summaryrefslogtreecommitdiffstats
path: root/src/runtime/histogram.go
blob: f243667b5542a3c16bf2cbd819fa64dd66574829 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

const (
	// For the time histogram type, we use an HDR histogram.
	// Values are placed in buckets based solely on the most
	// significant set bit. Thus, buckets are power-of-2 sized.
	// Values are then placed into sub-buckets based on the value of
	// the next timeHistSubBucketBits most significant bits. Thus,
	// sub-buckets are linear within a bucket.
	//
	// Therefore, the number of sub-buckets (timeHistNumSubBuckets)
	// defines the error. This error may be computed as
	// 1/timeHistNumSubBuckets*100%. For example, for 16 sub-buckets
	// per bucket the error is approximately 6%.
	//
	// The number of buckets (timeHistNumBuckets), on the
	// other hand, defines the range. To avoid producing a large number
	// of buckets that are close together, especially for small numbers
	// (e.g. 1, 2, 3, 4, 5 ns) that aren't very useful, timeHistNumBuckets
	// is defined in terms of the least significant bit (timeHistMinBucketBits)
	// that needs to be set before we start bucketing and the most
	// significant bit (timeHistMaxBucketBits) that we bucket before we just
	// dump it into a catch-all bucket.
	//
	// As an example, consider the configuration:
	//
	//    timeHistMinBucketBits = 9
	//    timeHistMaxBucketBits = 48
	//    timeHistSubBucketBits = 2
	//
	// Then:
	//
	//    011000001
	//    ^--
	//    │ ^
	//    │ └---- Next 2 bits -> sub-bucket 3
	//    └------- Bit 9 unset -> bucket 0
	//
	//    110000001
	//    ^--
	//    │ ^
	//    │ └---- Next 2 bits -> sub-bucket 2
	//    └------- Bit 9 set -> bucket 1
	//
	//    1000000010
	//    ^-- ^
	//    │ ^ └-- Lower bits ignored
	//    │ └---- Next 2 bits -> sub-bucket 0
	//    └------- Bit 10 set -> bucket 2
	//
	// Following this pattern, bucket 38 will have the bit 46 set. We don't
	// have any buckets for higher values, so we spill the rest into an overflow
	// bucket containing values of 2^47-1 nanoseconds or approx. 1 day or more.
	// This range is more than enough to handle durations produced by the runtime.
	timeHistMinBucketBits = 9
	timeHistMaxBucketBits = 48 // Note that this is exclusive; 1 higher than the actual range.
	timeHistSubBucketBits = 2
	timeHistNumSubBuckets = 1 << timeHistSubBucketBits
	timeHistNumBuckets    = timeHistMaxBucketBits - timeHistMinBucketBits + 1
	// Two extra buckets, one for underflow, one for overflow.
	timeHistTotalBuckets = timeHistNumBuckets*timeHistNumSubBuckets + 2
)

// timeHistogram represents a distribution of durations in
// nanoseconds.
//
// The accuracy and range of the histogram is defined by the
// timeHistSubBucketBits and timeHistNumBuckets constants.
//
// It is an HDR histogram with exponentially-distributed
// buckets and linearly distributed sub-buckets.
//
// The histogram is safe for concurrent reads and writes.
type timeHistogram struct {
	counts [timeHistNumBuckets * timeHistNumSubBuckets]atomic.Uint64

	// underflow counts all the times we got a negative duration
	// sample. Because of how time works on some platforms, it's
	// possible to measure negative durations. We could ignore them,
	// but we record them anyway because it's better to have some
	// signal that it's happening than just missing samples.
	underflow atomic.Uint64

	// overflow counts all the times we got a duration that exceeded
	// the range counts represents.
	overflow atomic.Uint64
}

