summaryrefslogtreecommitdiffstats
path: root/src/runtime/traceback.go
blob: 1e5afc6bdde6dad24946cf52f86dfbb6d3bcd220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/abi"
	"internal/bytealg"
	"internal/goarch"
	"runtime/internal/sys"
	"unsafe"
)

// The code in this file implements stack trace walking for all architectures.
// The most important fact about a given architecture is whether it uses a link register.
// On systems with link registers, the prologue for a non-leaf function stores the
// incoming value of LR at the bottom of the newly allocated stack frame.
// On systems without link registers (x86), the architecture pushes a return PC during
// the call instruction, so the return PC ends up above the stack frame.
// In this file, the return PC is always called LR, no matter how it was found.

const usesLR = sys.MinFrameSize > 0

const (
	// tracebackInnerFrames is the number of innermost frames to print in a
	// stack trace. The total maximum frames is tracebackInnerFrames +
	// tracebackOuterFrames.
	tracebackInnerFrames = 50

	// tracebackOuterFrames is the number of outermost frames to print in a
	// stack trace.
	tracebackOuterFrames = 50
)

// unwindFlags control the behavior of various unwinders.
type unwindFlags uint8

const (
	// unwindPrintErrors indicates that if unwinding encounters an error, it
	// should print a message and stop without throwing. This is used for things
	// like stack printing, where it's better to get incomplete information than
	// to crash. This is also used in situations where everything may not be
	// stopped nicely and the stack walk may not be able to complete, such as
	// during profiling signals or during a crash.
	//
	// If neither unwindPrintErrors or unwindSilentErrors are set, unwinding
	// performs extra consistency checks and throws on any error.
	//
	// Note that there are a small number of fatal situations that will throw
	// regardless of unwindPrintErrors or unwindSilentErrors.
	unwindPrintErrors unwindFlags = 1 << iota

	// unwindSilentErrors silently ignores errors during unwinding.
	unwindSilentErrors

	// unwindTrap indicates that the initial PC and SP are from a trap, not a
	// return PC from a call.
	//
	// The unwindTrap flag is updated during unwinding. If set, frame.pc is the
	// address of a faulting instruction instead of the return address of a
	// call. It also means the liveness at pc may not be known.
	//
	// TODO: Distinguish frame.continpc, which is really the stack map PC, from
	// the actual continuation PC, which is computed differently depending on
	// this flag and a few other things.
	unwindTrap

	// unwindJumpStack indicates that, if the traceback is on a system stack, it
	// should resume tracing at the user stack when the system stack is
	// exhausted.
	unwindJumpStack
)

// An unwinder iterates the physical stack frames of a Go sack.
//
// Typical use of an unwinder looks like:
//
//	var u unwinder
//	for u.init(gp, 0); u.valid(); u.next() {
//		// ... use frame info in u ...
//	}
//
// Implementation note: This is carefully structured to be pointer-free because
// tracebacks happen in places that disallow write barriers (e.g., signals).
// Even if this is stack-allocated, its pointer-receiver methods don't know that
// their receiver is on the stack, so they still emit write barriers. Here we
// address that by carefully avoiding any pointers in this type. Another
// approach would be to split this into a mutable part that's passed by pointer
// but contains no pointers itself and an immutable part that's passed and
// returned by value and can contain pointers. We could potentially hide that
// we're doing that in trivial methods that are inlined into the caller that has
// the stack allocation, but that's fragile.
type unwinder struct {
	// frame is the current physical stack frame, or all 0s if
	// there is no frame.
	frame stkframe

	// g is the G who's stack is being unwound. If the
	// unwindJumpStack flag is set and the unwinder jumps stacks,
	// this will be different from the initial G.
	g guintptr

	// cgoCtxt is the index into g.cgoCtxt of the next frame on the cgo stack.
	// The cgo stack is unwound in tandem with the Go stack as we find marker frames.
	cgoCtxt int

	// calleeFuncID is the function ID of the caller of the current
	// frame.
	calleeFuncID abi.FuncID

	// flags are the flags to this unwind. Some of these are updated as we
	// unwind (see the flags documentation).
	flags unwindFlags
}

