {
			base.Fatalf("mapKeyTemp: key type is not sufficiently aligned, kt=%v nt=%v", kt, nt)
		}
		tmp := o.newTemp(kt, true)
		// *(*nt)(&tmp) = n
		var e ir.Node = typecheck.NodAddr(tmp)
		e = ir.NewConvExpr(pos, ir.OCONVNOP, nt.PtrTo(), e)
		e = ir.NewStarExpr(pos, e)
		o.append(ir.NewAssignStmt(pos, e, n))
		return tmp
	}
}

// mapKeyReplaceStrConv replaces OBYTES2STR by OBYTES2STRTMP
// in n to avoid string allocations for keys in map lookups.
// Returns a bool that signals if a modification was made.
//
// For:
//
//	x = m[string(k)]
//	x = m[T1{... Tn{..., string(k), ...}}]
//
// where k is []byte, T1 to Tn is a nesting of struct and array literals,
// the allocation of backing bytes for the string can be avoided
// by reusing the []byte backing array. These are special cases
// for avoiding allocations when converting byte slices to strings.
// It would be nice to handle these generally, but because
// []byte keys are not allowed in maps, the use of string(k)
// comes up in important cases in practice. See issue 3512.
func mapKeyReplaceStrConv(n ir.Node) bool {
	var replaced bool
	switch n.Op() {
	case ir.OBYTES2STR:
		n := n.(*ir.ConvExpr)
		n.SetOp(ir.OBYTES2STRTMP)
		replaced = true
	case ir.OSTRUCTLIT:
		n := n.(*ir.CompLitExpr)
		for _, elem := range n.List {
			elem := elem.(*ir.StructKeyExpr)
			if mapKeyReplaceStrConv(elem.Value) {
				replaced = true
			}
		}
	case ir.OARRAYLIT:
		n := n.(*ir.CompLitExpr)
		for _, elem := range n.List {
			if elem.Op() == ir.OKEY {
				elem = elem.(*ir.KeyExpr).Value
			}
			if mapKeyReplaceStrConv(elem) {
				replaced = true
			}
		}
	}
	return replaced
}

type ordermarker int

// markTemp returns the top of the temporary variable stack.
func (o *orderState) markTemp() ordermarker {
	return ordermarker(len(o.temp))
}

// popTemp pops temporaries off the stack until reaching the mark,
// which must have been returned by markTemp.
func (o *orderState) popTemp(mark ordermarker) {
	for _, n := range o.temp[mark:] {
		key := n.Type().LinkString()
		o.free[key] = append(o.free[key], n)
	}
	o.temp = o.temp[:mark]
}

// stmtList orders each of the statements in the list.
func (o *orderState) stmtList(l ir.Nodes) {
	s := l
	for i := range s {
		orderMakeSliceCopy(s[i:])
		o.stmt(s[i])
	}
}

// orderMakeSliceCopy matches the pattern:
//
//	m = OMAKESLICE([]T, x); OCOPY(m, s)
//
// and rewrites it to:
//
//	m = OMAKESLICECOPY([]T, x, s); nil
func orderMakeSliceCopy(s []ir.Node) {
	if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
		return
	}
	if len(s) < 2 || s[0] == nil || s[0].Op() != ir.OAS || s[1] == nil || s[1].Op() != ir.OCOPY {
		return
	}

	as := s[0].(*ir.AssignStmt)
	cp := s[1].(*ir.BinaryExpr)
	if as.Y == nil || as.Y.Op() != ir.OMAKESLICE || ir.IsBlank(as.X) ||
		as.X.Op() != ir.ONAME || cp.X.Op() != ir.ONAME || cp.Y.Op() != ir.ONAME ||
		as.X.Name() != cp.X.Name() || cp.X.Name() == cp.Y.Name() {
		// The line above this one is correct with the differing equality operators:
		// we want as.X and cp.X to be the same name,
		// but we want the initial data to be coming from a different name.
		return
	}

	mk := as.Y.(*ir.MakeExpr)
	if mk.Esc() == ir.EscNone || mk.Len == nil || mk.Cap != nil {
		return
	}
	mk.SetOp(ir.OMAKESLICECOPY)
	mk.Cap = cp.Y
	// Set bounded when m = OMAKESLICE([]T, len(s)); OCOPY(m, s)
	mk.SetBounded(mk.Len.Op() == ir.OLEN && ir.SameSafeExpr(mk.Len.(*ir.UnaryExpr).X, cp.Y))
	as.Y = typecheck.Expr(mk)
	s[1] = nil // remove separate copy call
}

// edge inserts coverage instrumentation for libfuzzer.
func (o *orderState) edge() {
	if base.Debug.Libfuzzer == 0 {
		return
	}

	// Create a new uint8 counter to be allocated in section __sancov_cntrs
	counter := staticinit.StaticName(types.Types[types.TUINT8])
	counter.SetLibfuzzer8BitCounter(true)
	// As well as setting SetLibfuzzer8BitCounter, we preemptively set the
	// symbol type to SLIBFUZZER_8BIT_COUNTER so that the race detector
	// instrumentation pass (which does not have access to the flags set by
	// SetLibfuzzer8BitCounter) knows to ignore them. This information is
	// lost by the time it reaches the compile step, so SetLibfuzzer8BitCounter
	// is still necessary.
	counter.Linksym().Type = objabi.SLIBFUZZER_8BIT_COUNTER

