summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/walk/switch.go
blob: b67d0114c7b6381a226602c8e046a5cd4ee01d25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"fmt"
	"go/constant"
	"go/token"
	"math/bits"
	"sort"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/objw"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/rttype"
	"cmd/compile/internal/ssagen"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
)

// walkSwitch walks a switch statement.
func walkSwitch(sw *ir.SwitchStmt) {
	// Guard against double walk, see #25776.
	if sw.Walked() {
		return // Was fatal, but eliminating every possible source of double-walking is hard
	}
	sw.SetWalked(true)

	if sw.Tag != nil && sw.Tag.Op() == ir.OTYPESW {
		walkSwitchType(sw)
	} else {
		walkSwitchExpr(sw)
	}
}

// walkSwitchExpr generates an AST implementing sw.  sw is an
// expression switch.
func walkSwitchExpr(sw *ir.SwitchStmt) {
	lno := ir.SetPos(sw)

	cond := sw.Tag
	sw.Tag = nil

	// convert switch {...} to switch true {...}
	if cond == nil {
		cond = ir.NewBool(base.Pos, true)
		cond = typecheck.Expr(cond)
		cond = typecheck.DefaultLit(cond, nil)
	}

	// Given "switch string(byteslice)",
	// with all cases being side-effect free,
	// use a zero-cost alias of the byte slice.
	// Do this before calling walkExpr on cond,
	// because walkExpr will lower the string
	// conversion into a runtime call.
	// See issue 24937 for more discussion.
	if cond.Op() == ir.OBYTES2STR && allCaseExprsAreSideEffectFree(sw) {
		cond := cond.(*ir.ConvExpr)
		cond.SetOp(ir.OBYTES2STRTMP)
	}

	cond = walkExpr(cond, sw.PtrInit())
	if cond.Op() != ir.OLITERAL && cond.Op() != ir.ONIL {
		cond = copyExpr(cond, cond.Type(), &sw.Compiled)
	}

	base.Pos = lno

	s := exprSwitch{
		pos:      lno,
		exprname: cond,
	}

	var defaultGoto ir.Node
	var body ir.Nodes
	for _, ncase := range sw.Cases {
		label := typecheck.AutoLabel(".s")
		jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label)

		// Process case dispatch.
		if len(ncase.List) == 0 {
			if defaultGoto != nil {
				base.Fatalf("duplicate default case not detected during typechecking")
			}
			defaultGoto = jmp
		}

		for i, n1 := range ncase.List {
			var rtype ir.Node
			if i < len(ncase.RTypes) {
				rtype = ncase.RTypes[i]
			}
			s.Add(ncase.Pos(), n1, rtype, jmp)
		}

		// Process body.
		body.Append(ir.NewLabelStmt(ncase.Pos(), label))
		body.Append(ncase.Body...)
		if fall, pos := endsInFallthrough(ncase.Body); !fall {
			br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
			br.SetPos(pos)
			body.Append(br)
		}
	}
	sw.Cases = nil

	if defaultGoto == nil {
		br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
		br.SetPos(br.Pos().WithNotStmt())
		defaultGoto = br
	}

	s.Emit(&sw.Compiled)
	sw.Compiled.Append(defaultGoto)
	sw.Compiled.Append(body.Take()...)
	walkStmtList(sw.Compiled)
}

// An exprSwitch walks an expression switch.
type exprSwitch struct {
	pos      src.XPos
	exprname ir.Node // value being switched on

	done    ir.Nodes
	clauses []exprClause
}

type exprClause struct {
	pos    src.XPos
	lo, hi ir.Node
	rtype  ir.Node // *runtime._type for OEQ node
	jmp    ir.Node
}

func (s *exprSwitch) Add(pos src.XPos, expr, rtype, jmp ir.Node) {
	c := exprClause{pos: pos, lo: expr, hi: expr, rtype: rtype, jmp: jmp}
	if types.IsOrdered[s.exprname.Type().Kind()] && expr.Op() == ir.OLITERAL {
		s.clauses = append(s.clauses, c)
		return
	}

	s.flush()
	s.clauses = append(s.clauses, c)
	s.flush()
}

func (s *exprSwitch) Emit(out *ir.Nodes) {
	s.flush()
	out.Append(s.done.Take()...)
}

func (s *exprSwitch) flush() {
	cc := s.clauses
	s.clauses = nil
	if len(cc) == 0 {
		return
	}

	// Caution: If len(cc) == 1, then cc[0] might not an OLITERAL.
	// The code below is structured to implicitly handle this case
	// (e.g., sort.Slice doesn't need to invoke the less function
	// when there's only a single slice element).