// init initializes u to start unwinding gp's stack and positions the
// iterator on gp's innermost frame. gp must not be the current G.
//
// A single unwinder can be reused for multiple unwinds.
func (u *unwinder) init(gp *g, flags unwindFlags) {
	// Implementation note: This starts the iterator on the first frame and we
	// provide a "valid" method. Alternatively, this could start in a "before
	// the first frame" state and "next" could return whether it was able to
	// move to the next frame, but that's both more awkward to use in a "for"
	// loop and is harder to implement because we have to do things differently
	// for the first frame.
	u.initAt(^uintptr(0), ^uintptr(0), ^uintptr(0), gp, flags)
}

func (u *unwinder) initAt(pc0, sp0, lr0 uintptr, gp *g, flags unwindFlags) {
	// Don't call this "g"; it's too easy get "g" and "gp" confused.
	if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
		// The starting sp has been passed in as a uintptr, and the caller may
		// have other uintptr-typed stack references as well.
		// If during one of the calls that got us here or during one of the
		// callbacks below the stack must be grown, all these uintptr references
		// to the stack will not be updated, and traceback will continue
		// to inspect the old stack memory, which may no longer be valid.
		// Even if all the variables were updated correctly, it is not clear that
		// we want to expose a traceback that begins on one stack and ends
		// on another stack. That could confuse callers quite a bit.
		// Instead, we require that initAt and any other function that
		// accepts an sp for the current goroutine (typically obtained by
		// calling getcallersp) must not run on that goroutine's stack but
		// instead on the g0 stack.
		throw("cannot trace user goroutine on its own stack")
	}

	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
		if gp.syscallsp != 0 {
			pc0 = gp.syscallpc
			sp0 = gp.syscallsp
			if usesLR {
				lr0 = 0
			}
		} else {
			pc0 = gp.sched.pc
			sp0 = gp.sched.sp
			if usesLR {
				lr0 = gp.sched.lr
			}
		}
	}

	var frame stkframe
	frame.pc = pc0
	frame.sp = sp0
	if usesLR {
		frame.lr = lr0
	}

	// If the PC is zero, it's likely a nil function call.
	// Start in the caller's frame.
	if frame.pc == 0 {
		if usesLR {
			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
			frame.lr = 0
		} else {
			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
			frame.sp += goarch.PtrSize
		}
	}

	// runtime/internal/atomic functions call into kernel helpers on
	// arm < 7. See runtime/internal/atomic/sys_linux_arm.s.
	//
	// Start in the caller's frame.
	if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 {
		// Note that the calls are simple BL without pushing the return
		// address, so we use LR directly.
		//
		// The kernel helpers are frameless leaf functions, so SP and
		// LR are not touched.
		frame.pc = frame.lr
		frame.lr = 0
	}

	f := findfunc(frame.pc)
	if !f.valid() {
		if flags&unwindSilentErrors == 0 {
			print("runtime: g ", gp.goid, " gp=", gp, ": unknown pc ", hex(frame.pc), "\n")
			tracebackHexdump(gp.stack, &frame, 0)
		}
		if flags&(unwindPrintErrors|unwindSilentErrors) == 0 {
			throw("unknown pc")
		}
		*u = unwinder{}
		return
	}
	frame.fn = f

	// Populate the unwinder.
	*u = unwinder{
		frame:        frame,
		g:            gp.guintptr(),
		cgoCtxt:      len(gp.cgoCtxt) - 1,
		calleeFuncID: abi.FuncIDNormal,
		flags:        flags,
	}

	isSyscall := frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp
	u.resolveInternal(true, isSyscall)
}

func (u *unwinder) valid() bool {
	return u.frame.pc != 0
}

// resolveInternal fills in u.frame based on u.frame.fn, pc, and sp.
//
// innermost indicates that this is the first resolve on this stack. If
// innermost is set, isSyscall indicates that the PC/SP was retrieved from
// gp.syscall*; this is otherwise ignored.
//
// On entry, u.frame contains:
//   - fn is the running function.
//   - pc is the PC in the running function.
//   - sp is the stack pointer at that program counter.
//   - For the innermost frame on LR machines, lr is the program counter that called fn.
//
// On return, u.frame contains:
//   - fp is the stack pointer of the caller.
//   - lr is the program counter that called fn.
//   - varp, argp, and continpc are populated for the current frame.
//
// If fn is a stack-jumping function, resolveInternal can change the entire
// frame state to follow that stack jump.
//
// This is internal to unwinder.
func (u *unwinder) resolveInternal(innermost, isSyscall bool) {
	frame := &u.frame
	gp := u.g.ptr()

	f := frame.fn
	if f.pcsp == 0 {
		// No frame information, must be external function, like race support.
		// See golang.org/issue/13568.
		u.finishInternal()
		return
	}