	// We guarantee that the counter never becomes zero again once it has been
	// incremented once. This implementation follows the NeverZero optimization
	// presented by the paper:
	// "AFL++: Combining Incremental Steps of Fuzzing Research"
	// The NeverZero policy avoids the overflow to 0 by setting the counter to one
	// after it reaches 255 and so, if an edge is executed at least one time, the entry is
	// never 0.
	// Another policy presented in the paper is the Saturated Counters policy which
	// freezes the counter when it reaches the value of 255. However, a range
	// of experiments showed that that decreases overall performance.
	o.append(ir.NewIfStmt(base.Pos,
		ir.NewBinaryExpr(base.Pos, ir.OEQ, counter, ir.NewInt(base.Pos, 0xff)),
		[]ir.Node{ir.NewAssignStmt(base.Pos, counter, ir.NewInt(base.Pos, 1))},
		[]ir.Node{ir.NewAssignOpStmt(base.Pos, ir.OADD, counter, ir.NewInt(base.Pos, 1))}))
}

// orderBlock orders the block of statements in n into a new slice,
// and then replaces the old slice in n with the new slice.
// free is a map that can be used to obtain temporary variables by type.
func orderBlock(n *ir.Nodes, free map[string][]*ir.Name) {
	if len(*n) != 0 {
		// Set reasonable position for instrumenting code. See issue 53688.
		// It would be nice if ir.Nodes had a position (the opening {, probably),
		// but it doesn't. So we use the first statement's position instead.
		ir.SetPos((*n)[0])
	}
	var order orderState
	order.free = free
	mark := order.markTemp()
	order.edge()
	order.stmtList(*n)
	order.popTemp(mark)
	*n = order.out
}

// exprInPlace orders the side effects in *np and
// leaves them as the init list of the final *np.
// The result of exprInPlace MUST be assigned back to n, e.g.
//
//	n.Left = o.exprInPlace(n.Left)
func (o *orderState) exprInPlace(n ir.Node) ir.Node {
	var order orderState
	order.free = o.free
	n = order.expr(n, nil)
	n = ir.InitExpr(order.out, n)

	// insert new temporaries from order
	// at head of outer list.
	o.temp = append(o.temp, order.temp...)
	return n
}

// orderStmtInPlace orders the side effects of the single statement *np
// and replaces it with the resulting statement list.
// The result of orderStmtInPlace MUST be assigned back to n, e.g.
//
//	n.Left = orderStmtInPlace(n.Left)
//
// free is a map that can be used to obtain temporary variables by type.
func orderStmtInPlace(n ir.Node, free map[string][]*ir.Name) ir.Node {
	var order orderState
	order.free = free
	mark := order.markTemp()
	order.stmt(n)
	order.popTemp(mark)
	return ir.NewBlockStmt(src.NoXPos, order.out)
}

// init moves n's init list to o.out.
func (o *orderState) init(n ir.Node) {
	if ir.MayBeShared(n) {
		// For concurrency safety, don't mutate potentially shared nodes.
		// First, ensure that no work is required here.
		if len(n.Init()) > 0 {
			base.Fatalf("order.init shared node with ninit")
		}
		return
	}
	o.stmtList(ir.TakeInit(n))
}

// call orders the call expression n.
// n.Op is OCALLFUNC/OCALLINTER or a builtin like OCOPY.
func (o *orderState) call(nn ir.Node) {
	if len(nn.Init()) > 0 {
		// Caller should have already called o.init(nn).
		base.Fatalf("%v with unexpected ninit", nn.Op())
	}
	if nn.Op() == ir.OCALLMETH {
		base.FatalfAt(nn.Pos(), "OCALLMETH missed by typecheck")
	}

	// Builtin functions.
	if nn.Op() != ir.OCALLFUNC && nn.Op() != ir.OCALLINTER {
		switch n := nn.(type) {
		default:
			base.Fatalf("unexpected call: %+v", n)
		case *ir.UnaryExpr:
			n.X = o.expr(n.X, nil)
		case *ir.ConvExpr:
			n.X = o.expr(n.X, nil)
		case *ir.BinaryExpr:
			n.X = o.expr(n.X, nil)
			n.Y = o.expr(n.Y, nil)
		case *ir.MakeExpr:
			n.Len = o.expr(n.Len, nil)
			n.Cap = o.expr(n.Cap, nil)
		case *ir.CallExpr:
			o.exprList(n.Args)
		}
		return
	}

	n := nn.(*ir.CallExpr)
	typecheck.AssertFixedCall(n)

	if ir.IsFuncPCIntrinsic(n) && ir.IsIfaceOfFunc(n.Args[0]) != nil {
		// For internal/abi.FuncPCABIxxx(fn), if fn is a defined function,
		// do not introduce temporaries here, so it is easier to rewrite it
		// to symbol address reference later in walk.
		return
	}

	n.Fun = o.expr(n.Fun, nil)
	o.exprList(n.Args)
}

// mapAssign appends n to o.out.
func (o *orderState) mapAssign(n ir.Node) {
	switch n.Op() {
	default:
		base.Fatalf("order.mapAssign %v", n.Op())

	case ir.OAS:
		n := n.(*ir.AssignStmt)
		if n.X.Op() == ir.OINDEXMAP {
			n.Y = o.safeMapRHS(n.Y)
		}
		o.out = append(o.out, n)
	case ir.OASOP:
		n := n.(*ir.AssignOpStmt)
		if n.X.Op() == ir.OINDEXMAP {
			n.Y = o.safeMapRHS(n.Y)
		}
		o.out = append(o.out, n)
	}
}

func (o *orderState) safeMapRHS(r ir.Node) ir.Node {
	// Make sure we evaluate the RHS before starting the map insert.
	// We need to make sure the RHS won't panic.  See issue 22881.
	if r.Op() == ir.OAPPEND {
		r := r.(*ir.CallExpr)
		s := r.Args[1:]
		for i, n := range s {
			s[i] = o.cheapExpr(n)
		}
		return r
	}
	return o.cheapExpr(r)
}

