summaryrefslogtreecommitdiffstats
path: root/src/runtime/pprof/pprof.go
blob: a4dcf33508265ce76294c927de45e8089a3be533 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package pprof writes runtime profiling data in the format expected
// by the pprof visualization tool.
//
// # Profiling a Go program
//
// The first step to profiling a Go program is to enable profiling.
// Support for profiling benchmarks built with the standard testing
// package is built into go test. For example, the following command
// runs benchmarks in the current directory and writes the CPU and
// memory profiles to cpu.prof and mem.prof:
//
//	go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
//
// To add equivalent profiling support to a standalone program, add
// code like the following to your main function:
//
//	var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
//	var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
//
//	func main() {
//	    flag.Parse()
//	    if *cpuprofile != "" {
//	        f, err := os.Create(*cpuprofile)
//	        if err != nil {
//	            log.Fatal("could not create CPU profile: ", err)
//	        }
//	        defer f.Close() // error handling omitted for example
//	        if err := pprof.StartCPUProfile(f); err != nil {
//	            log.Fatal("could not start CPU profile: ", err)
//	        }
//	        defer pprof.StopCPUProfile()
//	    }
//
//	    // ... rest of the program ...
//
//	    if *memprofile != "" {
//	        f, err := os.Create(*memprofile)
//	        if err != nil {
//	            log.Fatal("could not create memory profile: ", err)
//	        }
//	        defer f.Close() // error handling omitted for example
//	        runtime.GC() // get up-to-date statistics
//	        if err := pprof.WriteHeapProfile(f); err != nil {
//	            log.Fatal("could not write memory profile: ", err)
//	        }
//	    }
//	}
//
// There is also a standard HTTP interface to profiling data. Adding
// the following line will install handlers under the /debug/pprof/
// URL to download live profiles:
//
//	import _ "net/http/pprof"
//
// See the net/http/pprof package for more details.
//
// Profiles can then be visualized with the pprof tool:
//
//	go tool pprof cpu.prof
//
// There are many commands available from the pprof command line.
// Commonly used commands include "top", which prints a summary of the
// top program hot-spots, and "web", which opens an interactive graph
// of hot-spots and their call graphs. Use "help" for information on
// all pprof commands.
//
// For more information about pprof, see
// https://github.com/google/pprof/blob/main/doc/README.md.
package pprof

import (
	"bufio"
	"fmt"
	"internal/abi"
	"io"
	"runtime"
	"sort"
	"strings"
	"sync"
	"text/tabwriter"
	"time"
	"unsafe"
)

// BUG(rsc): Profiles are only as good as the kernel support used to generate them.
// See https://golang.org/issue/13841 for details about known problems.