	// Compute function info flags.
	flag := f.flag
	if f.funcID == abi.FuncID_cgocallback {
		// cgocallback does write SP to switch from the g0 to the curg stack,
		// but it carefully arranges that during the transition BOTH stacks
		// have cgocallback frame valid for unwinding through.
		// So we don't need to exclude it with the other SP-writing functions.
		flag &^= abi.FuncFlagSPWrite
	}
	if isSyscall {
		// Some Syscall functions write to SP, but they do so only after
		// saving the entry PC/SP using entersyscall.
		// Since we are using the entry PC/SP, the later SP write doesn't matter.
		flag &^= abi.FuncFlagSPWrite
	}

	// Found an actual function.
	// Derive frame pointer.
	if frame.fp == 0 {
		// Jump over system stack transitions. If we're on g0 and there's a user
		// goroutine, try to jump. Otherwise this is a regular call.
		// We also defensively check that this won't switch M's on us,
		// which could happen at critical points in the scheduler.
		// This ensures gp.m doesn't change from a stack jump.
		if u.flags&unwindJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil && gp.m.curg.m == gp.m {
			switch f.funcID {
			case abi.FuncID_morestack:
				// morestack does not return normally -- newstack()
				// gogo's to curg.sched. Match that.
				// This keeps morestack() from showing up in the backtrace,
				// but that makes some sense since it'll never be returned
				// to.
				gp = gp.m.curg
				u.g.set(gp)
				frame.pc = gp.sched.pc
				frame.fn = findfunc(frame.pc)
				f = frame.fn
				flag = f.flag
				frame.lr = gp.sched.lr
				frame.sp = gp.sched.sp
				u.cgoCtxt = len(gp.cgoCtxt) - 1
			case abi.FuncID_systemstack:
				// systemstack returns normally, so just follow the
				// stack transition.
				if usesLR && funcspdelta(f, frame.pc) == 0 {
					// We're at the function prologue and the stack
					// switch hasn't happened, or epilogue where we're
					// about to return. Just unwind normally.
					// Do this only on LR machines because on x86
					// systemstack doesn't have an SP delta (the CALL
					// instruction opens the frame), therefore no way
					// to check.
					flag &^= abi.FuncFlagSPWrite
					break
				}
				gp = gp.m.curg
				u.g.set(gp)
				frame.sp = gp.sched.sp
				u.cgoCtxt = len(gp.cgoCtxt) - 1
				flag &^= abi.FuncFlagSPWrite
			}
		}
		frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc))
		if !usesLR {
			// On x86, call instruction pushes return PC before entering new function.
			frame.fp += goarch.PtrSize
		}
	}

	// Derive link register.
	if flag&abi.FuncFlagTopFrame != 0 {
		// This function marks the top of the stack. Stop the traceback.
		frame.lr = 0
	} else if flag&abi.FuncFlagSPWrite != 0 && (!innermost || u.flags&(unwindPrintErrors|unwindSilentErrors) != 0) {
		// The function we are in does a write to SP that we don't know
		// how to encode in the spdelta table. Examples include context
		// switch routines like runtime.gogo but also any code that switches
		// to the g0 stack to run host C code.
		// We can't reliably unwind the SP (we might not even be on
		// the stack we think we are), so stop the traceback here.
		//
		// The one exception (encoded in the complex condition above) is that
		// we assume if we're doing a precise traceback, and this is the
		// innermost frame, that the SPWRITE function voluntarily preempted itself on entry
		// during the stack growth check. In that case, the function has
		// not yet had a chance to do any writes to SP and is safe to unwind.
		// isAsyncSafePoint does not allow assembly functions to be async preempted,
		// and preemptPark double-checks that SPWRITE functions are not async preempted.
		// So for GC stack traversal, we can safely ignore SPWRITE for the innermost frame,
		// but farther up the stack we'd better not find any.
		// This is somewhat imprecise because we're just guessing that we're in the stack
		// growth check. It would be better if SPWRITE were encoded in the spdelta
		// table so we would know for sure that we were still in safe code.
		//
		// uSE uPE inn | action
		//  T   _   _  | frame.lr = 0
		//  F   T   _  | frame.lr = 0
		//  F   F   F  | print; panic
		//  F   F   T  | ignore SPWrite
		if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && !innermost {
			println("traceback: unexpected SPWRITE function", funcname(f))
			throw("traceback")
		}
		frame.lr = 0
	} else {
		var lrPtr uintptr
		if usesLR {
			if innermost && frame.sp < frame.fp || frame.lr == 0 {
				lrPtr = frame.sp
				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
			}
		} else {
			if frame.lr == 0 {
				lrPtr = frame.fp - goarch.PtrSize
				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
			}
		}
	}