// stmt orders the statement n, appending to o.out.
func (o *orderState) stmt(n ir.Node) {
	if n == nil {
		return
	}

	lno := ir.SetPos(n)
	o.init(n)

	switch n.Op() {
	default:
		base.Fatalf("order.stmt %v", n.Op())

	case ir.OINLMARK:
		o.out = append(o.out, n)

	case ir.OAS:
		n := n.(*ir.AssignStmt)
		t := o.markTemp()

		// There's a delicate interaction here between two OINDEXMAP
		// optimizations.
		//
		// First, we want to handle m[k] = append(m[k], ...) with a single
		// runtime call to mapassign. This requires the m[k] expressions to
		// satisfy ir.SameSafeExpr in walkAssign.
		//
		// But if k is a slow map key type that's passed by reference (e.g.,
		// byte), then we want to avoid marking user variables as addrtaken,
		// if that might prevent the compiler from keeping k in a register.
		//
		// TODO(mdempsky): It would be better if walk was responsible for
		// inserting temporaries as needed.
		mapAppend := n.X.Op() == ir.OINDEXMAP && n.Y.Op() == ir.OAPPEND &&
			ir.SameSafeExpr(n.X, n.Y.(*ir.CallExpr).Args[0])

		n.X = o.expr(n.X, nil)
		if mapAppend {
			indexLHS := n.X.(*ir.IndexExpr)
			indexLHS.X = o.cheapExpr(indexLHS.X)
			indexLHS.Index = o.cheapExpr(indexLHS.Index)

			call := n.Y.(*ir.CallExpr)
			arg0 := call.Args[0]
			// ir.SameSafeExpr skips OCONVNOPs, so we must do the same here (#66096).
			for arg0.Op() == ir.OCONVNOP {
				arg0 = arg0.(*ir.ConvExpr).X
			}
			indexRHS := arg0.(*ir.IndexExpr)
			indexRHS.X = indexLHS.X
			indexRHS.Index = indexLHS.Index

			o.exprList(call.Args[1:])
		} else {
			n.Y = o.expr(n.Y, n.X)
		}
		o.mapAssign(n)
		o.popTemp(t)

	case ir.OASOP:
		n := n.(*ir.AssignOpStmt)
		t := o.markTemp()
		n.X = o.expr(n.X, nil)
		n.Y = o.expr(n.Y, nil)

		if base.Flag.Cfg.Instrumenting || n.X.Op() == ir.OINDEXMAP && (n.AsOp == ir.ODIV || n.AsOp == ir.OMOD) {
			// Rewrite m[k] op= r into m[k] = m[k] op r so
			// that we can ensure that if op panics
			// because r is zero, the panic happens before
			// the map assignment.
			// DeepCopy is a big hammer here, but safeExpr
			// makes sure there is nothing too deep being copied.
			l1 := o.safeExpr(n.X)
			l2 := ir.DeepCopy(src.NoXPos, l1)
			if l2.Op() == ir.OINDEXMAP {
				l2 := l2.(*ir.IndexExpr)
				l2.Assigned = false
			}
			l2 = o.copyExpr(l2)
			r := o.expr(typecheck.Expr(ir.NewBinaryExpr(n.Pos(), n.AsOp, l2, n.Y)), nil)
			as := typecheck.Stmt(ir.NewAssignStmt(n.Pos(), l1, r))
			o.mapAssign(as)
			o.popTemp(t)
			return
		}

		o.mapAssign(n)
		o.popTemp(t)

	case ir.OAS2:
		n := n.(*ir.AssignListStmt)
		t := o.markTemp()
		o.exprList(n.Lhs)
		o.exprList(n.Rhs)
		o.out = append(o.out, n)
		o.popTemp(t)

	// Special: avoid copy of func call n.Right
	case ir.OAS2FUNC:
		n := n.(*ir.AssignListStmt)
		t := o.markTemp()
		o.exprList(n.Lhs)
		call := n.Rhs[0]
		o.init(call)
		if ic, ok := call.(*ir.InlinedCallExpr); ok {
			o.stmtList(ic.Body)

			n.SetOp(ir.OAS2)
			n.Rhs = ic.ReturnVars

			o.exprList(n.Rhs)
			o.out = append(o.out, n)
		} else {
			o.call(call)
			o.as2func(n)
		}
		o.popTemp(t)

	// Special: use temporary variables to hold result,
	// so that runtime can take address of temporary.
	// No temporary for blank assignment.
	//
	// OAS2MAPR: make sure key is addressable if needed,
	//           and make sure OINDEXMAP is not copied out.
	case ir.OAS2DOTTYPE, ir.OAS2RECV, ir.OAS2MAPR:
		n := n.(*ir.AssignListStmt)
		t := o.markTemp()
		o.exprList(n.Lhs)

		switch r := n.Rhs[0]; r.Op() {
		case ir.ODOTTYPE2:
			r := r.(*ir.TypeAssertExpr)
			r.X = o.expr(r.X, nil)
		case ir.ODYNAMICDOTTYPE2:
			r := r.(*ir.DynamicTypeAssertExpr)
			r.X = o.expr(r.X, nil)
			r.RType = o.expr(r.RType, nil)
			r.ITab = o.expr(r.ITab, nil)
		case ir.ORECV:
			r := r.(*ir.UnaryExpr)
			r.X = o.expr(r.X, nil)
		case ir.OINDEXMAP:
			r := r.(*ir.IndexExpr)
			r.X = o.expr(r.X, nil)
			r.Index = o.expr(r.Index, nil)
			// See similar conversion for OINDEXMAP below.
			_ = mapKeyReplaceStrConv(r.Index)
			r.Index = o.mapKeyTemp(r.Pos(), r.X.Type(), r.Index)
		default:
			base.Fatalf("order.stmt: %v", r.Op())
		}

		o.as2ok(n)
		o.popTemp(t)

