summaryrefslogtreecommitdiffstats
path: root/src/runtime/mbitmap.go
blob: cdd1c5fc3b5b24fcd110f9e876bf7592bee3c42e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/goarch"
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// addb returns the byte pointer p+n.
//
//go:nowritebarrier
//go:nosplit
func addb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
}

// subtractb returns the byte pointer p-n.
//
//go:nowritebarrier
//go:nosplit
func subtractb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, -n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
}

// add1 returns the byte pointer p+1.
//
//go:nowritebarrier
//go:nosplit
func add1(p *byte) *byte {
	// Note: wrote out full expression instead of calling addb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
}

// subtract1 returns the byte pointer p-1.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nowritebarrier
//go:nosplit
func subtract1(p *byte) *byte {
	// Note: wrote out full expression instead of calling subtractb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
}

// markBits provides access to the mark bit for an object in the heap.
// bytep points to the byte holding the mark bit.
// mask is a byte with a single bit set that can be &ed with *bytep
// to see if the bit has been set.
// *m.byte&m.mask != 0 indicates the mark bit is set.
// index can be used along with span information to generate
// the address of the object in the heap.
// We maintain one set of mark bits for allocation and one for
// marking purposes.
type markBits struct {
	bytep *uint8
	mask  uint8
	index uintptr
}

//go:nosplit
func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
	bytep, mask := s.allocBits.bitp(allocBitIndex)
	return markBits{bytep, mask, allocBitIndex}
}

// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
// and negates them so that ctz (count trailing zeros) instructions
// can be used. It then places these 8 bytes into the cached 64 bit
// s.allocCache.
func (s *mspan) refillAllocCache(whichByte uint16) {
	bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(uintptr(whichByte))))
	aCache := uint64(0)
	aCache |= uint64(bytes[0])
	aCache |= uint64(bytes[1]) << (1 * 8)
	aCache |= uint64(bytes[2]) << (2 * 8)
	aCache |= uint64(bytes[3]) << (3 * 8)
	aCache |= uint64(bytes[4]) << (4 * 8)
	aCache |= uint64(bytes[5]) << (5 * 8)
	aCache |= uint64(bytes[6]) << (6 * 8)
	aCache |= uint64(bytes[7]) << (7 * 8)
	s.allocCache = ^aCache
}

// nextFreeIndex returns the index of the next free object in s at
// or after s.freeindex.
// There are hardware instructions that can be used to make this
// faster if profiling warrants it.
func (s *mspan) nextFreeIndex() uint16 {
	sfreeindex := s.freeindex
	snelems := s.nelems
	if sfreeindex == snelems {
		return sfreeindex
	}
	if sfreeindex > snelems {
		throw("s.freeindex > s.nelems")
	}

	aCache := s.allocCache

	bitIndex := sys.TrailingZeros64(aCache)
	for bitIndex == 64 {
		// Move index to start of next cached bits.
		sfreeindex = (sfreeindex + 64) &^ (64 - 1)
		if sfreeindex >= snelems {
			s.freeindex = snelems
			return snelems
		}
		whichByte := sfreeindex / 8
		// Refill s.allocCache with the next 64 alloc bits.
		s.refillAllocCache(whichByte)
		aCache = s.allocCache
		bitIndex = sys.TrailingZeros64(aCache)
		// nothing available in cached bits
		// grab the next 8 bytes and try again.
	}
	result := sfreeindex + uint16(bitIndex)
	if result >= snelems {
		s.freeindex = snelems
		return snelems
	}

	s.allocCache >>= uint(bitIndex + 1)
	sfreeindex = result + 1

	if sfreeindex%64 == 0 && sfreeindex != snelems {
		// We just incremented s.freeindex so it isn't 0.
		// As each 1 in s.allocCache was encountered and used for allocation
		// it was shifted away. At this point s.allocCache contains all 0s.
		// Refill s.allocCache so that it corresponds
		// to the bits at s.allocBits starting at s.freeindex.
		whichByte := sfreeindex / 8
		s.refillAllocCache(whichByte)
	}
	s.freeindex = sfreeindex
	return result
}

// isFree reports whether the index'th object in s is unallocated.
//
// The caller must ensure s.state is mSpanInUse, and there must have
// been no preemption points since ensuring this (which could allow a
// GC transition, which would allow the state to change).
func (s *mspan) isFree(index uintptr) bool {
	if index < uintptr(s.freeIndexForScan) {
		return false
	}
	bytep, mask := s.allocBits.bitp(index)
	return *bytep&mask == 0
}