	if s.exprname.Type().IsString() && len(cc) >= 2 {
		// Sort strings by length and then by value. It is
		// much cheaper to compare lengths than values, and
		// all we need here is consistency. We respect this
		// sorting below.
		sort.Slice(cc, func(i, j int) bool {
			si := ir.StringVal(cc[i].lo)
			sj := ir.StringVal(cc[j].lo)
			if len(si) != len(sj) {
				return len(si) < len(sj)
			}
			return si < sj
		})

		// runLen returns the string length associated with a
		// particular run of exprClauses.
		runLen := func(run []exprClause) int64 { return int64(len(ir.StringVal(run[0].lo))) }

		// Collapse runs of consecutive strings with the same length.
		var runs [][]exprClause
		start := 0
		for i := 1; i < len(cc); i++ {
			if runLen(cc[start:]) != runLen(cc[i:]) {
				runs = append(runs, cc[start:i])
				start = i
			}
		}
		runs = append(runs, cc[start:])

		// We have strings of more than one length. Generate an
		// outer switch which switches on the length of the string
		// and an inner switch in each case which resolves all the
		// strings of the same length. The code looks something like this:

		// goto outerLabel
		// len5:
		//   ... search among length 5 strings ...
		//   goto endLabel
		// len8:
		//   ... search among length 8 strings ...
		//   goto endLabel
		// ... other lengths ...
		// outerLabel:
		// switch len(s) {
		//   case 5: goto len5
		//   case 8: goto len8
		//   ... other lengths ...
		// }
		// endLabel:

		outerLabel := typecheck.AutoLabel(".s")
		endLabel := typecheck.AutoLabel(".s")

		// Jump around all the individual switches for each length.
		s.done.Append(ir.NewBranchStmt(s.pos, ir.OGOTO, outerLabel))

		var outer exprSwitch
		outer.exprname = ir.NewUnaryExpr(s.pos, ir.OLEN, s.exprname)
		outer.exprname.SetType(types.Types[types.TINT])

		for _, run := range runs {
			// Target label to jump to when we match this length.
			label := typecheck.AutoLabel(".s")

			// Search within this run of same-length strings.
			pos := run[0].pos
			s.done.Append(ir.NewLabelStmt(pos, label))
			stringSearch(s.exprname, run, &s.done)
			s.done.Append(ir.NewBranchStmt(pos, ir.OGOTO, endLabel))

			// Add length case to outer switch.
			cas := ir.NewInt(pos, runLen(run))
			jmp := ir.NewBranchStmt(pos, ir.OGOTO, label)
			outer.Add(pos, cas, nil, jmp)
		}
		s.done.Append(ir.NewLabelStmt(s.pos, outerLabel))
		outer.Emit(&s.done)
		s.done.Append(ir.NewLabelStmt(s.pos, endLabel))
		return
	}

	sort.Slice(cc, func(i, j int) bool {
		return constant.Compare(cc[i].lo.Val(), token.LSS, cc[j].lo.Val())
	})

	// Merge consecutive integer cases.
	if s.exprname.Type().IsInteger() {
		consecutive := func(last, next constant.Value) bool {
			delta := constant.BinaryOp(next, token.SUB, last)
			return constant.Compare(delta, token.EQL, constant.MakeInt64(1))
		}

		merged := cc[:1]
		for _, c := range cc[1:] {
			last := &merged[len(merged)-1]
			if last.jmp == c.jmp && consecutive(last.hi.Val(), c.lo.Val()) {
				last.hi = c.lo
			} else {
				merged = append(merged, c)
			}
		}
		cc = merged
	}

	s.search(cc, &s.done)
}

func (s *exprSwitch) search(cc []exprClause, out *ir.Nodes) {
	if s.tryJumpTable(cc, out) {
		return
	}
	binarySearch(len(cc), out,
		func(i int) ir.Node {
			return ir.NewBinaryExpr(base.Pos, ir.OLE, s.exprname, cc[i-1].hi)
		},
		func(i int, nif *ir.IfStmt) {
			c := &cc[i]
			nif.Cond = c.test(s.exprname)
			nif.Body = []ir.Node{c.jmp}
		},
	)
}