	// Special: does not save n onto out.
	case ir.OBLOCK:
		n := n.(*ir.BlockStmt)
		o.stmtList(n.List)

	// Special: n->left is not an expression; save as is.
	case ir.OBREAK,
		ir.OCONTINUE,
		ir.ODCL,
		ir.OFALL,
		ir.OGOTO,
		ir.OLABEL,
		ir.OTAILCALL:
		o.out = append(o.out, n)

	// Special: handle call arguments.
	case ir.OCALLFUNC, ir.OCALLINTER:
		n := n.(*ir.CallExpr)
		t := o.markTemp()
		o.call(n)
		o.out = append(o.out, n)
		o.popTemp(t)

	case ir.OINLCALL:
		n := n.(*ir.InlinedCallExpr)
		o.stmtList(n.Body)

		// discard results; double-check for no side effects
		for _, result := range n.ReturnVars {
			if staticinit.AnySideEffects(result) {
				base.FatalfAt(result.Pos(), "inlined call result has side effects: %v", result)
			}
		}

	case ir.OCHECKNIL, ir.OCLEAR, ir.OCLOSE, ir.OPANIC, ir.ORECV:
		n := n.(*ir.UnaryExpr)
		t := o.markTemp()
		n.X = o.expr(n.X, nil)
		o.out = append(o.out, n)
		o.popTemp(t)

	case ir.OCOPY:
		n := n.(*ir.BinaryExpr)
		t := o.markTemp()
		n.X = o.expr(n.X, nil)
		n.Y = o.expr(n.Y, nil)
		o.out = append(o.out, n)
		o.popTemp(t)

	case ir.OPRINT, ir.OPRINTLN, ir.ORECOVERFP:
		n := n.(*ir.CallExpr)
		t := o.markTemp()
		o.call(n)
		o.out = append(o.out, n)
		o.popTemp(t)

	// Special: order arguments to inner call but not call itself.
	case ir.ODEFER, ir.OGO:
		n := n.(*ir.GoDeferStmt)
		t := o.markTemp()
		o.init(n.Call)
		o.call(n.Call)
		o.out = append(o.out, n)
		o.popTemp(t)

	case ir.ODELETE:
		n := n.(*ir.CallExpr)
		t := o.markTemp()
		n.Args[0] = o.expr(n.Args[0], nil)
		n.Args[1] = o.expr(n.Args[1], nil)
		n.Args[1] = o.mapKeyTemp(n.Pos(), n.Args[0].Type(), n.Args[1])
		o.out = append(o.out, n)
		o.popTemp(t)

	// Clean temporaries from condition evaluation at
	// beginning of loop body and after for statement.
	case ir.OFOR:
		n := n.(*ir.ForStmt)
		t := o.markTemp()
		n.Cond = o.exprInPlace(n.Cond)
		orderBlock(&n.Body, o.free)
		n.Post = orderStmtInPlace(n.Post, o.free)
		o.out = append(o.out, n)
		o.popTemp(t)

	// Clean temporaries from condition at
	// beginning of both branches.
	case ir.OIF:
		n := n.(*ir.IfStmt)
		t := o.markTemp()
		n.Cond = o.exprInPlace(n.Cond)
		o.popTemp(t)
		orderBlock(&n.Body, o.free)
		orderBlock(&n.Else, o.free)
		o.out = append(o.out, n)

	case ir.ORANGE:
		// n.Right is the expression being ranged over.
		// order it, and then make a copy if we need one.
		// We almost always do, to ensure that we don't
		// see any value changes made during the loop.
		// Usually the copy is cheap (e.g., array pointer,
		// chan, slice, string are all tiny).
		// The exception is ranging over an array value
		// (not a slice, not a pointer to array),
		// which must make a copy to avoid seeing updates made during
		// the range body. Ranging over an array value is uncommon though.

		// Mark []byte(str) range expression to reuse string backing storage.
		// It is safe because the storage cannot be mutated.
		n := n.(*ir.RangeStmt)
		if x, ok := n.X.(*ir.ConvExpr); ok {
			switch x.Op() {
			case ir.OSTR2BYTES:
				x.SetOp(ir.OSTR2BYTESTMP)
				fallthrough
			case ir.OSTR2BYTESTMP:
				x.MarkNonNil() // "range []byte(nil)" is fine
			}
		}

		t := o.markTemp()
		n.X = o.expr(n.X, nil)

		orderBody := true
		xt := typecheck.RangeExprType(n.X.Type())
		switch k := xt.Kind(); {
		default:
			base.Fatalf("order.stmt range %v", n.Type())

		case types.IsInt[k]:
			// Used only once, no need to copy.

		case k == types.TARRAY, k == types.TSLICE:
			if n.Value == nil || ir.IsBlank(n.Value) {
				// for i := range x will only use x once, to compute len(x).
				// No need to copy it.
				break
			}
			fallthrough

		case k == types.TCHAN, k == types.TSTRING:
			// chan, string, slice, array ranges use value multiple times.
			// make copy.
			r := n.X

			if r.Type().IsString() && r.Type() != types.Types[types.TSTRING] {
				r = ir.NewConvExpr(base.Pos, ir.OCONV, nil, r)
				r.SetType(types.Types[types.TSTRING])
				r = typecheck.Expr(r)
			}

			n.X = o.copyExpr(r)

		case k == types.TMAP:
			if isMapClear(n) {
				// Preserve the body of the map clear pattern so it can
				// be detected during walk. The loop body will not be used
				// when optimizing away the range loop to a runtime call.
				orderBody = false
				break
			}