// record adds the given duration to the distribution.
//
// Disallow preemptions and stack growths because this function
// may run in sensitive locations.
//
//go:nosplit
func (h *timeHistogram) record(duration int64) {
	// If the duration is negative, capture that in underflow.
	if duration < 0 {
		h.underflow.Add(1)
		return
	}
	// bucketBit is the target bit for the bucket which is usually the
	// highest 1 bit, but if we're less than the minimum, is the highest
	// 1 bit of the minimum (which will be zero in the duration).
	//
	// bucket is the bucket index, which is the bucketBit minus the
	// highest bit of the minimum, plus one to leave room for the catch-all
	// bucket for samples lower than the minimum.
	var bucketBit, bucket uint
	if l := sys.Len64(uint64(duration)); l < timeHistMinBucketBits {
		bucketBit = timeHistMinBucketBits
		bucket = 0 // bucketBit - timeHistMinBucketBits
	} else {
		bucketBit = uint(l)
		bucket = bucketBit - timeHistMinBucketBits + 1
	}
	// If the bucket we computed is greater than the number of buckets,
	// count that in overflow.
	if bucket >= timeHistNumBuckets {
		h.overflow.Add(1)
		return
	}
	// The sub-bucket index is just next timeHistSubBucketBits after the bucketBit.
	subBucket := uint(duration>>(bucketBit-1-timeHistSubBucketBits)) % timeHistNumSubBuckets
	h.counts[bucket*timeHistNumSubBuckets+subBucket].Add(1)
}

// write dumps the histogram to the passed metricValue as a float64 histogram.
func (h *timeHistogram) write(out *metricValue) {
	hist := out.float64HistOrInit(timeHistBuckets)
	// The bottom-most bucket, containing negative values, is tracked
	// separately as underflow, so fill that in manually and then iterate
	// over the rest.
	hist.counts[0] = h.underflow.Load()
	for i := range h.counts {
		hist.counts[i+1] = h.counts[i].Load()
	}
	hist.counts[len(hist.counts)-1] = h.overflow.Load()
}

const (
	fInf    = 0x7FF0000000000000
	fNegInf = 0xFFF0000000000000
)

func float64Inf() float64 {
	inf := uint64(fInf)
	return *(*float64)(unsafe.Pointer(&inf))
}

func float64NegInf() float64 {
	inf := uint64(fNegInf)
	return *(*float64)(unsafe.Pointer(&inf))
}

// timeHistogramMetricsBuckets generates a slice of boundaries for
// the timeHistogram. These boundaries are represented in seconds,
// not nanoseconds like the timeHistogram represents durations.
func timeHistogramMetricsBuckets() []float64 {
	b := make([]float64, timeHistTotalBuckets+1)
	// Underflow bucket.
	b[0] = float64NegInf()

	for j := 0; j < timeHistNumSubBuckets; j++ {
		// No bucket bit for the first few buckets. Just sub-bucket bits after the
		// min bucket bit.
		bucketNanos := uint64(j) << (timeHistMinBucketBits - 1 - timeHistSubBucketBits)
		// Convert nanoseconds to seconds via a division.
		// These values will all be exactly representable by a float64.
		b[j+1] = float64(bucketNanos) / 1e9
	}
	// Generate the rest of the buckets. It's easier to reason
	// about if we cut out the 0'th bucket.
	for i := timeHistMinBucketBits; i < timeHistMaxBucketBits; i++ {
		for j := 0; j < timeHistNumSubBuckets; j++ {
			// Set the bucket bit.
			bucketNanos := uint64(1) << (i - 1)
			// Set the sub-bucket bits.
			bucketNanos |= uint64(j) << (i - 1 - timeHistSubBucketBits)
			// The index for this bucket is going to be the (i+1)'th bucket
			// (note that we're starting from zero, but handled the first bucket
			// earlier, so we need to compensate), and the j'th sub bucket.
			// Add 1 because we left space for -Inf.
			bucketIndex := (i-timeHistMinBucketBits+1)*timeHistNumSubBuckets + j + 1
			// Convert nanoseconds to seconds via a division.
			// These values will all be exactly representable by a float64.
			b[bucketIndex] = float64(bucketNanos) / 1e9
		}
	}
	// Overflow bucket.
	b[len(b)-2] = float64(uint64(1)<<(timeHistMaxBucketBits-1)) / 1e9
	b[len(b)-1] = float64Inf()
	return b
}