	frame.varp = frame.fp
	if !usesLR {
		// On x86, call instruction pushes return PC before entering new function.
		frame.varp -= goarch.PtrSize
	}

	// For architectures with frame pointers, if there's
	// a frame, then there's a saved frame pointer here.
	//
	// NOTE: This code is not as general as it looks.
	// On x86, the ABI is to save the frame pointer word at the
	// top of the stack frame, so we have to back down over it.
	// On arm64, the frame pointer should be at the bottom of
	// the stack (with R29 (aka FP) = RSP), in which case we would
	// not want to do the subtraction here. But we started out without
	// any frame pointer, and when we wanted to add it, we didn't
	// want to break all the assembly doing direct writes to 8(RSP)
	// to set the first parameter to a called function.
	// So we decided to write the FP link *below* the stack pointer
	// (with R29 = RSP - 8 in Go functions).
	// This is technically ABI-compatible but not standard.
	// And it happens to end up mimicking the x86 layout.
	// Other architectures may make different decisions.
	if frame.varp > frame.sp && framepointer_enabled {
		frame.varp -= goarch.PtrSize
	}

	frame.argp = frame.fp + sys.MinFrameSize

	// Determine frame's 'continuation PC', where it can continue.
	// Normally this is the return address on the stack, but if sigpanic
	// is immediately below this function on the stack, then the frame
	// stopped executing due to a trap, and frame.pc is probably not
	// a safe point for looking up liveness information. In this panicking case,
	// the function either doesn't return at all (if it has no defers or if the
	// defers do not recover) or it returns from one of the calls to
	// deferproc a second time (if the corresponding deferred func recovers).
	// In the latter case, use a deferreturn call site as the continuation pc.
	frame.continpc = frame.pc
	if u.calleeFuncID == abi.FuncID_sigpanic {
		if frame.fn.deferreturn != 0 {
			frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1
			// Note: this may perhaps keep return variables alive longer than
			// strictly necessary, as we are using "function has a defer statement"
			// as a proxy for "function actually deferred something". It seems
			// to be a minor drawback. (We used to actually look through the
			// gp._defer for a defer corresponding to this function, but that
			// is hard to do with defer records on the stack during a stack copy.)
			// Note: the +1 is to offset the -1 that
			// stack.go:getStackMap does to back up a return
			// address make sure the pc is in the CALL instruction.
		} else {
			frame.continpc = 0
		}
	}
}

func (u *unwinder) next() {
	frame := &u.frame
	f := frame.fn
	gp := u.g.ptr()

	// Do not unwind past the bottom of the stack.
	if frame.lr == 0 {
		u.finishInternal()
		return
	}
	flr := findfunc(frame.lr)
	if !flr.valid() {
		// This happens if you get a profiling interrupt at just the wrong time.
		// In that context it is okay to stop early.
		// But if no error flags are set, we're doing a garbage collection and must
		// get everything, so crash loudly.
		fail := u.flags&(unwindPrintErrors|unwindSilentErrors) == 0
		doPrint := u.flags&unwindSilentErrors == 0
		if doPrint && gp.m.incgo && f.funcID == abi.FuncID_sigpanic {
			// We can inject sigpanic
			// calls directly into C code,
			// in which case we'll see a C
			// return PC. Don't complain.
			doPrint = false
		}
		if fail || doPrint {
			print("runtime: g ", gp.goid, ": unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
			tracebackHexdump(gp.stack, frame, 0)
		}
		if fail {
			throw("unknown caller pc")
		}
		frame.lr = 0
		u.finishInternal()
		return
	}

	if frame.pc == frame.lr && frame.sp == frame.fp {
		// If the next frame is identical to the current frame, we cannot make progress.
		print("runtime: traceback stuck. pc=", hex(frame.pc), " sp=", hex(frame.sp), "\n")
		tracebackHexdump(gp.stack, frame, frame.sp)
		throw("traceback stuck")
	}

	injectedCall := f.funcID == abi.FuncID_sigpanic || f.funcID == abi.FuncID_asyncPreempt || f.funcID == abi.FuncID_debugCallV2
	if injectedCall {
		u.flags |= unwindTrap
	} else {
		u.flags &^= unwindTrap
	}