// divideByElemSize returns n/s.elemsize.
// n must be within [0, s.npages*_PageSize),
// or may be exactly s.npages*_PageSize
// if s.elemsize is from sizeclasses.go.
//
// nosplit, because it is called by objIndex, which is nosplit
//
//go:nosplit
func (s *mspan) divideByElemSize(n uintptr) uintptr {
	const doubleCheck = false

	// See explanation in mksizeclasses.go's computeDivMagic.
	q := uintptr((uint64(n) * uint64(s.divMul)) >> 32)

	if doubleCheck && q != n/s.elemsize {
		println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q)
		throw("bad magic division")
	}
	return q
}

// nosplit, because it is called by other nosplit code like findObject
//
//go:nosplit
func (s *mspan) objIndex(p uintptr) uintptr {
	return s.divideByElemSize(p - s.base())
}

func markBitsForAddr(p uintptr) markBits {
	s := spanOf(p)
	objIndex := s.objIndex(p)
	return s.markBitsForIndex(objIndex)
}

func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
	bytep, mask := s.gcmarkBits.bitp(objIndex)
	return markBits{bytep, mask, objIndex}
}

func (s *mspan) markBitsForBase() markBits {
	return markBits{&s.gcmarkBits.x, uint8(1), 0}
}

// isMarked reports whether mark bit m is set.
func (m markBits) isMarked() bool {
	return *m.bytep&m.mask != 0
}

// setMarked sets the marked bit in the markbits, atomically.
func (m markBits) setMarked() {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.Or8(m.bytep, m.mask)
}

// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
func (m markBits) setMarkedNonAtomic() {
	*m.bytep |= m.mask
}

// clearMarked clears the marked bit in the markbits, atomically.
func (m markBits) clearMarked() {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.And8(m.bytep, ^m.mask)
}

// markBitsForSpan returns the markBits for the span base address base.
func markBitsForSpan(base uintptr) (mbits markBits) {
	mbits = markBitsForAddr(base)
	if mbits.mask != 1 {
		throw("markBitsForSpan: unaligned start")
	}
	return mbits
}

// advance advances the markBits to the next object in the span.
func (m *markBits) advance() {
	if m.mask == 1<<7 {
		m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
		m.mask = 1
	} else {
		m.mask = m.mask << 1
	}
	m.index++
}

// clobberdeadPtr is a special value that is used by the compiler to
// clobber dead stack slots, when -clobberdead flag is set.
const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32))

// badPointer throws bad pointer in heap panic.
func badPointer(s *mspan, p, refBase, refOff uintptr) {
	// Typically this indicates an incorrect use
	// of unsafe or cgo to store a bad pointer in
	// the Go heap. It may also indicate a runtime
	// bug.
	//
	// TODO(austin): We could be more aggressive
	// and detect pointers to unallocated objects
	// in allocated spans.
	printlock()
	print("runtime: pointer ", hex(p))
	if s != nil {
		state := s.state.get()
		if state != mSpanInUse {
			print(" to unallocated span")
		} else {
			print(" to unused region of span")
		}
		print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state)
	}
	print("\n")
	if refBase != 0 {
		print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
		gcDumpObject("object", refBase, refOff)
	}
	getg().m.traceback = 2
	throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
}

// findObject returns the base address for the heap object containing
// the address p, the object's span, and the index of the object in s.
// If p does not point into a heap object, it returns base == 0.
//
// If p points is an invalid heap pointer and debug.invalidptr != 0,
// findObject panics.
//
// refBase and refOff optionally give the base address of the object
// in which the pointer p was found and the byte offset at which it
// was found. These are used for error reporting.
//
// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
// Since p is a uintptr, it would not be adjusted if the stack were to move.
//
//go:nosplit
func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) {
	s = spanOf(p)
	// If s is nil, the virtual address has never been part of the heap.
	// This pointer may be to some mmap'd region, so we allow it.
	if s == nil {
		if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 {
			// Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now,
			// as they are the only platform where compiler's clobberdead mode is
			// implemented. On these platforms clobberdeadPtr cannot be a valid address.
			badPointer(s, p, refBase, refOff)
		}
		return
	}
	// If p is a bad pointer, it may not be in s's bounds.
	//
	// Check s.state to synchronize with span initialization
	// before checking other fields. See also spanOfHeap.
	if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit {
		// Pointers into stacks are also ok, the runtime manages these explicitly.
		if state == mSpanManual {
			return
		}
		// The following ensures that we are rigorous about what data
		// structures hold valid pointers.
		if debug.invalidptr != 0 {
			badPointer(s, p, refBase, refOff)
		}
		return
	}

