summaryrefslogtreecommitdiffstats
path: root/src/math/pow.go
blob: 3f42945376d3fac2888d27cfe848ffecdf3abfdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math

func isOddInt(x float64) bool {
	if Abs(x) >= (1 << 53) {
		// 1 << 53 is the largest exact integer in the float64 format.
		// Any number outside this range will be truncated before the decimal point and therefore will always be
		// an even integer.
		// Without this check and if x overflows int64 the int64(xi) conversion below may produce incorrect results
		// on some architectures (and does so on arm64). See issue #57465.
		return false
	}

	xi, xf := Modf(x)
	return xf == 0 && int64(xi)&1 == 1
}

// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".

// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
//
//	Pow(x, ±0) = 1 for any x
//	Pow(1, y) = 1 for any y
//	Pow(x, 1) = x for any x
//	Pow(NaN, y) = NaN
//	Pow(x, NaN) = NaN
//	Pow(±0, y) = ±Inf for y an odd integer < 0
//	Pow(±0, -Inf) = +Inf
//	Pow(±0, +Inf) = +0
//	Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
//	Pow(±0, y) = ±0 for y an odd integer > 0
//	Pow(±0, y) = +0 for finite y > 0 and not an odd integer
//	Pow(-1, ±Inf) = 1
//	Pow(x, +Inf) = +Inf for |x| > 1
//	Pow(x, -Inf) = +0 for |x| > 1
//	Pow(x, +Inf) = +0 for |x| < 1
//	Pow(x, -Inf) = +Inf for |x| < 1
//	Pow(+Inf, y) = +Inf for y > 0
//	Pow(+Inf, y) = +0 for y < 0
//	Pow(-Inf, y) = Pow(-0, -y)
//	Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y float64) float64 {
	if haveArchPow {
		return archPow(x, y)
	}
	return pow(x, y)
}

func pow(x, y float64) float64 {
	switch {
	case y == 0 || x == 1:
		return 1
	case y == 1:
		return x
	case IsNaN(x) || IsNaN(y):
		return NaN()
	case x == 0:
		switch {
		case y < 0:
			if Signbit(x) && isOddInt(y) {
				return Inf(-1)
			}
			return Inf(1)
		case y > 0:
			if Signbit(x) && isOddInt(y) {
				return x
			}
			return 0
		}
	case IsInf(y, 0):
		switch {
		case x == -1:
			return 1
		case (Abs(x) < 1) == IsInf(y, 1):
			return 0
		default:
			return Inf(1)
		}
	case IsInf(x, 0):
		if IsInf(x, -1) {
			return Pow(1/x, -y) // Pow(-0, -y)
		}
		switch {
		case y < 0:
			return 0
		case y > 0:
			return Inf(1)
		}
	case y == 0.5:
		return Sqrt(x)
	case y == -0.5:
		return 1 / Sqrt(x)
	}

	yi, yf := Modf(Abs(y))
	if yf != 0 && x < 0 {
		return NaN()
	}
	if yi >= 1<<63 {
		// yi is a large even int that will lead to overflow (or underflow to 0)
		// for all x except -1 (x == 1 was handled earlier)
		switch {
		case x == -1:
			return 1
		case (Abs(x) < 1) == (y > 0):
			return 0
		default:
			return Inf(1)
		}
	}

	// ans = a1 * 2**ae (= 1 for now).
	a1 := 1.0
	ae := 0

	// ans *= x**yf
	if yf != 0 {
		if yf > 0.5 {
			yf--
			yi++
		}
		a1 = Exp(yf * Log(x))
	}

	// ans *= x**yi
	// by multiplying in successive squarings
	// of x according to bits of yi.
	// accumulate powers of two into exp.
	x1, xe := Frexp(x)
	for i := int64(yi); i != 0; i >>= 1 {
		if xe < -1<<12 || 1<<12 < xe {
			// catch xe before it overflows the left shift below
			// Since i !=0 it has at least one bit still set, so ae will accumulate xe
			// on at least one more iteration, ae += xe is a lower bound on ae
			// the lower bound on ae exceeds the size of a float64 exp
			// so the final call to Ldexp will produce under/overflow (0/Inf)
			ae += xe
			break
		}
		if i&1 == 1 {
			a1 *= x1
			ae += xe
		}
		x1 *= x1
		xe <<= 1
		if x1 < .5 {
			x1 += x1
			xe--
		}
	}

	// ans = a1*2**ae
	// if y < 0 { ans = 1 / ans }
	// but in the opposite order
	if y < 0 {
		a1 = 1 / a1
		ae = -ae
	}
	return Ldexp(a1, ae)
}