			// copy the map value in case it is a map literal.
			// TODO(rsc): Make tmp = literal expressions reuse tmp.
			// For maps tmp is just one word so it hardly matters.
			r := n.X
			n.X = o.copyExpr(r)

			// n.Prealloc is the temp for the iterator.
			// MapIterType contains pointers and needs to be zeroed.
			n.Prealloc = o.newTemp(reflectdata.MapIterType(), true)
		}
		n.Key = o.exprInPlace(n.Key)
		n.Value = o.exprInPlace(n.Value)
		if orderBody {
			orderBlock(&n.Body, o.free)
		}
		o.out = append(o.out, n)
		o.popTemp(t)

	case ir.ORETURN:
		n := n.(*ir.ReturnStmt)
		o.exprList(n.Results)
		o.out = append(o.out, n)

	// Special: clean case temporaries in each block entry.
	// Select must enter one of its blocks, so there is no
	// need for a cleaning at the end.
	// Doubly special: evaluation order for select is stricter
	// than ordinary expressions. Even something like p.c
	// has to be hoisted into a temporary, so that it cannot be
	// reordered after the channel evaluation for a different
	// case (if p were nil, then the timing of the fault would
	// give this away).
	case ir.OSELECT:
		n := n.(*ir.SelectStmt)
		t := o.markTemp()
		for _, ncas := range n.Cases {
			r := ncas.Comm
			ir.SetPos(ncas)

			// Append any new body prologue to ninit.
			// The next loop will insert ninit into nbody.
			if len(ncas.Init()) != 0 {
				base.Fatalf("order select ninit")
			}
			if r == nil {
				continue
			}
			switch r.Op() {
			default:
				ir.Dump("select case", r)
				base.Fatalf("unknown op in select %v", r.Op())

			case ir.OSELRECV2:
				// case x, ok = <-c
				r := r.(*ir.AssignListStmt)
				recv := r.Rhs[0].(*ir.UnaryExpr)
				recv.X = o.expr(recv.X, nil)
				if !ir.IsAutoTmp(recv.X) {
					recv.X = o.copyExpr(recv.X)
				}
				init := ir.TakeInit(r)

				colas := r.Def
				do := func(i int, t *types.Type) {
					n := r.Lhs[i]
					if ir.IsBlank(n) {
						return
					}
					// If this is case x := <-ch or case x, y := <-ch, the case has
					// the ODCL nodes to declare x and y. We want to delay that
					// declaration (and possible allocation) until inside the case body.
					// Delete the ODCL nodes here and recreate them inside the body below.
					if colas {
						if len(init) > 0 && init[0].Op() == ir.ODCL && init[0].(*ir.Decl).X == n {
							init = init[1:]

							// iimport may have added a default initialization assignment,
							// due to how it handles ODCL statements.
							if len(init) > 0 && init[0].Op() == ir.OAS && init[0].(*ir.AssignStmt).X == n {
								init = init[1:]
							}
						}
						dcl := typecheck.Stmt(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
						ncas.PtrInit().Append(dcl)
					}
					tmp := o.newTemp(t, t.HasPointers())
					as := typecheck.Stmt(ir.NewAssignStmt(base.Pos, n, typecheck.Conv(tmp, n.Type())))
					ncas.PtrInit().Append(as)
					r.Lhs[i] = tmp
				}
				do(0, recv.X.Type().Elem())
				do(1, types.Types[types.TBOOL])
				if len(init) != 0 {
					ir.DumpList("ninit", init)
					base.Fatalf("ninit on select recv")
				}
				orderBlock(ncas.PtrInit(), o.free)

			case ir.OSEND:
				r := r.(*ir.SendStmt)
				if len(r.Init()) != 0 {
					ir.DumpList("ninit", r.Init())
					base.Fatalf("ninit on select send")
				}

				// case c <- x
				// r->left is c, r->right is x, both are always evaluated.
				r.Chan = o.expr(r.Chan, nil)

				if !ir.IsAutoTmp(r.Chan) {
					r.Chan = o.copyExpr(r.Chan)
				}
				r.Value = o.expr(r.Value, nil)
				if !ir.IsAutoTmp(r.Value) {
					r.Value = o.copyExpr(r.Value)
				}
			}
		}
		// Now that we have accumulated all the temporaries, clean them.
		// Also insert any ninit queued during the previous loop.
		// (The temporary cleaning must follow that ninit work.)
		for _, cas := range n.Cases {
			orderBlock(&cas.Body, o.free)

			// TODO(mdempsky): Is this actually necessary?
			// walkSelect appears to walk Ninit.
			cas.Body.Prepend(ir.TakeInit(cas)...)
		}

		o.out = append(o.out, n)
		o.popTemp(t)

	// Special: value being sent is passed as a pointer; make it addressable.
	case ir.OSEND:
		n := n.(*ir.SendStmt)
		t := o.markTemp()
		n.Chan = o.expr(n.Chan, nil)
		n.Value = o.expr(n.Value, nil)
		if base.Flag.Cfg.Instrumenting {
			// Force copying to the stack so that (chan T)(nil) <- x
			// is still instrumented as a read of x.
			n.Value = o.copyExpr(n.Value)
		} else {
			n.Value = o.addrTemp(n.Value)
		}
		o.out = append(o.out, n)
		o.popTemp(t)