	objIndex = s.objIndex(p)
	base = s.base() + objIndex*s.elemsize
	return
}

// reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok.
//
//go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr
func reflect_verifyNotInHeapPtr(p uintptr) bool {
	// Conversion to a pointer is ok as long as findObject above does not call badPointer.
	// Since we're already promised that p doesn't point into the heap, just disallow heap
	// pointers and the special clobbered pointer.
	return spanOf(p) == nil && p != clobberdeadPtr
}

const ptrBits = 8 * goarch.PtrSize

// bulkBarrierBitmap executes write barriers for copying from [src,
// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
// assumed to start maskOffset bytes into the data covered by the
// bitmap in bits (which may not be a multiple of 8).
//
// This is used by bulkBarrierPreWrite for writes to data and BSS.
//
//go:nosplit
func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
	word := maskOffset / goarch.PtrSize
	bits = addb(bits, word/8)
	mask := uint8(1) << (word % 8)

	buf := &getg().m.p.ptr().wbBuf
	for i := uintptr(0); i < size; i += goarch.PtrSize {
		if mask == 0 {
			bits = addb(bits, 1)
			if *bits == 0 {
				// Skip 8 words.
				i += 7 * goarch.PtrSize
				continue
			}
			mask = 1
		}
		if *bits&mask != 0 {
			dstx := (*uintptr)(unsafe.Pointer(dst + i))
			if src == 0 {
				p := buf.get1()
				p[0] = *dstx
			} else {
				srcx := (*uintptr)(unsafe.Pointer(src + i))
				p := buf.get2()
				p[0] = *dstx
				p[1] = *srcx
			}
		}
		mask <<= 1
	}
}

// typeBitsBulkBarrier executes a write barrier for every
// pointer that would be copied from [src, src+size) to [dst,
// dst+size) by a memmove using the type bitmap to locate those
// pointer slots.
//
// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
// dst, src, and size must be pointer-aligned.
// The type typ must have a plain bitmap, not a GC program.
// The only use of this function is in channel sends, and the
// 64 kB channel element limit takes care of this for us.
//
// Must not be preempted because it typically runs right before memmove,
// and the GC must observe them as an atomic action.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
	if typ == nil {
		throw("runtime: typeBitsBulkBarrier without type")
	}
	if typ.Size_ != size {
		println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " of size ", typ.Size_, " but memory size", size)
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if typ.Kind_&kindGCProg != 0 {
		println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " with GC prog")
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if !writeBarrier.enabled {
		return
	}
	ptrmask := typ.GCData
	buf := &getg().m.p.ptr().wbBuf
	var bits uint32
	for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize {
		if i&(goarch.PtrSize*8-1) == 0 {
			bits = uint32(*ptrmask)
			ptrmask = addb(ptrmask, 1)
		} else {
			bits = bits >> 1
		}
		if bits&1 != 0 {
			dstx := (*uintptr)(unsafe.Pointer(dst + i))
			srcx := (*uintptr)(unsafe.Pointer(src + i))
			p := buf.get2()
			p[0] = *dstx
			p[1] = *srcx
		}
	}
}

// countAlloc returns the number of objects allocated in span s by
// scanning the mark bitmap.
func (s *mspan) countAlloc() int {
	count := 0
	bytes := divRoundUp(uintptr(s.nelems), 8)
	// Iterate over each 8-byte chunk and count allocations
	// with an intrinsic. Note that newMarkBits guarantees that
	// gcmarkBits will be 8-byte aligned, so we don't have to
	// worry about edge cases, irrelevant bits will simply be zero.
	for i := uintptr(0); i < bytes; i += 8 {
		// Extract 64 bits from the byte pointer and get a OnesCount.
		// Note that the unsafe cast here doesn't preserve endianness,
		// but that's OK. We only care about how many bits are 1, not
		// about the order we discover them in.
		mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i)))
		count += sys.OnesCount64(mrkBits)
	}
	return count
}