// A Profile is a collection of stack traces showing the call sequences
// that led to instances of a particular event, such as allocation.
// Packages can create and maintain their own profiles; the most common
// use is for tracking resources that must be explicitly closed, such as files
// or network connections.
//
// A Profile's methods can be called from multiple goroutines simultaneously.
//
// Each Profile has a unique name. A few profiles are predefined:
//
//	goroutine    - stack traces of all current goroutines
//	heap         - a sampling of memory allocations of live objects
//	allocs       - a sampling of all past memory allocations
//	threadcreate - stack traces that led to the creation of new OS threads
//	block        - stack traces that led to blocking on synchronization primitives
//	mutex        - stack traces of holders of contended mutexes
//
// These predefined profiles maintain themselves and panic on an explicit
// [Profile.Add] or [Profile.Remove] method call.
//
// The CPU profile is not available as a Profile. It has a special API,
// the [StartCPUProfile] and [StopCPUProfile] functions, because it streams
// output to a writer during profiling.
//
// # Heap profile
//
// The heap profile reports statistics as of the most recently completed
// garbage collection; it elides more recent allocation to avoid skewing
// the profile away from live data and toward garbage.
// If there has been no garbage collection at all, the heap profile reports
// all known allocations. This exception helps mainly in programs running
// without garbage collection enabled, usually for debugging purposes.
//
// The heap profile tracks both the allocation sites for all live objects in
// the application memory and for all objects allocated since the program start.
// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects
// flags select which to display, defaulting to -inuse_space (live objects,
// scaled by size).
//
// # Allocs profile
//
// The allocs profile is the same as the heap profile but changes the default
// pprof display to -alloc_space, the total number of bytes allocated since
// the program began (including garbage-collected bytes).
//
// # Block profile
//
// The block profile tracks time spent blocked on synchronization primitives,
// such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and
// channel send/receive/select.
//
// Stack traces correspond to the location that blocked (for example,
// [sync.Mutex.Lock]).
//
// Sample values correspond to cumulative time spent blocked at that stack
// trace, subject to time-based sampling specified by
// [runtime.SetBlockProfileRate].
//
// # Mutex profile
//
// The mutex profile tracks contention on mutexes, such as [sync.Mutex],
// [sync.RWMutex], and runtime-internal locks.
//
// Stack traces correspond to the end of the critical section causing
// contention. For example, a lock held for a long time while other goroutines
// are waiting to acquire the lock will report contention when the lock is
// finally unlocked (that is, at [sync.Mutex.Unlock]).
//
// Sample values correspond to the approximate cumulative time other goroutines
// spent blocked waiting for the lock, subject to event-based sampling
// specified by [runtime.SetMutexProfileFraction]. For example, if a caller
// holds a lock for 1s while 5 other goroutines are waiting for the entire
// second to acquire the lock, its unlock call stack will report 5s of
// contention.
//
// Runtime-internal locks are always reported at the location
// "runtime._LostContendedRuntimeLock". More detailed stack traces for
// runtime-internal locks can be obtained by setting
// `GODEBUG=runtimecontentionstacks=1` (see package [runtime] docs for
// caveats).
type Profile struct {
	name  string
	mu    sync.Mutex
	m     map[any][]uintptr
	count func() int
	write func(io.Writer, int) error
}

// profiles records all registered profiles.
var profiles struct {
	mu sync.Mutex
	m  map[string]*Profile
}

var goroutineProfile = &Profile{
	name:  "goroutine",
	count: countGoroutine,
	write: writeGoroutine,
}

var threadcreateProfile = &Profile{
	name:  "threadcreate",
	count: countThreadCreate,
	write: writeThreadCreate,
}

var heapProfile = &Profile{
	name:  "heap",
	count: countHeap,
	write: writeHeap,
}

var allocsProfile = &Profile{
	name:  "allocs",
	count: countHeap, // identical to heap profile
	write: writeAlloc,
}

var blockProfile = &Profile{
	name:  "block",
	count: countBlock,
	write: writeBlock,
}

var mutexProfile = &Profile{
	name:  "mutex",
	count: countMutex,
	write: writeMutex,
}

func lockProfiles() {
	profiles.mu.Lock()
	if profiles.m == nil {
		// Initial built-in profiles.
		profiles.m = map[string]*Profile{
			"goroutine":    goroutineProfile,
			"threadcreate": threadcreateProfile,
			"heap":         heapProfile,
			"allocs":       allocsProfile,
			"block":        blockProfile,
			"mutex":        mutexProfile,
		}
	}
}

func unlockProfiles() {
	profiles.mu.Unlock()
}

// NewProfile creates a new profile with the given name.
// If a profile with that name already exists, NewProfile panics.
// The convention is to use a 'import/path.' prefix to create
// separate name spaces for each package.
// For compatibility with various tools that read pprof data,
// profile names should not contain spaces.
func NewProfile(name string) *Profile {
	lockProfiles()
	defer unlockProfiles()
	if name == "" {
		panic("pprof: NewProfile with empty name")
	}
	if profiles.m[name] != nil {
		panic("pprof: NewProfile name already in use: " + name)
	}
	p := &Profile{
		name: name,
		m:    map[any][]uintptr{},
	}
	profiles.m[name] = p
	return p
}

// Lookup returns the profile with the given name, or nil if no such profile exists.
func Lookup(name string) *Profile {
	lockProfiles()
	defer unlockProfiles()
	return profiles.m[name]
}