	// TODO(rsc): Clean temporaries more aggressively.
	// Note that because walkSwitch will rewrite some of the
	// switch into a binary search, this is not as easy as it looks.
	// (If we ran that code here we could invoke order.stmt on
	// the if-else chain instead.)
	// For now just clean all the temporaries at the end.
	// In practice that's fine.
	case ir.OSWITCH:
		n := n.(*ir.SwitchStmt)
		if base.Debug.Libfuzzer != 0 && !hasDefaultCase(n) {
			// Add empty "default:" case for instrumentation.
			n.Cases = append(n.Cases, ir.NewCaseStmt(base.Pos, nil, nil))
		}

		t := o.markTemp()
		n.Tag = o.expr(n.Tag, nil)
		for _, ncas := range n.Cases {
			o.exprListInPlace(ncas.List)
			orderBlock(&ncas.Body, o.free)
		}

		o.out = append(o.out, n)
		o.popTemp(t)
	}

	base.Pos = lno
}

func hasDefaultCase(n *ir.SwitchStmt) bool {
	for _, ncas := range n.Cases {
		if len(ncas.List) == 0 {
			return true
		}
	}
	return false
}

// exprList orders the expression list l into o.
func (o *orderState) exprList(l ir.Nodes) {
	s := l
	for i := range s {
		s[i] = o.expr(s[i], nil)
	}
}

// exprListInPlace orders the expression list l but saves
// the side effects on the individual expression ninit lists.
func (o *orderState) exprListInPlace(l ir.Nodes) {
	s := l
	for i := range s {
		s[i] = o.exprInPlace(s[i])
	}
}

func (o *orderState) exprNoLHS(n ir.Node) ir.Node {
	return o.expr(n, nil)
}

// expr orders a single expression, appending side
// effects to o.out as needed.
// If this is part of an assignment lhs = *np, lhs is given.
// Otherwise lhs == nil. (When lhs != nil it may be possible
// to avoid copying the result of the expression to a temporary.)
// The result of expr MUST be assigned back to n, e.g.
//
//	n.Left = o.expr(n.Left, lhs)
func (o *orderState) expr(n, lhs ir.Node) ir.Node {
	if n == nil {
		return n
	}
	lno := ir.SetPos(n)
	n = o.expr1(n, lhs)
	base.Pos = lno
	return n
}

func (o *orderState) expr1(n, lhs ir.Node) ir.Node {
	o.init(n)

	switch n.Op() {
	default:
		if o.edit == nil {
			o.edit = o.exprNoLHS // create closure once
		}
		ir.EditChildren(n, o.edit)
		return n

	// Addition of strings turns into a function call.
	// Allocate a temporary to hold the strings.
	// Fewer than 5 strings use direct runtime helpers.
	case ir.OADDSTR:
		n := n.(*ir.AddStringExpr)
		o.exprList(n.List)

		if len(n.List) > 5 {
			t := types.NewArray(types.Types[types.TSTRING], int64(len(n.List)))
			n.Prealloc = o.newTemp(t, false)
		}

		// Mark string(byteSlice) arguments to reuse byteSlice backing
		// buffer during conversion. String concatenation does not
		// memorize the strings for later use, so it is safe.
		// However, we can do it only if there is at least one non-empty string literal.
		// Otherwise if all other arguments are empty strings,
		// concatstrings will return the reference to the temp string
		// to the caller.
		hasbyte := false

		haslit := false
		for _, n1 := range n.List {
			hasbyte = hasbyte || n1.Op() == ir.OBYTES2STR
			haslit = haslit || n1.Op() == ir.OLITERAL && len(ir.StringVal(n1)) != 0
		}

		if haslit && hasbyte {
			for _, n2 := range n.List {
				if n2.Op() == ir.OBYTES2STR {
					n2 := n2.(*ir.ConvExpr)
					n2.SetOp(ir.OBYTES2STRTMP)
				}
			}
		}
		return n

	case ir.OINDEXMAP:
		n := n.(*ir.IndexExpr)
		n.X = o.expr(n.X, nil)
		n.Index = o.expr(n.Index, nil)
		needCopy := false

		if !n.Assigned {
			// Enforce that any []byte slices we are not copying
			// can not be changed before the map index by forcing
			// the map index to happen immediately following the
			// conversions. See copyExpr a few lines below.
			needCopy = mapKeyReplaceStrConv(n.Index)

			if base.Flag.Cfg.Instrumenting {
				// Race detector needs the copy.
				needCopy = true
			}
		}

		// key may need to be be addressable
		n.Index = o.mapKeyTemp(n.Pos(), n.X.Type(), n.Index)
		if needCopy {
			return o.copyExpr(n)
		}
		return n

	// concrete type (not interface) argument might need an addressable
	// temporary to pass to the runtime conversion routine.
	case ir.OCONVIFACE:
		n := n.(*ir.ConvExpr)
		n.X = o.expr(n.X, nil)
		if n.X.Type().IsInterface() {
			return n
		}
		if _, _, needsaddr := dataWordFuncName(n.X.Type()); needsaddr || isStaticCompositeLiteral(n.X) {
			// Need a temp if we need to pass the address to the conversion function.
			// We also process static composite literal node here, making a named static global
			// whose address we can put directly in an interface (see OCONVIFACE case in walk).
			n.X = o.addrTemp(n.X)
		}
		return n

