summaryrefslogtreecommitdiffstats
path: root/src/runtime/asm_arm.s
blob: 31a0584fb5d8ca9806fb88a543629a43fea946f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"

// _rt0_arm is common startup code for most ARM systems when using
// internal linking. This is the entry point for the program from the
// kernel for an ordinary -buildmode=exe program. The stack holds the
// number of arguments and the C-style argv.
TEXT _rt0_arm(SB),NOSPLIT|NOFRAME,$0
	MOVW	(R13), R0	// argc
	MOVW	$4(R13), R1		// argv
	B	runtime·rt0_go(SB)

// main is common startup code for most ARM systems when using
// external linking. The C startup code will call the symbol "main"
// passing argc and argv in the usual C ABI registers R0 and R1.
TEXT main(SB),NOSPLIT|NOFRAME,$0
	B	runtime·rt0_go(SB)

// _rt0_arm_lib is common startup code for most ARM systems when
// using -buildmode=c-archive or -buildmode=c-shared. The linker will
// arrange to invoke this function as a global constructor (for
// c-archive) or when the shared library is loaded (for c-shared).
// We expect argc and argv to be passed in the usual C ABI registers
// R0 and R1.
TEXT _rt0_arm_lib(SB),NOSPLIT,$104
	// Preserve callee-save registers. Raspberry Pi's dlopen(), for example,
	// actually cares that R11 is preserved.
	MOVW	R4, 12(R13)
	MOVW	R5, 16(R13)
	MOVW	R6, 20(R13)
	MOVW	R7, 24(R13)
	MOVW	R8, 28(R13)
	MOVW	g, 32(R13)
	MOVW	R11, 36(R13)

	// Skip floating point registers on goarmsoftfp != 0.
	MOVB    runtime·goarmsoftfp(SB), R11
	CMP	$0, R11
	BNE     skipfpsave
	MOVD	F8, (40+8*0)(R13)
	MOVD	F9, (40+8*1)(R13)
	MOVD	F10, (40+8*2)(R13)
	MOVD	F11, (40+8*3)(R13)
	MOVD	F12, (40+8*4)(R13)
	MOVD	F13, (40+8*5)(R13)
	MOVD	F14, (40+8*6)(R13)
	MOVD	F15, (40+8*7)(R13)
skipfpsave:
	// Save argc/argv.
	MOVW	R0, _rt0_arm_lib_argc<>(SB)
	MOVW	R1, _rt0_arm_lib_argv<>(SB)

	MOVW	$0, g // Initialize g.

	// Synchronous initialization.
	CALL	runtime·libpreinit(SB)

	// Create a new thread to do the runtime initialization.
	MOVW	_cgo_sys_thread_create(SB), R2
	CMP	$0, R2
	BEQ	nocgo
	MOVW	$_rt0_arm_lib_go<>(SB), R0
	MOVW	$0, R1
	BL	(R2)
	B	rr
nocgo:
	MOVW	$0x800000, R0                     // stacksize = 8192KB
	MOVW	$_rt0_arm_lib_go<>(SB), R1  // fn
	MOVW	R0, 4(R13)
	MOVW	R1, 8(R13)
	BL	runtime·newosproc0(SB)
rr:
	// Restore callee-save registers and return.
	MOVB    runtime·goarmsoftfp(SB), R11
	CMP     $0, R11
	BNE     skipfprest
	MOVD	(40+8*0)(R13), F8
	MOVD	(40+8*1)(R13), F9
	MOVD	(40+8*2)(R13), F10
	MOVD	(40+8*3)(R13), F11
	MOVD	(40+8*4)(R13), F12
	MOVD	(40+8*5)(R13), F13
	MOVD	(40+8*6)(R13), F14
	MOVD	(40+8*7)(R13), F15
skipfprest:
	MOVW	12(R13), R4
	MOVW	16(R13), R5
	MOVW	20(R13), R6
	MOVW	24(R13), R7
	MOVW	28(R13), R8
	MOVW	32(R13), g
	MOVW	36(R13), R11
	RET