// Try to implement the clauses with a jump table. Returns true if successful.
func (s *exprSwitch) tryJumpTable(cc []exprClause, out *ir.Nodes) bool {
	const minCases = 8   // have at least minCases cases in the switch
	const minDensity = 4 // use at least 1 out of every minDensity entries

	if base.Flag.N != 0 || !ssagen.Arch.LinkArch.CanJumpTable || base.Ctxt.Retpoline {
		return false
	}
	if len(cc) < minCases {
		return false // not enough cases for it to be worth it
	}
	if cc[0].lo.Val().Kind() != constant.Int {
		return false // e.g. float
	}
	if s.exprname.Type().Size() > int64(types.PtrSize) {
		return false // 64-bit switches on 32-bit archs
	}
	min := cc[0].lo.Val()
	max := cc[len(cc)-1].hi.Val()
	width := constant.BinaryOp(constant.BinaryOp(max, token.SUB, min), token.ADD, constant.MakeInt64(1))
	limit := constant.MakeInt64(int64(len(cc)) * minDensity)
	if constant.Compare(width, token.GTR, limit) {
		// We disable jump tables if we use less than a minimum fraction of the entries.
		// i.e. for switch x {case 0: case 1000: case 2000:} we don't want to use a jump table.
		return false
	}
	jt := ir.NewJumpTableStmt(base.Pos, s.exprname)
	for _, c := range cc {
		jmp := c.jmp.(*ir.BranchStmt)
		if jmp.Op() != ir.OGOTO || jmp.Label == nil {
			panic("bad switch case body")
		}
		for i := c.lo.Val(); constant.Compare(i, token.LEQ, c.hi.Val()); i = constant.BinaryOp(i, token.ADD, constant.MakeInt64(1)) {
			jt.Cases = append(jt.Cases, i)
			jt.Targets = append(jt.Targets, jmp.Label)
		}
	}
	out.Append(jt)
	return true
}

func (c *exprClause) test(exprname ir.Node) ir.Node {
	// Integer range.
	if c.hi != c.lo {
		low := ir.NewBinaryExpr(c.pos, ir.OGE, exprname, c.lo)
		high := ir.NewBinaryExpr(c.pos, ir.OLE, exprname, c.hi)
		return ir.NewLogicalExpr(c.pos, ir.OANDAND, low, high)
	}

	// Optimize "switch true { ...}" and "switch false { ... }".
	if ir.IsConst(exprname, constant.Bool) && !c.lo.Type().IsInterface() {
		if ir.BoolVal(exprname) {
			return c.lo
		} else {
			return ir.NewUnaryExpr(c.pos, ir.ONOT, c.lo)
		}
	}

	n := ir.NewBinaryExpr(c.pos, ir.OEQ, exprname, c.lo)
	n.RType = c.rtype
	return n
}

func allCaseExprsAreSideEffectFree(sw *ir.SwitchStmt) bool {
	// In theory, we could be more aggressive, allowing any
	// side-effect-free expressions in cases, but it's a bit
	// tricky because some of that information is unavailable due
	// to the introduction of temporaries during order.
	// Restricting to constants is simple and probably powerful
	// enough.

	for _, ncase := range sw.Cases {
		for _, v := range ncase.List {
			if v.Op() != ir.OLITERAL {
				return false
			}
		}
	}
	return true
}

// endsInFallthrough reports whether stmts ends with a "fallthrough" statement.
func endsInFallthrough(stmts []ir.Node) (bool, src.XPos) {
	if len(stmts) == 0 {
		return false, src.NoXPos
	}
	i := len(stmts) - 1
	return stmts[i].Op() == ir.OFALL, stmts[i].Pos()
}

// walkSwitchType generates an AST that implements sw, where sw is a
// type switch.
func walkSwitchType(sw *ir.SwitchStmt) {
	var s typeSwitch
	s.srcName = sw.Tag.(*ir.TypeSwitchGuard).X
	s.srcName = walkExpr(s.srcName, sw.PtrInit())
	s.srcName = copyExpr(s.srcName, s.srcName.Type(), &sw.Compiled)
	s.okName = typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TBOOL])
	s.itabName = typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINT8].PtrTo())

	// Get interface descriptor word.
	// For empty interfaces this will be the type.
	// For non-empty interfaces this will be the itab.
	srcItab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s.srcName)
	srcData := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s.srcName)
	srcData.SetType(types.Types[types.TUINT8].PtrTo())
	srcData.SetTypecheck(1)