// Read the bytes starting at the aligned pointer p into a uintptr.
// Read is little-endian.
func readUintptr(p *byte) uintptr {
	x := *(*uintptr)(unsafe.Pointer(p))
	if goarch.BigEndian {
		if goarch.PtrSize == 8 {
			return uintptr(sys.Bswap64(uint64(x)))
		}
		return uintptr(sys.Bswap32(uint32(x)))
	}
	return x
}

var debugPtrmask struct {
	lock mutex
	data *byte
}

// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
// size the size of the region described by prog, in bytes.
// The resulting bitvector will have no more than size/goarch.PtrSize bits.
func progToPointerMask(prog *byte, size uintptr) bitvector {
	n := (size/goarch.PtrSize + 7) / 8
	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
	x[len(x)-1] = 0xa1 // overflow check sentinel
	n = runGCProg(prog, &x[0])
	if x[len(x)-1] != 0xa1 {
		throw("progToPointerMask: overflow")
	}
	return bitvector{int32(n), &x[0]}
}

// Packed GC pointer bitmaps, aka GC programs.
//
// For large types containing arrays, the type information has a
// natural repetition that can be encoded to save space in the
// binary and in the memory representation of the type information.
//
// The encoding is a simple Lempel-Ziv style bytecode machine
// with the following instructions:
//
//	00000000: stop
//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
//	10000000 n c: repeat the previous n bits c times; n, c are varints
//	1nnnnnnn c: repeat the previous n bits c times; c is a varint

// runGCProg returns the number of 1-bit entries written to memory.
func runGCProg(prog, dst *byte) uintptr {
	dstStart := dst

	// Bits waiting to be written to memory.
	var bits uintptr
	var nbits uintptr

	p := prog
Run:
	for {
		// Flush accumulated full bytes.
		// The rest of the loop assumes that nbits <= 7.
		for ; nbits >= 8; nbits -= 8 {
			*dst = uint8(bits)
			dst = add1(dst)
			bits >>= 8
		}

		// Process one instruction.
		inst := uintptr(*p)
		p = add1(p)
		n := inst & 0x7F
		if inst&0x80 == 0 {
			// Literal bits; n == 0 means end of program.
			if n == 0 {
				// Program is over.
				break Run
			}
			nbyte := n / 8
			for i := uintptr(0); i < nbyte; i++ {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				*dst = uint8(bits)
				dst = add1(dst)
				bits >>= 8
			}
			if n %= 8; n > 0 {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				nbits += n
			}
			continue Run
		}

		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
		if n == 0 {
			for off := uint(0); ; off += 7 {
				x := uintptr(*p)
				p = add1(p)
				n |= (x & 0x7F) << off
				if x&0x80 == 0 {
					break
				}
			}
		}

		// Count is encoded in a varint in the next bytes.
		c := uintptr(0)
		for off := uint(0); ; off += 7 {
			x := uintptr(*p)
			p = add1(p)
			c |= (x & 0x7F) << off
			if x&0x80 == 0 {
				break
			}
		}
		c *= n // now total number of bits to copy

		// If the number of bits being repeated is small, load them
		// into a register and use that register for the entire loop
		// instead of repeatedly reading from memory.
		// Handling fewer than 8 bits here makes the general loop simpler.
		// The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add
		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
		// it will not overflow.
		src := dst
		const maxBits = goarch.PtrSize*8 - 7
		if n <= maxBits {
			// Start with bits in output buffer.
			pattern := bits
			npattern := nbits

			// If we need more bits, fetch them from memory.
			src = subtract1(src)
			for npattern < n {
				pattern <<= 8
				pattern |= uintptr(*src)
				src = subtract1(src)
				npattern += 8
			}

			// We started with the whole bit output buffer,
			// and then we loaded bits from whole bytes.
			// Either way, we might now have too many instead of too few.
			// Discard the extra.
			if npattern > n {
				pattern >>= npattern - n
				npattern = n
			}