// _rt0_arm_lib_go initializes the Go runtime.
// This is started in a separate thread by _rt0_arm_lib.
TEXT _rt0_arm_lib_go<>(SB),NOSPLIT,$8
	MOVW	_rt0_arm_lib_argc<>(SB), R0
	MOVW	_rt0_arm_lib_argv<>(SB), R1
	B	runtime·rt0_go(SB)

DATA _rt0_arm_lib_argc<>(SB)/4,$0
GLOBL _rt0_arm_lib_argc<>(SB),NOPTR,$4
DATA _rt0_arm_lib_argv<>(SB)/4,$0
GLOBL _rt0_arm_lib_argv<>(SB),NOPTR,$4

// using NOFRAME means do not save LR on stack.
// argc is in R0, argv is in R1.
TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
	MOVW	$0xcafebabe, R12

	// copy arguments forward on an even stack
	// use R13 instead of SP to avoid linker rewriting the offsets
	SUB	$64, R13		// plenty of scratch
	AND	$~7, R13
	MOVW	R0, 60(R13)		// save argc, argv away
	MOVW	R1, 64(R13)

	// set up g register
	// g is R10
	MOVW	$runtime·g0(SB), g
	MOVW	$runtime·m0(SB), R8

	// save m->g0 = g0
	MOVW	g, m_g0(R8)
	// save g->m = m0
	MOVW	R8, g_m(g)

	// create istack out of the OS stack
	// (1MB of system stack is available on iOS and Android)
	MOVW	$(-64*1024+104)(R13), R0
	MOVW	R0, g_stackguard0(g)
	MOVW	R0, g_stackguard1(g)
	MOVW	R0, (g_stack+stack_lo)(g)
	MOVW	R13, (g_stack+stack_hi)(g)

	BL	runtime·emptyfunc(SB)	// fault if stack check is wrong

#ifdef GOOS_openbsd
	// Save g to TLS so that it is available from signal trampoline.
	BL	runtime·save_g(SB)
#endif

	BL	runtime·_initcgo(SB)	// will clobber R0-R3

	// update stackguard after _cgo_init
	MOVW	(g_stack+stack_lo)(g), R0
	ADD	$const_stackGuard, R0
	MOVW	R0, g_stackguard0(g)
	MOVW	R0, g_stackguard1(g)

	BL	runtime·check(SB)

	// saved argc, argv
	MOVW	60(R13), R0
	MOVW	R0, 4(R13)
	MOVW	64(R13), R1
	MOVW	R1, 8(R13)
	BL	runtime·args(SB)
	BL	runtime·checkgoarm(SB)
	BL	runtime·osinit(SB)
	BL	runtime·schedinit(SB)

	// create a new goroutine to start program
	SUB	$8, R13
	MOVW	$runtime·mainPC(SB), R0
	MOVW	R0, 4(R13)	// arg 1: fn
	MOVW	$0, R0
	MOVW	R0, 0(R13)	// dummy LR
	BL	runtime·newproc(SB)
	ADD	$8, R13	// pop args and LR

	// start this M
	BL	runtime·mstart(SB)

	MOVW	$1234, R0
	MOVW	$1000, R1
	MOVW	R0, (R1)	// fail hard

DATA	runtime·mainPC+0(SB)/4,$runtime·main(SB)
GLOBL	runtime·mainPC(SB),RODATA,$4

TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
	// gdb won't skip this breakpoint instruction automatically,
	// so you must manually "set $pc+=4" to skip it and continue.
#ifdef GOOS_plan9
	WORD	$0xD1200070	// undefined instruction used as armv5 breakpoint in Plan 9
#else
	WORD	$0xe7f001f0	// undefined instruction that gdb understands is a software breakpoint
#endif
	RET

TEXT runtime·asminit(SB),NOSPLIT,$0-0
	// disable runfast (flush-to-zero) mode of vfp if runtime.goarmsoftfp == 0
	MOVB	runtime·goarmsoftfp(SB), R11
	CMP	$0, R11
	BNE	4(PC)
	WORD	$0xeef1ba10	// vmrs r11, fpscr
	BIC	$(1<<24), R11
	WORD	$0xeee1ba10	// vmsr fpscr, r11
	RET

TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
	BL	runtime·mstart0(SB)
	RET // not reached

/*
 *  go-routine
 */

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB),NOSPLIT|NOFRAME,$0-4
	MOVW	buf+0(FP), R1
	MOVW	gobuf_g(R1), R0
	MOVW	0(R0), R2	// make sure g != nil
	B	gogo<>(SB)

TEXT gogo<>(SB),NOSPLIT|NOFRAME,$0
	BL	setg<>(SB)
	MOVW	gobuf_sp(R1), R13	// restore SP==R13
	MOVW	gobuf_lr(R1), LR
	MOVW	gobuf_ret(R1), R0
	MOVW	gobuf_ctxt(R1), R7
	MOVW	$0, R11
	MOVW	R11, gobuf_sp(R1)	// clear to help garbage collector
	MOVW	R11, gobuf_ret(R1)
	MOVW	R11, gobuf_lr(R1)
	MOVW	R11, gobuf_ctxt(R1)
	MOVW	gobuf_pc(R1), R11
	CMP	R11, R11 // set condition codes for == test, needed by stack split
	B	(R11)

// func mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4
	// Save caller state in g->sched.
	MOVW	R13, (g_sched+gobuf_sp)(g)
	MOVW	LR, (g_sched+gobuf_pc)(g)
	MOVW	$0, R11
	MOVW	R11, (g_sched+gobuf_lr)(g)

	// Switch to m->g0 & its stack, call fn.
	MOVW	g, R1
	MOVW	g_m(g), R8
	MOVW	m_g0(R8), R0
	BL	setg<>(SB)
	CMP	g, R1
	B.NE	2(PC)
	B	runtime·badmcall(SB)
	MOVW	fn+0(FP), R0
	MOVW	(g_sched+gobuf_sp)(g), R13
	SUB	$8, R13
	MOVW	R1, 4(R13)
	MOVW	R0, R7
	MOVW	0(R0), R0
	BL	(R0)
	B	runtime·badmcall2(SB)
	RET

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0
	MOVW	$0, R0
	BL	(R0) // clobber lr to ensure push {lr} is kept
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB),NOSPLIT,$0-4
	MOVW	fn+0(FP), R0	// R0 = fn
	MOVW	g_m(g), R1	// R1 = m

	MOVW	m_gsignal(R1), R2	// R2 = gsignal
	CMP	g, R2
	B.EQ	noswitch

	MOVW	m_g0(R1), R2	// R2 = g0
	CMP	g, R2
	B.EQ	noswitch

	MOVW	m_curg(R1), R3
	CMP	g, R3
	B.EQ	switch

	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOVW	$runtime·badsystemstack(SB), R0
	BL	(R0)
	B	runtime·abort(SB)

switch:
	// save our state in g->sched. Pretend to
	// be systemstack_switch if the G stack is scanned.
	BL	gosave_systemstack_switch<>(SB)

	// switch to g0
	MOVW	R0, R5
	MOVW	R2, R0
	BL	setg<>(SB)
	MOVW	R5, R0
	MOVW	(g_sched+gobuf_sp)(R2), R13

	// call target function
	MOVW	R0, R7
	MOVW	0(R0), R0
	BL	(R0)

	// switch back to g
	MOVW	g_m(g), R1
	MOVW	m_curg(R1), R0
	BL	setg<>(SB)
	MOVW	(g_sched+gobuf_sp)(g), R13
	MOVW	$0, R3
	MOVW	R3, (g_sched+gobuf_sp)(g)
	RET

noswitch:
	// Using a tail call here cleans up tracebacks since we won't stop
	// at an intermediate systemstack.
	MOVW	R0, R7
	MOVW	0(R0), R0
	MOVW.P	4(R13), R14	// restore LR
	B	(R0)