	// For empty interfaces, do:
	//     if e._type == nil {
	//         do nil case if it exists, otherwise default
	//     }
	//     h := e._type.hash
	// Use a similar strategy for non-empty interfaces.
	ifNil := ir.NewIfStmt(base.Pos, nil, nil, nil)
	ifNil.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, srcItab, typecheck.NodNil())
	base.Pos = base.Pos.WithNotStmt() // disable statement marks after the first check.
	ifNil.Cond = typecheck.Expr(ifNil.Cond)
	ifNil.Cond = typecheck.DefaultLit(ifNil.Cond, nil)
	// ifNil.Nbody assigned later.
	sw.Compiled.Append(ifNil)

	// Load hash from type or itab.
	dotHash := typeHashFieldOf(base.Pos, srcItab)
	s.hashName = copyExpr(dotHash, dotHash.Type(), &sw.Compiled)

	// Make a label for each case body.
	labels := make([]*types.Sym, len(sw.Cases))
	for i := range sw.Cases {
		labels[i] = typecheck.AutoLabel(".s")
	}

	// "jump" to execute if no case matches.
	br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)

	// Assemble a list of all the types we're looking for.
	// This pass flattens the case lists, as well as handles
	// some unusual cases, like default and nil cases.
	type oneCase struct {
		pos src.XPos
		jmp ir.Node // jump to body of selected case

		// The case we're matching. Normally the type we're looking for
		// is typ.Type(), but when typ is ODYNAMICTYPE the actual type
		// we're looking for is not a compile-time constant (typ.Type()
		// will be its shape).
		typ ir.Node
	}
	var cases []oneCase
	var defaultGoto, nilGoto ir.Node
	for i, ncase := range sw.Cases {
		jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, labels[i])
		if len(ncase.List) == 0 { // default:
			if defaultGoto != nil {
				base.Fatalf("duplicate default case not detected during typechecking")
			}
			defaultGoto = jmp
		}
		for _, n1 := range ncase.List {
			if ir.IsNil(n1) { // case nil:
				if nilGoto != nil {
					base.Fatalf("duplicate nil case not detected during typechecking")
				}
				nilGoto = jmp
				continue
			}
			if n1.Op() == ir.ODYNAMICTYPE {
				// Convert dynamic to static, if the dynamic is actually static.
				// TODO: why isn't this OTYPE to begin with?
				dt := n1.(*ir.DynamicType)
				if dt.RType != nil && dt.RType.Op() == ir.OADDR {
					addr := dt.RType.(*ir.AddrExpr)
					if addr.X.Op() == ir.OLINKSYMOFFSET {
						n1 = ir.TypeNode(n1.Type())
					}
				}
				if dt.ITab != nil && dt.ITab.Op() == ir.OADDR {
					addr := dt.ITab.(*ir.AddrExpr)
					if addr.X.Op() == ir.OLINKSYMOFFSET {
						n1 = ir.TypeNode(n1.Type())
					}
				}
			}
			cases = append(cases, oneCase{
				pos: ncase.Pos(),
				typ: n1,
				jmp: jmp,
			})
		}
	}
	if defaultGoto == nil {
		defaultGoto = br
	}
	if nilGoto == nil {
		nilGoto = defaultGoto
	}
	ifNil.Body = []ir.Node{nilGoto}

	// Now go through the list of cases, processing groups as we find them.
	var concreteCases []oneCase
	var interfaceCases []oneCase
	flush := func() {
		// Process all the concrete types first. Because we handle shadowing
		// below, it is correct to do all the concrete types before all of
		// the interface types.
		// The concrete cases can all be handled without a runtime call.
		if len(concreteCases) > 0 {
			var clauses []typeClause
			for _, c := range concreteCases {
				as := ir.NewAssignListStmt(c.pos, ir.OAS2,
					[]ir.Node{ir.BlankNode, s.okName},                               // _, ok =
					[]ir.Node{ir.NewTypeAssertExpr(c.pos, s.srcName, c.typ.Type())}) // iface.(type)
				nif := ir.NewIfStmt(c.pos, s.okName, []ir.Node{c.jmp}, nil)
				clauses = append(clauses, typeClause{
					hash: types.TypeHash(c.typ.Type()),
					body: []ir.Node{typecheck.Stmt(as), typecheck.Stmt(nif)},
				})
			}
			s.flush(clauses, &sw.Compiled)
			concreteCases = concreteCases[:0]
		}

		// The "any" case, if it exists, must be the last interface case, because
		// it would shadow all subsequent cases. Strip it off here so the runtime
		// call only needs to handle non-empty interfaces.
		var anyGoto ir.Node
		if len(interfaceCases) > 0 && interfaceCases[len(interfaceCases)-1].typ.Type().IsEmptyInterface() {
			anyGoto = interfaceCases[len(interfaceCases)-1].jmp
			interfaceCases = interfaceCases[:len(interfaceCases)-1]
		}