// Profiles returns a slice of all the known profiles, sorted by name.
func Profiles() []*Profile {
	lockProfiles()
	defer unlockProfiles()

	all := make([]*Profile, 0, len(profiles.m))
	for _, p := range profiles.m {
		all = append(all, p)
	}

	sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name })
	return all
}

// Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile.
func (p *Profile) Name() string {
	return p.name
}

// Count returns the number of execution stacks currently in the profile.
func (p *Profile) Count() int {
	p.mu.Lock()
	defer p.mu.Unlock()
	if p.count != nil {
		return p.count()
	}
	return len(p.m)
}

// Add adds the current execution stack to the profile, associated with value.
// Add stores value in an internal map, so value must be suitable for use as
// a map key and will not be garbage collected until the corresponding
// call to [Profile.Remove]. Add panics if the profile already contains a stack for value.
//
// The skip parameter has the same meaning as [runtime.Caller]'s skip
// and controls where the stack trace begins. Passing skip=0 begins the
// trace in the function calling Add. For example, given this
// execution stack:
//
//	Add
//	called from rpc.NewClient
//	called from mypkg.Run
//	called from main.main
//
// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
func (p *Profile) Add(value any, skip int) {
	if p.name == "" {
		panic("pprof: use of uninitialized Profile")
	}
	if p.write != nil {
		panic("pprof: Add called on built-in Profile " + p.name)
	}

	stk := make([]uintptr, 32)
	n := runtime.Callers(skip+1, stk[:])
	stk = stk[:n]
	if len(stk) == 0 {
		// The value for skip is too large, and there's no stack trace to record.
		stk = []uintptr{abi.FuncPCABIInternal(lostProfileEvent)}
	}

	p.mu.Lock()
	defer p.mu.Unlock()
	if p.m[value] != nil {
		panic("pprof: Profile.Add of duplicate value")
	}
	p.m[value] = stk
}

// Remove removes the execution stack associated with value from the profile.
// It is a no-op if the value is not in the profile.
func (p *Profile) Remove(value any) {
	p.mu.Lock()
	defer p.mu.Unlock()
	delete(p.m, value)
}

// WriteTo writes a pprof-formatted snapshot of the profile to w.
// If a write to w returns an error, WriteTo returns that error.
// Otherwise, WriteTo returns nil.
//
// The debug parameter enables additional output.
// Passing debug=0 writes the gzip-compressed protocol buffer described
// in https://github.com/google/pprof/tree/master/proto#overview.
// Passing debug=1 writes the legacy text format with comments
// translating addresses to function names and line numbers, so that a
// programmer can read the profile without tools.
//
// The predefined profiles may assign meaning to other debug values;
// for example, when printing the "goroutine" profile, debug=2 means to
// print the goroutine stacks in the same form that a Go program uses
// when dying due to an unrecovered panic.
func (p *Profile) WriteTo(w io.Writer, debug int) error {
	if p.name == "" {
		panic("pprof: use of zero Profile")
	}
	if p.write != nil {
		return p.write(w, debug)
	}

	// Obtain consistent snapshot under lock; then process without lock.
	p.mu.Lock()
	all := make([][]uintptr, 0, len(p.m))
	for _, stk := range p.m {
		all = append(all, stk)
	}
	p.mu.Unlock()

	// Map order is non-deterministic; make output deterministic.
	sort.Slice(all, func(i, j int) bool {
		t, u := all[i], all[j]
		for k := 0; k < len(t) && k < len(u); k++ {
			if t[k] != u[k] {
				return t[k] < u[k]
			}
		}
		return len(t) < len(u)
	})

	return printCountProfile(w, debug, p.name, stackProfile(all))
}

type stackProfile [][]uintptr

func (x stackProfile) Len() int              { return len(x) }
func (x stackProfile) Stack(i int) []uintptr { return x[i] }
func (x stackProfile) Label(i int) *labelMap { return nil }