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
// R3 prolog's LR
// using NOFRAME means do not save LR on stack.
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
	// Cannot grow scheduler stack (m->g0).
	MOVW	g_m(g), R8
	MOVW	m_g0(R8), R4
	CMP	g, R4
	BNE	3(PC)
	BL	runtime·badmorestackg0(SB)
	B	runtime·abort(SB)

	// Cannot grow signal stack (m->gsignal).
	MOVW	m_gsignal(R8), R4
	CMP	g, R4
	BNE	3(PC)
	BL	runtime·badmorestackgsignal(SB)
	B	runtime·abort(SB)

	// Called from f.
	// Set g->sched to context in f.
	MOVW	R13, (g_sched+gobuf_sp)(g)
	MOVW	LR, (g_sched+gobuf_pc)(g)
	MOVW	R3, (g_sched+gobuf_lr)(g)
	MOVW	R7, (g_sched+gobuf_ctxt)(g)

	// Called from f.
	// Set m->morebuf to f's caller.
	MOVW	R3, (m_morebuf+gobuf_pc)(R8)	// f's caller's PC
	MOVW	R13, (m_morebuf+gobuf_sp)(R8)	// f's caller's SP
	MOVW	g, (m_morebuf+gobuf_g)(R8)

	// Call newstack on m->g0's stack.
	MOVW	m_g0(R8), R0
	BL	setg<>(SB)
	MOVW	(g_sched+gobuf_sp)(g), R13
	MOVW	$0, R0
	MOVW.W  R0, -4(R13)	// create a call frame on g0 (saved LR)
	BL	runtime·newstack(SB)

	// Not reached, but make sure the return PC from the call to newstack
	// is still in this function, and not the beginning of the next.
	RET

TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
	// Force SPWRITE. This function doesn't actually write SP,
	// but it is called with a special calling convention where
	// the caller doesn't save LR on stack but passes it as a
	// register (R3), and the unwinder currently doesn't understand.
	// Make it SPWRITE to stop unwinding. (See issue 54332)
	MOVW	R13, R13

	MOVW	$0, R7
	B runtime·morestack(SB)

// reflectcall: call a function with the given argument list
// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)		\
	CMP	$MAXSIZE, R0;		\
	B.HI	3(PC);			\
	MOVW	$NAME(SB), R1;		\
	B	(R1)

TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-28
	MOVW	frameSize+20(FP), R0
	DISPATCH(runtime·call16, 16)
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOVW	$runtime·badreflectcall(SB), R1
	B	(R1)

#define CALLFN(NAME,MAXSIZE)			\
TEXT NAME(SB), WRAPPER, $MAXSIZE-28;		\
	NO_LOCAL_POINTERS;			\
	/* copy arguments to stack */		\
	MOVW	stackArgs+8(FP), R0;		\
	MOVW	stackArgsSize+12(FP), R2;		\
	ADD	$4, R13, R1;			\
	CMP	$0, R2;				\
	B.EQ	5(PC);				\
	MOVBU.P	1(R0), R5;			\
	MOVBU.P R5, 1(R1);			\
	SUB	$1, R2, R2;			\
	B	-5(PC);				\
	/* call function */			\
	MOVW	f+4(FP), R7;			\
	MOVW	(R7), R0;			\
	PCDATA  $PCDATA_StackMapIndex, $0;	\
	BL	(R0);				\
	/* copy return values back */		\
	MOVW	stackArgsType+0(FP), R4;		\
	MOVW	stackArgs+8(FP), R0;		\
	MOVW	stackArgsSize+12(FP), R2;		\
	MOVW	stackArgsRetOffset+16(FP), R3;		\
	ADD	$4, R13, R1;			\
	ADD	R3, R1;				\
	ADD	R3, R0;				\
	SUB	R3, R2;				\
	BL	callRet<>(SB);			\
	RET

// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $20-0
	MOVW	R4, 4(R13)
	MOVW	R0, 8(R13)
	MOVW	R1, 12(R13)
	MOVW	R2, 16(R13)
	MOVW	$0, R7
	MOVW	R7, 20(R13)
	BL	runtime·reflectcallmove(SB)
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