	// Unwind to next frame.
	u.calleeFuncID = f.funcID
	frame.fn = flr
	frame.pc = frame.lr
	frame.lr = 0
	frame.sp = frame.fp
	frame.fp = 0

	// On link register architectures, sighandler saves the LR on stack
	// before faking a call.
	if usesLR && injectedCall {
		x := *(*uintptr)(unsafe.Pointer(frame.sp))
		frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign)
		f = findfunc(frame.pc)
		frame.fn = f
		if !f.valid() {
			frame.pc = x
		} else if funcspdelta(f, frame.pc) == 0 {
			frame.lr = x
		}
	}

	u.resolveInternal(false, false)
}

// finishInternal is an unwinder-internal helper called after the stack has been
// exhausted. It sets the unwinder to an invalid state and checks that it
// successfully unwound the entire stack.
func (u *unwinder) finishInternal() {
	u.frame.pc = 0

	// Note that panic != nil is okay here: there can be leftover panics,
	// because the defers on the panic stack do not nest in frame order as
	// they do on the defer stack. If you have:
	//
	//	frame 1 defers d1
	//	frame 2 defers d2
	//	frame 3 defers d3
	//	frame 4 panics
	//	frame 4's panic starts running defers
	//	frame 5, running d3, defers d4
	//	frame 5 panics
	//	frame 5's panic starts running defers
	//	frame 6, running d4, garbage collects
	//	frame 6, running d2, garbage collects
	//
	// During the execution of d4, the panic stack is d4 -> d3, which
	// is nested properly, and we'll treat frame 3 as resumable, because we
	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
	// and frame 5 continues running, d3, d3 can recover and we'll
	// resume execution in (returning from) frame 3.)
	//
	// During the execution of d2, however, the panic stack is d2 -> d3,
	// which is inverted. The scan will match d2 to frame 2 but having
	// d2 on the stack until then means it will not match d3 to frame 3.
	// This is okay: if we're running d2, then all the defers after d2 have
	// completed and their corresponding frames are dead. Not finding d3
	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
	// (frame 3 is dead). At the end of the walk the panic stack can thus
	// contain defers (d3 in this case) for dead frames. The inversion here
	// always indicates a dead frame, and the effect of the inversion on the
	// scan is to hide those dead frames, so the scan is still okay:
	// what's left on the panic stack are exactly (and only) the dead frames.
	//
	// We require callback != nil here because only when callback != nil
	// do we know that gentraceback is being called in a "must be correct"
	// context as opposed to a "best effort" context. The tracebacks with
	// callbacks only happen when everything is stopped nicely.
	// At other times, such as when gathering a stack for a profiling signal
	// or when printing a traceback during a crash, everything may not be
	// stopped nicely, and the stack walk may not be able to complete.
	gp := u.g.ptr()
	if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && u.frame.sp != gp.stktopsp {
		print("runtime: g", gp.goid, ": frame.sp=", hex(u.frame.sp), " top=", hex(gp.stktopsp), "\n")
		print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "\n")
		throw("traceback did not unwind completely")
	}
}

// symPC returns the PC that should be used for symbolizing the current frame.
// Specifically, this is the PC of the last instruction executed in this frame.
//
// If this frame did a normal call, then frame.pc is a return PC, so this will
// return frame.pc-1, which points into the CALL instruction. If the frame was
// interrupted by a signal (e.g., profiler, segv, etc) then frame.pc is for the
// trapped instruction, so this returns frame.pc. See issue #34123. Finally,
// frame.pc can be at function entry when the frame is initialized without
// actually running code, like in runtime.mstart, in which case this returns
// frame.pc because that's the best we can do.
func (u *unwinder) symPC() uintptr {
	if u.flags&unwindTrap == 0 && u.frame.pc > u.frame.fn.entry() {
		// Regular call.
		return u.frame.pc - 1
	}
	// Trapping instruction or we're at the function entry point.
	return u.frame.pc
}