// A countProfile is a set of stack traces to be printed as counts
// grouped by stack trace. There are multiple implementations:
// all that matters is that we can find out how many traces there are
// and obtain each trace in turn.
type countProfile interface {
	Len() int
	Stack(i int) []uintptr
	Label(i int) *labelMap
}

// printCountCycleProfile outputs block profile records (for block or mutex profiles)
// as the pprof-proto format output. Translations from cycle count to time duration
// are done because The proto expects count and time (nanoseconds) instead of count
// and the number of cycles for block, contention profiles.
func printCountCycleProfile(w io.Writer, countName, cycleName string, records []runtime.BlockProfileRecord) error {
	// Output profile in protobuf form.
	b := newProfileBuilder(w)
	b.pbValueType(tagProfile_PeriodType, countName, "count")
	b.pb.int64Opt(tagProfile_Period, 1)
	b.pbValueType(tagProfile_SampleType, countName, "count")
	b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds")

	cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9

	values := []int64{0, 0}
	var locs []uint64
	for _, r := range records {
		values[0] = r.Count
		values[1] = int64(float64(r.Cycles) / cpuGHz)
		// For count profiles, all stack addresses are
		// return PCs, which is what appendLocsForStack expects.
		locs = b.appendLocsForStack(locs[:0], r.Stack())
		b.pbSample(values, locs, nil)
	}
	b.build()
	return nil
}

// printCountProfile prints a countProfile at the specified debug level.
// The profile will be in compressed proto format unless debug is nonzero.
func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
	// Build count of each stack.
	var buf strings.Builder
	key := func(stk []uintptr, lbls *labelMap) string {
		buf.Reset()
		fmt.Fprintf(&buf, "@")
		for _, pc := range stk {
			fmt.Fprintf(&buf, " %#x", pc)
		}
		if lbls != nil {
			buf.WriteString("\n# labels: ")
			buf.WriteString(lbls.String())
		}
		return buf.String()
	}
	count := map[string]int{}
	index := map[string]int{}
	var keys []string
	n := p.Len()
	for i := 0; i < n; i++ {
		k := key(p.Stack(i), p.Label(i))
		if count[k] == 0 {
			index[k] = i
			keys = append(keys, k)
		}
		count[k]++
	}

	sort.Sort(&keysByCount{keys, count})

	if debug > 0 {
		// Print debug profile in legacy format
		tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
		fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len())
		for _, k := range keys {
			fmt.Fprintf(tw, "%d %s\n", count[k], k)
			printStackRecord(tw, p.Stack(index[k]), false)
		}
		return tw.Flush()
	}

	// Output profile in protobuf form.
	b := newProfileBuilder(w)
	b.pbValueType(tagProfile_PeriodType, name, "count")
	b.pb.int64Opt(tagProfile_Period, 1)
	b.pbValueType(tagProfile_SampleType, name, "count")

	values := []int64{0}
	var locs []uint64
	for _, k := range keys {
		values[0] = int64(count[k])
		// For count profiles, all stack addresses are
		// return PCs, which is what appendLocsForStack expects.
		locs = b.appendLocsForStack(locs[:0], p.Stack(index[k]))
		idx := index[k]
		var labels func()
		if p.Label(idx) != nil {
			labels = func() {
				for k, v := range *p.Label(idx) {
					b.pbLabel(tagSample_Label, k, v, 0)
				}
			}
		}
		b.pbSample(values, locs, labels)
	}
	b.build()
	return nil
}

// keysByCount sorts keys with higher counts first, breaking ties by key string order.
type keysByCount struct {
	keys  []string
	count map[string]int
}

func (x *keysByCount) Len() int      { return len(x.keys) }
func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] }
func (x *keysByCount) Less(i, j int) bool {
	ki, kj := x.keys[i], x.keys[j]
	ci, cj := x.count[ki], x.count[kj]
	if ci != cj {
		return ci > cj
	}
	return ki < kj
}

// printStackRecord prints the function + source line information
// for a single stack trace.
func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
	show := allFrames
	frames := runtime.CallersFrames(stk)
	for {
		frame, more := frames.Next()
		name := frame.Function
		if name == "" {
			show = true
			fmt.Fprintf(w, "#\t%#x\n", frame.PC)
		} else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) {
			// Hide runtime.goexit and any runtime functions at the beginning.
			// This is useful mainly for allocation traces.
			show = true
			fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line)
		}
		if !more {
			break
		}
	}
	if !show {
		// We didn't print anything; do it again,
		// and this time include runtime functions.
		printStackRecord(w, stk, true)
		return
	}
	fmt.Fprintf(w, "\n")
}

// Interface to system profiles.

// WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0).
// It is preserved for backwards compatibility.
func WriteHeapProfile(w io.Writer) error {
	return writeHeap(w, 0)
}

// countHeap returns the number of records in the heap profile.
func countHeap() int {
	n, _ := runtime.MemProfile(nil, true)
	return n
}

// writeHeap writes the current runtime heap profile to w.
func writeHeap(w io.Writer, debug int) error {
	return writeHeapInternal(w, debug, "")
}

// writeAlloc writes the current runtime heap profile to w
// with the total allocation space as the default sample type.
func writeAlloc(w io.Writer, debug int) error {
	return writeHeapInternal(w, debug, "alloc_space")
}

func writeHeapInternal(w io.Writer, debug int, defaultSampleType string) error {
	var memStats *runtime.MemStats
	if debug != 0 {
		// Read mem stats first, so that our other allocations
		// do not appear in the statistics.
		memStats = new(runtime.MemStats)
		runtime.ReadMemStats(memStats)
	}

	// Find out how many records there are (MemProfile(nil, true)),
	// allocate that many records, and get the data.
	// There's a race—more records might be added between
	// the two calls—so allocate a few extra records for safety
	// and also try again if we're very unlucky.
	// The loop should only execute one iteration in the common case.
	var p []runtime.MemProfileRecord
	n, ok := runtime.MemProfile(nil, true)
	for {
		// Allocate room for a slightly bigger profile,
		// in case a few more entries have been added
		// since the call to MemProfile.
		p = make([]runtime.MemProfileRecord, n+50)
		n, ok = runtime.MemProfile(p, true)
		if ok {
			p = p[0:n]
			break
		}
		// Profile grew; try again.
	}

	if debug == 0 {
		return writeHeapProto(w, p, int64(runtime.MemProfileRate), defaultSampleType)
	}

	sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() })

	b := bufio.NewWriter(w)
	tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0)
	w = tw

	var total runtime.MemProfileRecord
	for i := range p {
		r := &p[i]
		total.AllocBytes += r.AllocBytes
		total.AllocObjects += r.AllocObjects
		total.FreeBytes += r.FreeBytes
		total.FreeObjects += r.FreeObjects
	}

	// Technically the rate is MemProfileRate not 2*MemProfileRate,
	// but early versions of the C++ heap profiler reported 2*MemProfileRate,
	// so that's what pprof has come to expect.
	rate := 2 * runtime.MemProfileRate

	// pprof reads a profile with alloc == inuse as being a "2-column" profile
	// (objects and bytes, not distinguishing alloc from inuse),
	// but then such a profile can't be merged using pprof *.prof with
	// other 4-column profiles where alloc != inuse.
	// The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes.
	// pprof doesn't use these header values anymore except for checking equality.
	inUseBytes := total.InUseBytes()
	allocBytes := total.AllocBytes
	if inUseBytes == allocBytes {
		allocBytes++
	}

	fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
		total.InUseObjects(), inUseBytes,
		total.AllocObjects, allocBytes,
		rate)

	for i := range p {
		r := &p[i]
		fmt.Fprintf(w, "%d: %d [%d: %d] @",
			r.InUseObjects(), r.InUseBytes(),
			r.AllocObjects, r.AllocBytes)
		for _, pc := range r.Stack() {
			fmt.Fprintf(w, " %#x", pc)
		}
		fmt.Fprintf(w, "\n")
		printStackRecord(w, r.Stack(), false)
	}