// Save state of caller into g->sched,
// but using fake PC from systemstack_switch.
// Must only be called from functions with no locals ($0)
// or else unwinding from systemstack_switch is incorrect.
// Smashes R11.
TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
	MOVW	$runtime·systemstack_switch(SB), R11
	ADD	$4, R11 // get past push {lr}
	MOVW	R11, (g_sched+gobuf_pc)(g)
	MOVW	R13, (g_sched+gobuf_sp)(g)
	MOVW	$0, R11
	MOVW	R11, (g_sched+gobuf_lr)(g)
	MOVW	R11, (g_sched+gobuf_ret)(g)
	// Assert ctxt is zero. See func save.
	MOVW	(g_sched+gobuf_ctxt)(g), R11
	TST	R11, R11
	B.EQ	2(PC)
	BL	runtime·abort(SB)
	RET

// func asmcgocall_no_g(fn, arg unsafe.Pointer)
// Call fn(arg) aligned appropriately for the gcc ABI.
// Called on a system stack, and there may be no g yet (during needm).
TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-8
	MOVW	fn+0(FP), R1
	MOVW	arg+4(FP), R0
	MOVW	R13, R2
	SUB	$32, R13
	BIC	$0x7, R13	// alignment for gcc ABI
	MOVW	R2, 8(R13)
	BL	(R1)
	MOVW	8(R13), R2
	MOVW	R2, R13
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-12
	MOVW	fn+0(FP), R1
	MOVW	arg+4(FP), R0

	MOVW	R13, R2
	CMP	$0, g
	BEQ nosave
	MOVW	g, R4

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already. Or we might already
	// be on the m->gsignal stack.
	MOVW	g_m(g), R8
	MOVW	m_gsignal(R8), R3
	CMP	R3, g
	BEQ	nosave
	MOVW	m_g0(R8), R3
	CMP	R3, g
	BEQ	nosave
	BL	gosave_systemstack_switch<>(SB)
	MOVW	R0, R5
	MOVW	R3, R0
	BL	setg<>(SB)
	MOVW	R5, R0
	MOVW	(g_sched+gobuf_sp)(g), R13

	// Now on a scheduling stack (a pthread-created stack).
	SUB	$24, R13
	BIC	$0x7, R13	// alignment for gcc ABI
	MOVW	R4, 20(R13) // save old g
	MOVW	(g_stack+stack_hi)(R4), R4
	SUB	R2, R4
	MOVW	R4, 16(R13)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
	BL	(R1)

	// Restore registers, g, stack pointer.
	MOVW	R0, R5
	MOVW	20(R13), R0
	BL	setg<>(SB)
	MOVW	(g_stack+stack_hi)(g), R1
	MOVW	16(R13), R2
	SUB	R2, R1
	MOVW	R5, R0
	MOVW	R1, R13

	MOVW	R0, ret+8(FP)
	RET

nosave:
	// Running on a system stack, perhaps even without a g.
	// Having no g can happen during thread creation or thread teardown
	// (see needm/dropm on Solaris, for example).
	// This code is like the above sequence but without saving/restoring g
	// and without worrying about the stack moving out from under us
	// (because we're on a system stack, not a goroutine stack).
	// The above code could be used directly if already on a system stack,
	// but then the only path through this code would be a rare case on Solaris.
	// Using this code for all "already on system stack" calls exercises it more,
	// which should help keep it correct.
	SUB	$24, R13
	BIC	$0x7, R13	// alignment for gcc ABI
	// save null g in case someone looks during debugging.
	MOVW	$0, R4
	MOVW	R4, 20(R13)
	MOVW	R2, 16(R13)	// Save old stack pointer.
	BL	(R1)
	// Restore stack pointer.
	MOVW	16(R13), R2
	MOVW	R2, R13
	MOVW	R0, ret+8(FP)
	RET

// cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT	·cgocallback(SB),NOSPLIT,$12-12
	NO_LOCAL_POINTERS