		// Next, process all the interface types with a single call to the runtime.
		if len(interfaceCases) > 0 {

			// Build an internal/abi.InterfaceSwitch descriptor to pass to the runtime.
			lsym := types.LocalPkg.Lookup(fmt.Sprintf(".interfaceSwitch.%d", interfaceSwitchGen)).LinksymABI(obj.ABI0)
			interfaceSwitchGen++
			c := rttype.NewCursor(lsym, 0, rttype.InterfaceSwitch)
			c.Field("Cache").WritePtr(typecheck.LookupRuntimeVar("emptyInterfaceSwitchCache"))
			c.Field("NCases").WriteInt(int64(len(interfaceCases)))
			array, sizeDelta := c.Field("Cases").ModifyArray(len(interfaceCases))
			for i, c := range interfaceCases {
				array.Elem(i).WritePtr(reflectdata.TypeSym(c.typ.Type()).Linksym())
			}
			objw.Global(lsym, int32(rttype.InterfaceSwitch.Size()+sizeDelta), obj.LOCAL)
			// The GC only needs to see the first pointer in the structure (all the others
			// are to static locations). So the InterfaceSwitch type itself is fine, even
			// though it might not cover the whole array we wrote above.
			lsym.Gotype = reflectdata.TypeLinksym(rttype.InterfaceSwitch)

			// Call runtime to do switch
			// case, itab = runtime.interfaceSwitch(&descriptor, typeof(arg))
			var typeArg ir.Node
			if s.srcName.Type().IsEmptyInterface() {
				typeArg = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINT8].PtrTo(), srcItab)
			} else {
				typeArg = itabType(srcItab)
			}
			caseVar := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
			isw := ir.NewInterfaceSwitchStmt(base.Pos, caseVar, s.itabName, typeArg, dotHash, lsym)
			sw.Compiled.Append(isw)

			// Switch on the result of the call (or cache lookup).
			var newCases []*ir.CaseClause
			for i, c := range interfaceCases {
				newCases = append(newCases, &ir.CaseClause{
					List: []ir.Node{ir.NewInt(base.Pos, int64(i))},
					Body: []ir.Node{c.jmp},
				})
			}
			// TODO: add len(newCases) case, mark switch as bounded
			sw2 := ir.NewSwitchStmt(base.Pos, caseVar, newCases)
			sw.Compiled.Append(typecheck.Stmt(sw2))
			interfaceCases = interfaceCases[:0]
		}

		if anyGoto != nil {
			// We've already handled the nil case, so everything
			// that reaches here matches the "any" case.
			sw.Compiled.Append(anyGoto)
		}
	}
caseLoop:
	for _, c := range cases {
		if c.typ.Op() == ir.ODYNAMICTYPE {
			flush() // process all previous cases
			dt := c.typ.(*ir.DynamicType)
			dot := ir.NewDynamicTypeAssertExpr(c.pos, ir.ODYNAMICDOTTYPE, s.srcName, dt.RType)
			dot.ITab = dt.ITab
			dot.SetType(c.typ.Type())
			dot.SetTypecheck(1)

			as := ir.NewAssignListStmt(c.pos, ir.OAS2, nil, nil)
			as.Lhs = []ir.Node{ir.BlankNode, s.okName} // _, ok =
			as.Rhs = []ir.Node{dot}
			typecheck.Stmt(as)

			nif := ir.NewIfStmt(c.pos, s.okName, []ir.Node{c.jmp}, nil)
			sw.Compiled.Append(as, nif)
			continue
		}

		// Check for shadowing (a case that will never fire because
		// a previous case would have always fired first). This check
		// allows us to reorder concrete and interface cases.
		// (TODO: these should be vet failures, maybe?)
		for _, ic := range interfaceCases {
			// An interface type case will shadow all
			// subsequent types that implement that interface.
			if typecheck.Implements(c.typ.Type(), ic.typ.Type()) {
				continue caseLoop
			}
			// Note that we don't need to worry about:
			// 1. Two concrete types shadowing each other. That's
			//    disallowed by the spec.
			// 2. A concrete type shadowing an interface type.
			//    That can never happen, as interface types can
			//    be satisfied by an infinite set of concrete types.
			// The correctness of this step also depends on handling
			// the dynamic type cases separately, as we do above.
		}

		if c.typ.Type().IsInterface() {
			interfaceCases = append(interfaceCases, c)
		} else {
			concreteCases = append(concreteCases, c)
		}
	}
	flush()