	case ir.OCONVNOP:
		n := n.(*ir.ConvExpr)
		if n.X.Op() == ir.OCALLMETH {
			base.FatalfAt(n.X.Pos(), "OCALLMETH missed by typecheck")
		}
		if n.Type().IsKind(types.TUNSAFEPTR) && n.X.Type().IsKind(types.TUINTPTR) && (n.X.Op() == ir.OCALLFUNC || n.X.Op() == ir.OCALLINTER) {
			call := n.X.(*ir.CallExpr)
			// When reordering unsafe.Pointer(f()) into a separate
			// statement, the conversion and function call must stay
			// together. See golang.org/issue/15329.
			o.init(call)
			o.call(call)
			if lhs == nil || lhs.Op() != ir.ONAME || base.Flag.Cfg.Instrumenting {
				return o.copyExpr(n)
			}
		} else {
			n.X = o.expr(n.X, nil)
		}
		return n

	case ir.OANDAND, ir.OOROR:
		// ... = LHS && RHS
		//
		// var r bool
		// r = LHS
		// if r {       // or !r, for OROR
		//     r = RHS
		// }
		// ... = r

		n := n.(*ir.LogicalExpr)
		r := o.newTemp(n.Type(), false)

		// Evaluate left-hand side.
		lhs := o.expr(n.X, nil)
		o.out = append(o.out, typecheck.Stmt(ir.NewAssignStmt(base.Pos, r, lhs)))

		// Evaluate right-hand side, save generated code.
		saveout := o.out
		o.out = nil
		t := o.markTemp()
		o.edge()
		rhs := o.expr(n.Y, nil)
		o.out = append(o.out, typecheck.Stmt(ir.NewAssignStmt(base.Pos, r, rhs)))
		o.popTemp(t)
		gen := o.out
		o.out = saveout

		// If left-hand side doesn't cause a short-circuit, issue right-hand side.
		nif := ir.NewIfStmt(base.Pos, r, nil, nil)
		if n.Op() == ir.OANDAND {
			nif.Body = gen
		} else {
			nif.Else = gen
		}
		o.out = append(o.out, nif)
		return r

	case ir.OCALLMETH:
		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
		panic("unreachable")

	case ir.OCALLFUNC,
		ir.OCALLINTER,
		ir.OCAP,
		ir.OCOMPLEX,
		ir.OCOPY,
		ir.OIMAG,
		ir.OLEN,
		ir.OMAKECHAN,
		ir.OMAKEMAP,
		ir.OMAKESLICE,
		ir.OMAKESLICECOPY,
		ir.OMAX,
		ir.OMIN,
		ir.ONEW,
		ir.OREAL,
		ir.ORECOVERFP,
		ir.OSTR2BYTES,
		ir.OSTR2BYTESTMP,
		ir.OSTR2RUNES:

		if isRuneCount(n) {
			// len([]rune(s)) is rewritten to runtime.countrunes(s) later.
			conv := n.(*ir.UnaryExpr).X.(*ir.ConvExpr)
			conv.X = o.expr(conv.X, nil)
		} else {
			o.call(n)
		}

		if lhs == nil || lhs.Op() != ir.ONAME || base.Flag.Cfg.Instrumenting {
			return o.copyExpr(n)
		}
		return n

	case ir.OINLCALL:
		n := n.(*ir.InlinedCallExpr)
		o.stmtList(n.Body)
		return n.SingleResult()

	case ir.OAPPEND:
		// Check for append(x, make([]T, y)...) .
		n := n.(*ir.CallExpr)
		if isAppendOfMake(n) {
			n.Args[0] = o.expr(n.Args[0], nil) // order x
			mk := n.Args[1].(*ir.MakeExpr)
			mk.Len = o.expr(mk.Len, nil) // order y
		} else {
			o.exprList(n.Args)
		}

		if lhs == nil || lhs.Op() != ir.ONAME && !ir.SameSafeExpr(lhs, n.Args[0]) {
			return o.copyExpr(n)
		}
		return n

	case ir.OSLICE, ir.OSLICEARR, ir.OSLICESTR, ir.OSLICE3, ir.OSLICE3ARR:
		n := n.(*ir.SliceExpr)
		n.X = o.expr(n.X, nil)
		n.Low = o.cheapExpr(o.expr(n.Low, nil))
		n.High = o.cheapExpr(o.expr(n.High, nil))
		n.Max = o.cheapExpr(o.expr(n.Max, nil))
		if lhs == nil || lhs.Op() != ir.ONAME && !ir.SameSafeExpr(lhs, n.X) {
			return o.copyExpr(n)
		}
		return n

	case ir.OCLOSURE:
		n := n.(*ir.ClosureExpr)
		if n.Transient() && len(n.Func.ClosureVars) > 0 {
			n.Prealloc = o.newTemp(typecheck.ClosureType(n), false)
		}
		return n

	case ir.OMETHVALUE:
		n := n.(*ir.SelectorExpr)
		n.X = o.expr(n.X, nil)
		if n.Transient() {
			t := typecheck.MethodValueType(n)
			n.Prealloc = o.newTemp(t, false)
		}
		return n

	case ir.OSLICELIT:
		n := n.(*ir.CompLitExpr)
		o.exprList(n.List)
		if n.Transient() {
			t := types.NewArray(n.Type().Elem(), n.Len)
			n.Prealloc = o.newTemp(t, false)
		}
		return n

	case ir.ODOTTYPE, ir.ODOTTYPE2:
		n := n.(*ir.TypeAssertExpr)
		n.X = o.expr(n.X, nil)
		if !types.IsDirectIface(n.Type()) || base.Flag.Cfg.Instrumenting {
			return o.copyExprClear(n)
		}
		return n

	case ir.ORECV:
		n := n.(*ir.UnaryExpr)
		n.X = o.expr(n.X, nil)
		return o.copyExprClear(n)