	// Print memstats information too.
	// Pprof will ignore, but useful for people
	s := memStats
	fmt.Fprintf(w, "\n# runtime.MemStats\n")
	fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
	fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
	fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
	fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
	fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
	fmt.Fprintf(w, "# Frees = %d\n", s.Frees)

	fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
	fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
	fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
	fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
	fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
	fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)

	fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
	fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
	fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
	fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
	fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys)
	fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys)

	fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
	fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC)
	fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
	fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd)
	fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
	fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC)
	fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction)
	fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)

	// Also flush out MaxRSS on supported platforms.
	addMaxRSS(w)

	tw.Flush()
	return b.Flush()
}

// countThreadCreate returns the size of the current ThreadCreateProfile.
func countThreadCreate() int {
	n, _ := runtime.ThreadCreateProfile(nil)
	return n
}

// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
func writeThreadCreate(w io.Writer, debug int) error {
	// Until https://golang.org/issues/6104 is addressed, wrap
	// ThreadCreateProfile because there's no point in tracking labels when we
	// don't get any stack-traces.
	return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) {
		return runtime.ThreadCreateProfile(p)
	})
}

// countGoroutine returns the number of goroutines.
func countGoroutine() int {
	return runtime.NumGoroutine()
}

// runtime_goroutineProfileWithLabels is defined in runtime/mprof.go
func runtime_goroutineProfileWithLabels(p []runtime.StackRecord, labels []unsafe.Pointer) (n int, ok bool)

// writeGoroutine writes the current runtime GoroutineProfile to w.
func writeGoroutine(w io.Writer, debug int) error {
	if debug >= 2 {
		return writeGoroutineStacks(w)
	}
	return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels)
}

func writeGoroutineStacks(w io.Writer) error {
	// We don't know how big the buffer needs to be to collect
	// all the goroutines. Start with 1 MB and try a few times, doubling each time.
	// Give up and use a truncated trace if 64 MB is not enough.
	buf := make([]byte, 1<<20)
	for i := 0; ; i++ {
		n := runtime.Stack(buf, true)
		if n < len(buf) {
			buf = buf[:n]
			break
		}
		if len(buf) >= 64<<20 {
			// Filled 64 MB - stop there.
			break
		}
		buf = make([]byte, 2*len(buf))
	}
	_, err := w.Write(buf)
	return err
}

func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error {
	// Find out how many records there are (fetch(nil)),
	// allocate that many records, and get the data.
	// There's a race—more records might be added between
	// the two calls—so allocate a few extra records for safety
	// and also try again if we're very unlucky.
	// The loop should only execute one iteration in the common case.
	var p []runtime.StackRecord
	var labels []unsafe.Pointer
	n, ok := fetch(nil, nil)
	for {
		// Allocate room for a slightly bigger profile,
		// in case a few more entries have been added
		// since the call to ThreadProfile.
		p = make([]runtime.StackRecord, n+10)
		labels = make([]unsafe.Pointer, n+10)
		n, ok = fetch(p, labels)
		if ok {
			p = p[0:n]
			break
		}
		// Profile grew; try again.
	}

	return printCountProfile(w, debug, name, &runtimeProfile{p, labels})
}

type runtimeProfile struct {
	stk    []runtime.StackRecord
	labels []unsafe.Pointer
}

func (p *runtimeProfile) Len() int              { return len(p.stk) }
func (p *runtimeProfile) Stack(i int) []uintptr { return p.stk[i].Stack() }
func (p *runtimeProfile) Label(i int) *labelMap { return (*labelMap)(p.labels[i]) }