	sw.Compiled.Append(defaultGoto) // if none of the cases matched

	// Now generate all the case bodies
	for i, ncase := range sw.Cases {
		sw.Compiled.Append(ir.NewLabelStmt(ncase.Pos(), labels[i]))
		if caseVar := ncase.Var; caseVar != nil {
			val := s.srcName
			if len(ncase.List) == 1 {
				// single type. We have to downcast the input value to the target type.
				if ncase.List[0].Op() == ir.OTYPE { // single compile-time known type
					t := ncase.List[0].Type()
					if t.IsInterface() {
						// This case is an interface. Build case value from input interface.
						// The data word will always be the same, but the itab/type changes.
						if t.IsEmptyInterface() {
							var typ ir.Node
							if s.srcName.Type().IsEmptyInterface() {
								// E->E, nothing to do, type is already correct.
								typ = srcItab
							} else {
								// I->E, load type out of itab
								typ = itabType(srcItab)
								typ.SetPos(ncase.Pos())
							}
							val = ir.NewBinaryExpr(ncase.Pos(), ir.OMAKEFACE, typ, srcData)
						} else {
							// The itab we need was returned by a runtime.interfaceSwitch call.
							val = ir.NewBinaryExpr(ncase.Pos(), ir.OMAKEFACE, s.itabName, srcData)
						}
					} else {
						// This case is a concrete type, just read its value out of the interface.
						val = ifaceData(ncase.Pos(), s.srcName, t)
					}
				} else if ncase.List[0].Op() == ir.ODYNAMICTYPE { // single runtime known type
					dt := ncase.List[0].(*ir.DynamicType)
					x := ir.NewDynamicTypeAssertExpr(ncase.Pos(), ir.ODYNAMICDOTTYPE, val, dt.RType)
					x.ITab = dt.ITab
					val = x
				} else if ir.IsNil(ncase.List[0]) {
				} else {
					base.Fatalf("unhandled type switch case %v", ncase.List[0])
				}
				val.SetType(caseVar.Type())
				val.SetTypecheck(1)
			}
			l := []ir.Node{
				ir.NewDecl(ncase.Pos(), ir.ODCL, caseVar),
				ir.NewAssignStmt(ncase.Pos(), caseVar, val),
			}
			typecheck.Stmts(l)
			sw.Compiled.Append(l...)
		}
		sw.Compiled.Append(ncase.Body...)
		sw.Compiled.Append(br)
	}

	walkStmtList(sw.Compiled)
	sw.Tag = nil
	sw.Cases = nil
}

var interfaceSwitchGen int

// typeHashFieldOf returns an expression to select the type hash field
// from an interface's descriptor word (whether a *runtime._type or
// *runtime.itab pointer).
func typeHashFieldOf(pos src.XPos, itab *ir.UnaryExpr) *ir.SelectorExpr {
	if itab.Op() != ir.OITAB {
		base.Fatalf("expected OITAB, got %v", itab.Op())
	}
	var hashField *types.Field
	if itab.X.Type().IsEmptyInterface() {
		// runtime._type's hash field
		if rtypeHashField == nil {
			rtypeHashField = runtimeField("hash", rttype.Type.OffsetOf("Hash"), types.Types[types.TUINT32])
		}
		hashField = rtypeHashField
	} else {
		// runtime.itab's hash field
		if itabHashField == nil {
			itabHashField = runtimeField("hash", int64(2*types.PtrSize), types.Types[types.TUINT32])
		}
		hashField = itabHashField
	}
	return boundedDotPtr(pos, itab, hashField)
}

var rtypeHashField, itabHashField *types.Field

// A typeSwitch walks a type switch.
type typeSwitch struct {
	// Temporary variables (i.e., ONAMEs) used by type switch dispatch logic:
	srcName  ir.Node // value being type-switched on
	hashName ir.Node // type hash of the value being type-switched on
	okName   ir.Node // boolean used for comma-ok type assertions
	itabName ir.Node // itab value to use for first word of non-empty interface
}

type typeClause struct {
	hash uint32
	body ir.Nodes
}

func (s *typeSwitch) flush(cc []typeClause, compiled *ir.Nodes) {
	if len(cc) == 0 {
		return
	}

	sort.Slice(cc, func(i, j int) bool { return cc[i].hash < cc[j].hash })