	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
	// It is used to dropm while thread is exiting.
	MOVW	fn+0(FP), R1
	CMP	$0, R1
	B.NE	loadg
	// Restore the g from frame.
	MOVW	frame+4(FP), g
	B	dropm

loadg:
	// Load m and g from thread-local storage.
#ifdef GOOS_openbsd
	BL	runtime·load_g(SB)
#else
	MOVB	runtime·iscgo(SB), R0
	CMP	$0, R0
	BL.NE	runtime·load_g(SB)
#endif

	// If g is nil, Go did not create the current thread,
	// or if this thread never called into Go on pthread platforms.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call.
	CMP	$0, g
	B.EQ	needm

	MOVW	g_m(g), R8
	MOVW	R8, savedm-4(SP)
	B	havem

needm:
	MOVW	g, savedm-4(SP) // g is zero, so is m.
	MOVW	$runtime·needAndBindM(SB), R0
	BL	(R0)

	// Set m->g0->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOVW	g_m(g), R8
	MOVW	m_g0(R8), R3
	MOVW	R13, (g_sched+gobuf_sp)(R3)

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-12(SP).
	MOVW	m_g0(R8), R3
	MOVW	(g_sched+gobuf_sp)(R3), R4
	MOVW	R4, savedsp-12(SP)	// must match frame size
	MOVW	R13, (g_sched+gobuf_sp)(R3)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the curg stack and
	// open a frame the same size as cgocallback's g0 frame.
	// Once we switch to the curg stack, the pushed PC will appear
	// to be the return PC of cgocallback, so that the traceback
	// will seamlessly trace back into the earlier calls.
	MOVW	m_curg(R8), R0
	BL	setg<>(SB)
	MOVW	(g_sched+gobuf_sp)(g), R4 // prepare stack as R4
	MOVW	(g_sched+gobuf_pc)(g), R5
	MOVW	R5, -(12+4)(R4)	// "saved LR"; must match frame size
	// Gather our arguments into registers.
	MOVW	fn+0(FP), R1
	MOVW	frame+4(FP), R2
	MOVW	ctxt+8(FP), R3
	MOVW	$-(12+4)(R4), R13	// switch stack; must match frame size
	MOVW	R1, 4(R13)
	MOVW	R2, 8(R13)
	MOVW	R3, 12(R13)
	BL	runtime·cgocallbackg(SB)

	// Restore g->sched (== m->curg->sched) from saved values.
	MOVW	0(R13), R5
	MOVW	R5, (g_sched+gobuf_pc)(g)
	MOVW	$(12+4)(R13), R4	// must match frame size
	MOVW	R4, (g_sched+gobuf_sp)(g)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVW	g_m(g), R8
	MOVW	m_g0(R8), R0
	BL	setg<>(SB)
	MOVW	(g_sched+gobuf_sp)(g), R13
	MOVW	savedsp-12(SP), R4	// must match frame size
	MOVW	R4, (g_sched+gobuf_sp)(g)

	// If the m on entry was nil, we called needm above to borrow an m,
	// 1. for the duration of the call on non-pthread platforms,
	// 2. or the duration of the C thread alive on pthread platforms.
	// If the m on entry wasn't nil,
	// 1. the thread might be a Go thread,
	// 2. or it wasn't the first call from a C thread on pthread platforms,
	//    since then we skip dropm to reuse the m in the first call.
	MOVW	savedm-4(SP), R6
	CMP	$0, R6
	B.NE	done

	// Skip dropm to reuse it in the next call, when a pthread key has been created.
	MOVW	_cgo_pthread_key_created(SB), R6
	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
	CMP	$0, R6
	B.EQ	dropm
	MOVW	(R6), R6
	CMP	$0, R6
	B.NE	done

dropm:
	MOVW	$runtime·dropm(SB), R0
	BL	(R0)

done:
	// Done!
	RET

// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB),NOSPLIT|NOFRAME,$0-4
	MOVW	gg+0(FP), R0
	B	setg<>(SB)

TEXT setg<>(SB),NOSPLIT|NOFRAME,$0-0
	MOVW	R0, g

	// Save g to thread-local storage.
#ifdef GOOS_windows
	B	runtime·save_g(SB)
#else
#ifdef GOOS_openbsd
	B	runtime·save_g(SB)
#else
	MOVB	runtime·iscgo(SB), R0
	CMP	$0, R0
	B.EQ	2(PC)
	B	runtime·save_g(SB)