var cpu struct {
	sync.Mutex
	profiling bool
	done      chan bool
}

// StartCPUProfile enables CPU profiling for the current process.
// While profiling, the profile will be buffered and written to w.
// StartCPUProfile returns an error if profiling is already enabled.
//
// On Unix-like systems, StartCPUProfile does not work by default for
// Go code built with -buildmode=c-archive or -buildmode=c-shared.
// StartCPUProfile relies on the SIGPROF signal, but that signal will
// be delivered to the main program's SIGPROF signal handler (if any)
// not to the one used by Go. To make it work, call [os/signal.Notify]
// for [syscall.SIGPROF], but note that doing so may break any profiling
// being done by the main program.
func StartCPUProfile(w io.Writer) error {
	// The runtime routines allow a variable profiling rate,
	// but in practice operating systems cannot trigger signals
	// at more than about 500 Hz, and our processing of the
	// signal is not cheap (mostly getting the stack trace).
	// 100 Hz is a reasonable choice: it is frequent enough to
	// produce useful data, rare enough not to bog down the
	// system, and a nice round number to make it easy to
	// convert sample counts to seconds. Instead of requiring
	// each client to specify the frequency, we hard code it.
	const hz = 100

	cpu.Lock()
	defer cpu.Unlock()
	if cpu.done == nil {
		cpu.done = make(chan bool)
	}
	// Double-check.
	if cpu.profiling {
		return fmt.Errorf("cpu profiling already in use")
	}
	cpu.profiling = true
	runtime.SetCPUProfileRate(hz)
	go profileWriter(w)
	return nil
}

// readProfile, provided by the runtime, returns the next chunk of
// binary CPU profiling stack trace data, blocking until data is available.
// If profiling is turned off and all the profile data accumulated while it was
// on has been returned, readProfile returns eof=true.
// The caller must save the returned data and tags before calling readProfile again.
func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool)

func profileWriter(w io.Writer) {
	b := newProfileBuilder(w)
	var err error
	for {
		time.Sleep(100 * time.Millisecond)
		data, tags, eof := readProfile()
		if e := b.addCPUData(data, tags); e != nil && err == nil {
			err = e
		}
		if eof {
			break
		}
	}
	if err != nil {
		// The runtime should never produce an invalid or truncated profile.
		// It drops records that can't fit into its log buffers.
		panic("runtime/pprof: converting profile: " + err.Error())
	}
	b.build()
	cpu.done <- true
}

// StopCPUProfile stops the current CPU profile, if any.
// StopCPUProfile only returns after all the writes for the
// profile have completed.
func StopCPUProfile() {
	cpu.Lock()
	defer cpu.Unlock()

	if !cpu.profiling {
		return
	}
	cpu.profiling = false
	runtime.SetCPUProfileRate(0)
	<-cpu.done
}

// countBlock returns the number of records in the blocking profile.
func countBlock() int {
	n, _ := runtime.BlockProfile(nil)
	return n
}

// countMutex returns the number of records in the mutex profile.
func countMutex() int {
	n, _ := runtime.MutexProfile(nil)
	return n
}

// writeBlock writes the current blocking profile to w.
func writeBlock(w io.Writer, debug int) error {
	return writeProfileInternal(w, debug, "contention", runtime.BlockProfile)
}

// writeMutex writes the current mutex profile to w.
func writeMutex(w io.Writer, debug int) error {
	return writeProfileInternal(w, debug, "mutex", runtime.MutexProfile)
}

// writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters.
func writeProfileInternal(w io.Writer, debug int, name string, runtimeProfile func([]runtime.BlockProfileRecord) (int, bool)) error {
	var p []runtime.BlockProfileRecord
	n, ok := runtimeProfile(nil)
	for {
		p = make([]runtime.BlockProfileRecord, n+50)
		n, ok = runtimeProfile(p)
		if ok {
			p = p[:n]
			break
		}
	}

	sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })

	if debug <= 0 {
		return printCountCycleProfile(w, "contentions", "delay", p)
	}

	b := bufio.NewWriter(w)
	tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
	w = tw

	fmt.Fprintf(w, "--- %v:\n", name)
	fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
	if name == "mutex" {
		fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
	}
	for i := range p {
		r := &p[i]
		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
		for _, pc := range r.Stack() {
			fmt.Fprintf(w, " %#x", pc)
		}
		fmt.Fprint(w, "\n")
		if debug > 0 {
			printStackRecord(w, r.Stack(), true)
		}
	}

	if tw != nil {
		tw.Flush()
	}
	return b.Flush()
}

func runtime_cyclesPerSecond() int64