	// Combine adjacent cases with the same hash.
	merged := cc[:1]
	for _, c := range cc[1:] {
		last := &merged[len(merged)-1]
		if last.hash == c.hash {
			last.body.Append(c.body.Take()...)
		} else {
			merged = append(merged, c)
		}
	}
	cc = merged

	if s.tryJumpTable(cc, compiled) {
		return
	}
	binarySearch(len(cc), compiled,
		func(i int) ir.Node {
			return ir.NewBinaryExpr(base.Pos, ir.OLE, s.hashName, ir.NewInt(base.Pos, int64(cc[i-1].hash)))
		},
		func(i int, nif *ir.IfStmt) {
			// TODO(mdempsky): Omit hash equality check if
			// there's only one type.
			c := cc[i]
			nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, s.hashName, ir.NewInt(base.Pos, int64(c.hash)))
			nif.Body.Append(c.body.Take()...)
		},
	)
}

// Try to implement the clauses with a jump table. Returns true if successful.
func (s *typeSwitch) tryJumpTable(cc []typeClause, out *ir.Nodes) bool {
	const minCases = 5 // have at least minCases cases in the switch
	if base.Flag.N != 0 || !ssagen.Arch.LinkArch.CanJumpTable || base.Ctxt.Retpoline {
		return false
	}
	if len(cc) < minCases {
		return false // not enough cases for it to be worth it
	}
	hashes := make([]uint32, len(cc))
	// b = # of bits to use. Start with the minimum number of
	// bits possible, but try a few larger sizes if needed.
	b0 := bits.Len(uint(len(cc) - 1))
	for b := b0; b < b0+3; b++ {
	pickI:
		for i := 0; i <= 32-b; i++ { // starting bit position
			// Compute the hash we'd get from all the cases,
			// selecting b bits starting at bit i.
			hashes = hashes[:0]
			for _, c := range cc {
				h := c.hash >> i & (1<<b - 1)
				hashes = append(hashes, h)
			}
			// Order by increasing hash.
			sort.Slice(hashes, func(j, k int) bool {
				return hashes[j] < hashes[k]
			})
			for j := 1; j < len(hashes); j++ {
				if hashes[j] == hashes[j-1] {
					// There is a duplicate hash; try a different b/i pair.
					continue pickI
				}
			}

			// All hashes are distinct. Use these values of b and i.
			h := s.hashName
			if i != 0 {
				h = ir.NewBinaryExpr(base.Pos, ir.ORSH, h, ir.NewInt(base.Pos, int64(i)))
			}
			h = ir.NewBinaryExpr(base.Pos, ir.OAND, h, ir.NewInt(base.Pos, int64(1<<b-1)))
			h = typecheck.Expr(h)

			// Build jump table.
			jt := ir.NewJumpTableStmt(base.Pos, h)
			jt.Cases = make([]constant.Value, 1<<b)
			jt.Targets = make([]*types.Sym, 1<<b)
			out.Append(jt)

			// Start with all hashes going to the didn't-match target.
			noMatch := typecheck.AutoLabel(".s")
			for j := 0; j < 1<<b; j++ {
				jt.Cases[j] = constant.MakeInt64(int64(j))
				jt.Targets[j] = noMatch
			}
			// This statement is not reachable, but it will make it obvious that we don't
			// fall through to the first case.
			out.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, noMatch))

			// Emit each of the actual cases.
			for _, c := range cc {
				h := c.hash >> i & (1<<b - 1)
				label := typecheck.AutoLabel(".s")
				jt.Targets[h] = label
				out.Append(ir.NewLabelStmt(base.Pos, label))
				out.Append(c.body...)
				// We reach here if the hash matches but the type equality test fails.
				out.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, noMatch))
			}
			// Emit point to go to if type doesn't match any case.
			out.Append(ir.NewLabelStmt(base.Pos, noMatch))
			return true
		}
	}
	// Couldn't find a perfect hash. Fall back to binary search.
	return false
}

// binarySearch constructs a binary search tree for handling n cases,
// and appends it to out. It's used for efficiently implementing
// switch statements.
//
// less(i) should return a boolean expression. If it evaluates true,
// then cases before i will be tested; otherwise, cases i and later.
//
// leaf(i, nif) should setup nif (an OIF node) to test case i. In
// particular, it should set nif.Cond and nif.Body.
func binarySearch(n int, out *ir.Nodes, less func(i int) ir.Node, leaf func(i int, nif *ir.IfStmt)) {
	const binarySearchMin = 4 // minimum number of cases for binary search