	MOVW	g, R0
	RET
#endif
#endif

TEXT runtime·emptyfunc(SB),0,$0-0
	RET

TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
	MOVW	$0, R0
	MOVW	(R0), R1

// armPublicationBarrier is a native store/store barrier for ARMv7+.
// On earlier ARM revisions, armPublicationBarrier is a no-op.
// This will not work on SMP ARMv6 machines, if any are in use.
// To implement publicationBarrier in sys_$GOOS_arm.s using the native
// instructions, use:
//
//	TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
//		B	runtime·armPublicationBarrier(SB)
//
TEXT runtime·armPublicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
	MOVB	runtime·goarm(SB), R11
	CMP	$7, R11
	BLT	2(PC)
	DMB	MB_ST
	RET

// AES hashing not implemented for ARM
TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-16
	JMP	runtime·memhashFallback(SB)
TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·strhashFallback(SB)
TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·memhash32Fallback(SB)
TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·memhash64Fallback(SB)

TEXT runtime·return0(SB),NOSPLIT,$0
	MOVW	$0, R0
	RET

TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0
	MOVW	cycles+0(FP), R1
	MOVW	$0, R0
yieldloop:
	WORD	$0xe320f001	// YIELD (NOP pre-ARMv6K)
	CMP	R0, R1
	B.NE	2(PC)
	RET
	SUB	$1, R1
	B yieldloop

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$8
	// R11 and g register are clobbered by load_g. They are
	// callee-save in the gcc calling convention, so save them here.
	MOVW	R11, saveR11-4(SP)
	MOVW	g, saveG-8(SP)

	BL	runtime·load_g(SB)
	MOVW	g_m(g), R0
	MOVW	m_curg(R0), R0
	MOVW	(g_stack+stack_hi)(R0), R0

	MOVW	saveG-8(SP), g
	MOVW	saveR11-4(SP), R11
	RET

// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
	MOVW	R0, R0	// NOP
	BL	runtime·goexit1(SB)	// does not return
	// traceback from goexit1 must hit code range of goexit
	MOVW	R0, R0	// NOP

// x -> x/1000000, x%1000000, called from Go with args, results on stack.
TEXT runtime·usplit(SB),NOSPLIT,$0-12
	MOVW	x+0(FP), R0
	CALL	runtime·usplitR0(SB)
	MOVW	R0, q+4(FP)
	MOVW	R1, r+8(FP)
	RET

// R0, R1 = R0/1000000, R0%1000000
TEXT runtime·usplitR0(SB),NOSPLIT,$0
	// magic multiply to avoid software divide without available m.
	// see output of go tool compile -S for x/1000000.
	MOVW	R0, R3
	MOVW	$1125899907, R1
	MULLU	R1, R0, (R0, R1)
	MOVW	R0>>18, R0
	MOVW	$1000000, R1
	MULU	R0, R1
	SUB	R1, R3, R1
	RET

// This is called from .init_array and follows the platform, not Go, ABI.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
	MOVW	R9, saver9-4(SP) // The access to global variables below implicitly uses R9, which is callee-save
	MOVW	R11, saver11-8(SP) // Likewise, R11 is the temp register, but callee-save in C ABI
	MOVW	runtime·lastmoduledatap(SB), R1
	MOVW	R0, moduledata_next(R1)
	MOVW	R0, runtime·lastmoduledatap(SB)
	MOVW	saver11-8(SP), R11
	MOVW	saver9-4(SP), R9
	RET