	case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
		n := n.(*ir.BinaryExpr)
		n.X = o.expr(n.X, nil)
		n.Y = o.expr(n.Y, nil)

		t := n.X.Type()
		switch {
		case t.IsString():
			// Mark string(byteSlice) arguments to reuse byteSlice backing
			// buffer during conversion. String comparison does not
			// memorize the strings for later use, so it is safe.
			if n.X.Op() == ir.OBYTES2STR {
				n.X.(*ir.ConvExpr).SetOp(ir.OBYTES2STRTMP)
			}
			if n.Y.Op() == ir.OBYTES2STR {
				n.Y.(*ir.ConvExpr).SetOp(ir.OBYTES2STRTMP)
			}

		case t.IsStruct() || t.IsArray():
			// for complex comparisons, we need both args to be
			// addressable so we can pass them to the runtime.
			n.X = o.addrTemp(n.X)
			n.Y = o.addrTemp(n.Y)
		}
		return n

	case ir.OMAPLIT:
		// Order map by converting:
		//   map[int]int{
		//     a(): b(),
		//     c(): d(),
		//     e(): f(),
		//   }
		// to
		//   m := map[int]int{}
		//   m[a()] = b()
		//   m[c()] = d()
		//   m[e()] = f()
		// Then order the result.
		// Without this special case, order would otherwise compute all
		// the keys and values before storing any of them to the map.
		// See issue 26552.
		n := n.(*ir.CompLitExpr)
		entries := n.List
		statics := entries[:0]
		var dynamics []*ir.KeyExpr
		for _, r := range entries {
			r := r.(*ir.KeyExpr)

			if !isStaticCompositeLiteral(r.Key) || !isStaticCompositeLiteral(r.Value) {
				dynamics = append(dynamics, r)
				continue
			}

			// Recursively ordering some static entries can change them to dynamic;
			// e.g., OCONVIFACE nodes. See #31777.
			r = o.expr(r, nil).(*ir.KeyExpr)
			if !isStaticCompositeLiteral(r.Key) || !isStaticCompositeLiteral(r.Value) {
				dynamics = append(dynamics, r)
				continue
			}

			statics = append(statics, r)
		}
		n.List = statics

		if len(dynamics) == 0 {
			return n
		}

		// Emit the creation of the map (with all its static entries).
		m := o.newTemp(n.Type(), false)
		as := ir.NewAssignStmt(base.Pos, m, n)
		typecheck.Stmt(as)
		o.stmt(as)

		// Emit eval+insert of dynamic entries, one at a time.
		for _, r := range dynamics {
			lhs := typecheck.AssignExpr(ir.NewIndexExpr(base.Pos, m, r.Key)).(*ir.IndexExpr)
			base.AssertfAt(lhs.Op() == ir.OINDEXMAP, lhs.Pos(), "want OINDEXMAP, have %+v", lhs)
			lhs.RType = n.RType

			as := ir.NewAssignStmt(base.Pos, lhs, r.Value)
			typecheck.Stmt(as)
			o.stmt(as)
		}

		// Remember that we issued these assignments so we can include that count
		// in the map alloc hint.
		// We're assuming here that all the keys in the map literal are distinct.
		// If any are equal, this will be an overcount. Probably not worth accounting
		// for that, as equal keys in map literals are rare, and at worst we waste
		// a bit of space.
		n.Len += int64(len(dynamics))

		return m
	}

	// No return - type-assertions above. Each case must return for itself.
}

// as2func orders OAS2FUNC nodes. It creates temporaries to ensure left-to-right assignment.
// The caller should order the right-hand side of the assignment before calling order.as2func.
// It rewrites,
//
//	a, b, a = ...
//
// as
//
//	tmp1, tmp2, tmp3 = ...
//	a, b, a = tmp1, tmp2, tmp3
//
// This is necessary to ensure left to right assignment order.
func (o *orderState) as2func(n *ir.AssignListStmt) {
	results := n.Rhs[0].Type()
	as := ir.NewAssignListStmt(n.Pos(), ir.OAS2, nil, nil)
	for i, nl := range n.Lhs {
		if !ir.IsBlank(nl) {
			typ := results.Field(i).Type
			tmp := o.newTemp(typ, typ.HasPointers())
			n.Lhs[i] = tmp
			as.Lhs = append(as.Lhs, nl)
			as.Rhs = append(as.Rhs, tmp)
		}
	}

	o.out = append(o.out, n)
	o.stmt(typecheck.Stmt(as))
}

// as2ok orders OAS2XXX with ok.
// Just like as2func, this also adds temporaries to ensure left-to-right assignment.
func (o *orderState) as2ok(n *ir.AssignListStmt) {
	as := ir.NewAssignListStmt(n.Pos(), ir.OAS2, nil, nil)

	do := func(i int, typ *types.Type) {
		if nl := n.Lhs[i]; !ir.IsBlank(nl) {
			var tmp ir.Node = o.newTemp(typ, typ.HasPointers())
			n.Lhs[i] = tmp
			as.Lhs = append(as.Lhs, nl)
			if i == 1 {
				// The "ok" result is an untyped boolean according to the Go
				// spec. We need to explicitly convert it to the LHS type in
				// case the latter is a defined boolean type (#8475).
				tmp = typecheck.Conv(tmp, nl.Type())
			}
			as.Rhs = append(as.Rhs, tmp)
		}
	}

	do(0, n.Rhs[0].Type())
	do(1, types.Types[types.TBOOL])

	o.out = append(o.out, n)
	o.stmt(typecheck.Stmt(as))
}