	var do func(lo, hi int, out *ir.Nodes)
	do = func(lo, hi int, out *ir.Nodes) {
		n := hi - lo
		if n < binarySearchMin {
			for i := lo; i < hi; i++ {
				nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
				leaf(i, nif)
				base.Pos = base.Pos.WithNotStmt()
				nif.Cond = typecheck.Expr(nif.Cond)
				nif.Cond = typecheck.DefaultLit(nif.Cond, nil)
				out.Append(nif)
				out = &nif.Else
			}
			return
		}

		half := lo + n/2
		nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
		nif.Cond = less(half)
		base.Pos = base.Pos.WithNotStmt()
		nif.Cond = typecheck.Expr(nif.Cond)
		nif.Cond = typecheck.DefaultLit(nif.Cond, nil)
		do(lo, half, &nif.Body)
		do(half, hi, &nif.Else)
		out.Append(nif)
	}

	do(0, n, out)
}

func stringSearch(expr ir.Node, cc []exprClause, out *ir.Nodes) {
	if len(cc) < 4 {
		// Short list, just do brute force equality checks.
		for _, c := range cc {
			nif := ir.NewIfStmt(base.Pos.WithNotStmt(), typecheck.DefaultLit(typecheck.Expr(c.test(expr)), nil), []ir.Node{c.jmp}, nil)
			out.Append(nif)
			out = &nif.Else
		}
		return
	}

	// The strategy here is to find a simple test to divide the set of possible strings
	// that might match expr approximately in half.
	// The test we're going to use is to do an ordered comparison of a single byte
	// of expr to a constant. We will pick the index of that byte and the value we're
	// comparing against to make the split as even as possible.
	//   if expr[3] <= 'd' { ... search strings with expr[3] at 'd' or lower  ... }
	//   else              { ... search strings with expr[3] at 'e' or higher ... }
	//
	// To add complication, we will do the ordered comparison in the signed domain.
	// The reason for this is to prevent CSE from merging the load used for the
	// ordered comparison with the load used for the later equality check.
	//   if expr[3] <= 'd' { ... if expr[0] == 'f' && expr[1] == 'o' && expr[2] == 'o' && expr[3] == 'd' { ... } }
	// If we did both expr[3] loads in the unsigned domain, they would be CSEd, and that
	// would in turn defeat the combining of expr[0]...expr[3] into a single 4-byte load.
	// See issue 48222.
	// By using signed loads for the ordered comparison and unsigned loads for the
	// equality comparison, they don't get CSEd and the equality comparisons will be
	// done using wider loads.

	n := len(ir.StringVal(cc[0].lo)) // Length of the constant strings.
	bestScore := int64(0)            // measure of how good the split is.
	bestIdx := 0                     // split using expr[bestIdx]
	bestByte := int8(0)              // compare expr[bestIdx] against bestByte
	for idx := 0; idx < n; idx++ {
		for b := int8(-128); b < 127; b++ {
			le := 0
			for _, c := range cc {
				s := ir.StringVal(c.lo)
				if int8(s[idx]) <= b {
					le++
				}
			}
			score := int64(le) * int64(len(cc)-le)
			if score > bestScore {
				bestScore = score
				bestIdx = idx
				bestByte = b
			}
		}
	}

	// The split must be at least 1:n-1 because we have at least 2 distinct strings; they
	// have to be different somewhere.
	// TODO: what if the best split is still pretty bad?
	if bestScore == 0 {
		base.Fatalf("unable to split string set")
	}

	// Convert expr to a []int8
	slice := ir.NewConvExpr(base.Pos, ir.OSTR2BYTESTMP, types.NewSlice(types.Types[types.TINT8]), expr)
	slice.SetTypecheck(1) // legacy typechecker doesn't handle this op
	slice.MarkNonNil()
	// Load the byte we're splitting on.
	load := ir.NewIndexExpr(base.Pos, slice, ir.NewInt(base.Pos, int64(bestIdx)))
	// Compare with the value we're splitting on.
	cmp := ir.Node(ir.NewBinaryExpr(base.Pos, ir.OLE, load, ir.NewInt(base.Pos, int64(bestByte))))
	cmp = typecheck.DefaultLit(typecheck.Expr(cmp), nil)
	nif := ir.NewIfStmt(base.Pos, cmp, nil, nil)

	var le []exprClause
	var gt []exprClause
	for _, c := range cc {
		s := ir.StringVal(c.lo)
		if int8(s[bestIdx]) <= bestByte {
			le = append(le, c)
		} else {
			gt = append(gt, c)
		}
	}
	stringSearch(expr, le, &nif.Body)
	stringSearch(expr, gt, &nif.Else)
	out.Append(nif)

	// TODO: if expr[bestIdx] has enough different possible values, use a jump table.
}