TEXT ·checkASM(SB),NOSPLIT,$0-1
	MOVW	$1, R3
	MOVB	R3, ret+0(FP)
	RET

// gcWriteBarrier informs the GC about heap pointer writes.
//
// gcWriteBarrier does NOT follow the Go ABI. It accepts the
// number of bytes of buffer needed in R8, and returns a pointer
// to the buffer space in R8.
// It clobbers condition codes.
// It does not clobber any other general-purpose registers,
// but may clobber others (e.g., floating point registers).
// The act of CALLing gcWriteBarrier will clobber R14 (LR).
TEXT gcWriteBarrier<>(SB),NOSPLIT|NOFRAME,$0
	// Save the registers clobbered by the fast path.
	MOVM.DB.W	[R0,R1], (R13)
retry:
	MOVW	g_m(g), R0
	MOVW	m_p(R0), R0
	MOVW	(p_wbBuf+wbBuf_next)(R0), R1
	MOVW	(p_wbBuf+wbBuf_end)(R0), R11
	// Increment wbBuf.next position.
	ADD	R8, R1
	// Is the buffer full?
	CMP	R11, R1
	BHI	flush
	// Commit to the larger buffer.
	MOVW	R1, (p_wbBuf+wbBuf_next)(R0)
	// Make return value (the original next position)
	SUB	R8, R1, R8
	// Restore registers.
	MOVM.IA.W	(R13), [R0,R1]
	RET

flush:
	// Save all general purpose registers since these could be
	// clobbered by wbBufFlush and were not saved by the caller.
	//
	// R0 and R1 were saved at entry.
	// R10 is g, so preserved.
	// R11 is linker temp, so no need to save.
	// R13 is stack pointer.
	// R15 is PC.
	MOVM.DB.W	[R2-R9,R12], (R13)
	// Save R14 (LR) because the fast path above doesn't save it,
	// but needs it to RET.
	MOVM.DB.W	[R14], (R13)

	CALL	runtime·wbBufFlush(SB)

	MOVM.IA.W	(R13), [R14]
	MOVM.IA.W	(R13), [R2-R9,R12]
	JMP	retry

TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$4, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$8, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$12, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$16, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$20, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$24, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$28, R8
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
	MOVW	$32, R8
	JMP	gcWriteBarrier<>(SB)

// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicIndex(SB)
TEXT runtime·panicIndexU(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicIndexU(SB)
TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceAlen(SB)
TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceAlenU(SB)
TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceAcap(SB)
TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceAcapU(SB)
TEXT runtime·panicSliceB(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicSliceB(SB)
TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicSliceBU(SB)
TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3Alen(SB)
TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3AlenU(SB)
TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3Acap(SB)
TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3AcapU(SB)
TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSlice3B(SB)
TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSlice3BU(SB)
TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicSlice3C(SB)
TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-8
	MOVW	R0, x+0(FP)
	MOVW	R1, y+4(FP)
	JMP	runtime·goPanicSlice3CU(SB)
TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSliceConvert(SB)

// Extended versions for 64-bit indexes.
TEXT runtime·panicExtendIndex(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendIndex(SB)
TEXT runtime·panicExtendIndexU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendIndexU(SB)
TEXT runtime·panicExtendSliceAlen(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlen(SB)
TEXT runtime·panicExtendSliceAlenU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlenU(SB)
TEXT runtime·panicExtendSliceAcap(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcap(SB)
TEXT runtime·panicExtendSliceAcapU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcapU(SB)
TEXT runtime·panicExtendSliceB(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendSliceB(SB)
TEXT runtime·panicExtendSliceBU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendSliceBU(SB)
TEXT runtime·panicExtendSlice3Alen(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Alen(SB)
TEXT runtime·panicExtendSlice3AlenU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AlenU(SB)
TEXT runtime·panicExtendSlice3Acap(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Acap(SB)
TEXT runtime·panicExtendSlice3AcapU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AcapU(SB)
TEXT runtime·panicExtendSlice3B(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSlice3B(SB)
TEXT runtime·panicExtendSlice3BU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSlice3BU(SB)
TEXT runtime·panicExtendSlice3C(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendSlice3C(SB)
TEXT runtime·panicExtendSlice3CU(SB),NOSPLIT,$0-12
	MOVW	R4, hi+0(FP)
	MOVW	R0, lo+4(FP)
	MOVW	R1, y+8(FP)
	JMP	runtime·goPanicExtendSlice3CU(SB)