			// Replicate pattern to at most maxBits.
			if npattern == 1 {
				// One bit being repeated.
				// If the bit is 1, make the pattern all 1s.
				// If the bit is 0, the pattern is already all 0s,
				// but we can claim that the number of bits
				// in the word is equal to the number we need (c),
				// because right shift of bits will zero fill.
				if pattern == 1 {
					pattern = 1<<maxBits - 1
					npattern = maxBits
				} else {
					npattern = c
				}
			} else {
				b := pattern
				nb := npattern
				if nb+nb <= maxBits {
					// Double pattern until the whole uintptr is filled.
					for nb <= goarch.PtrSize*8 {
						b |= b << nb
						nb += nb
					}
					// Trim away incomplete copy of original pattern in high bits.
					// TODO(rsc): Replace with table lookup or loop on systems without divide?
					nb = maxBits / npattern * npattern
					b &= 1<<nb - 1
					pattern = b
					npattern = nb
				}
			}

			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
			// Since pattern contains >8 bits, there will be full bytes to flush
			// on each iteration.
			for ; c >= npattern; c -= npattern {
				bits |= pattern << nbits
				nbits += npattern
				for nbits >= 8 {
					*dst = uint8(bits)
					dst = add1(dst)
					bits >>= 8
					nbits -= 8
				}
			}

			// Add final fragment to bit buffer.
			if c > 0 {
				pattern &= 1<<c - 1
				bits |= pattern << nbits
				nbits += c
			}
			continue Run
		}

		// Repeat; n too large to fit in a register.
		// Since nbits <= 7, we know the first few bytes of repeated data
		// are already written to memory.
		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
		// Leading src fragment.
		src = subtractb(src, (off+7)/8)
		if frag := off & 7; frag != 0 {
			bits |= uintptr(*src) >> (8 - frag) << nbits
			src = add1(src)
			nbits += frag
			c -= frag
		}
		// Main loop: load one byte, write another.
		// The bits are rotating through the bit buffer.
		for i := c / 8; i > 0; i-- {
			bits |= uintptr(*src) << nbits
			src = add1(src)
			*dst = uint8(bits)
			dst = add1(dst)
			bits >>= 8
		}
		// Final src fragment.
		if c %= 8; c > 0 {
			bits |= (uintptr(*src) & (1<<c - 1)) << nbits
			nbits += c
		}
	}

	// Write any final bits out, using full-byte writes, even for the final byte.
	totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
	nbits += -nbits & 7
	for ; nbits > 0; nbits -= 8 {
		*dst = uint8(bits)
		dst = add1(dst)
		bits >>= 8
	}
	return totalBits
}

// materializeGCProg allocates space for the (1-bit) pointer bitmask
// for an object of size ptrdata.  Then it fills that space with the
// pointer bitmask specified by the program prog.
// The bitmask starts at s.startAddr.
// The result must be deallocated with dematerializeGCProg.
func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
	// Each word of ptrdata needs one bit in the bitmap.
	bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize)
	// Compute the number of pages needed for bitmapBytes.
	pages := divRoundUp(bitmapBytes, pageSize)
	s := mheap_.allocManual(pages, spanAllocPtrScalarBits)
	runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr)))
	return s
}
func dematerializeGCProg(s *mspan) {
	mheap_.freeManual(s, spanAllocPtrScalarBits)
}

func dumpGCProg(p *byte) {
	nptr := 0
	for {
		x := *p
		p = add1(p)
		if x == 0 {
			print("\t", nptr, " end\n")
			break
		}
		if x&0x80 == 0 {
			print("\t", nptr, " lit ", x, ":")
			n := int(x+7) / 8
			for i := 0; i < n; i++ {
				print(" ", hex(*p))
				p = add1(p)
			}
			print("\n")
			nptr += int(x)
		} else {
			nbit := int(x &^ 0x80)
			if nbit == 0 {
				for nb := uint(0); ; nb += 7 {
					x := *p
					p = add1(p)
					nbit |= int(x&0x7f) << nb
					if x&0x80 == 0 {
						break
					}
				}
			}
			count := 0
			for nb := uint(0); ; nb += 7 {
				x := *p
				p = add1(p)
				count |= int(x&0x7f) << nb
				if x&0x80 == 0 {
					break
				}
			}
			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
			nptr += nbit * count
		}
	}
}

// Testing.

// reflect_gcbits returns the GC type info for x, for testing.
// The result is the bitmap entries (0 or 1), one entry per byte.
//
//go:linkname reflect_gcbits reflect.gcbits
func reflect_gcbits(x any) []byte {
	return getgcmask(x)
}