// cgoCallers populates pcBuf with the cgo callers of the current frame using
// the registered cgo unwinder. It returns the number of PCs written to pcBuf.
// If the current frame is not a cgo frame or if there's no registered cgo
// unwinder, it returns 0.
func (u *unwinder) cgoCallers(pcBuf []uintptr) int {
	if cgoTraceback == nil || u.frame.fn.funcID != abi.FuncID_cgocallback || u.cgoCtxt < 0 {
		// We don't have a cgo unwinder (typical case), or we do but we're not
		// in a cgo frame or we're out of cgo context.
		return 0
	}

	ctxt := u.g.ptr().cgoCtxt[u.cgoCtxt]
	u.cgoCtxt--
	cgoContextPCs(ctxt, pcBuf)
	for i, pc := range pcBuf {
		if pc == 0 {
			return i
		}
	}
	return len(pcBuf)
}

// tracebackPCs populates pcBuf with the return addresses for each frame from u
// and returns the number of PCs written to pcBuf. The returned PCs correspond
// to "logical frames" rather than "physical frames"; that is if A is inlined
// into B, this will still return a PCs for both A and B. This also includes PCs
// generated by the cgo unwinder, if one is registered.
//
// If skip != 0, this skips this many logical frames.
//
// Callers should set the unwindSilentErrors flag on u.
func tracebackPCs(u *unwinder, skip int, pcBuf []uintptr) int {
	var cgoBuf [32]uintptr
	n := 0
	for ; n < len(pcBuf) && u.valid(); u.next() {
		f := u.frame.fn
		cgoN := u.cgoCallers(cgoBuf[:])

		// TODO: Why does &u.cache cause u to escape? (Same in traceback2)
		for iu, uf := newInlineUnwinder(f, u.symPC()); n < len(pcBuf) && uf.valid(); uf = iu.next(uf) {
			sf := iu.srcFunc(uf)
			if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(u.calleeFuncID) {
				// ignore wrappers
			} else if skip > 0 {
				skip--
			} else {
				// Callers expect the pc buffer to contain return addresses
				// and do the -1 themselves, so we add 1 to the call PC to
				// create a return PC.
				pcBuf[n] = uf.pc + 1
				n++
			}
			u.calleeFuncID = sf.funcID
		}
		// Add cgo frames (if we're done skipping over the requested number of
		// Go frames).
		if skip == 0 {
			n += copy(pcBuf[n:], cgoBuf[:cgoN])
		}
	}
	return n
}

// printArgs prints function arguments in traceback.
func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) {
	// The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo.
	// See cmd/compile/internal/ssagen.emitArgInfo for the description of the
	// encoding.
	// These constants need to be in sync with the compiler.
	const (
		_endSeq         = 0xff
		_startAgg       = 0xfe
		_endAgg         = 0xfd
		_dotdotdot      = 0xfc
		_offsetTooLarge = 0xfb
	)

	const (
		limit    = 10                       // print no more than 10 args/components
		maxDepth = 5                        // no more than 5 layers of nesting
		maxLen   = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning)
	)

	p := (*[maxLen]uint8)(funcdata(f, abi.FUNCDATA_ArgInfo))
	if p == nil {
		return
	}

	liveInfo := funcdata(f, abi.FUNCDATA_ArgLiveInfo)
	liveIdx := pcdatavalue(f, abi.PCDATA_ArgLiveIndex, pc)
	startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live)
	if liveInfo != nil {
		startOffset = *(*uint8)(liveInfo)
	}

	isLive := func(off, slotIdx uint8) bool {
		if liveInfo == nil || liveIdx <= 0 {
			return true // no liveness info, always live
		}
		if off < startOffset {
			return true
		}
		bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8)))
		return bits&(1<<(slotIdx%8)) != 0
	}

	print1 := func(off, sz, slotIdx uint8) {
		x := readUnaligned64(add(argp, uintptr(off)))
		// mask out irrelevant bits
		if sz < 8 {
			shift := 64 - sz*8
			if goarch.BigEndian {
				x = x >> shift
			} else {
				x = x << shift >> shift
			}
		}
		print(hex(x))
		if !isLive(off, slotIdx) {
			print("?")
		}
	}

	start := true
	printcomma := func() {
		if !start {
			print(", ")
		}
	}
	pi := 0
	slotIdx := uint8(0) // register arg spill slot index
printloop:
	for {
		o := p[pi]
		pi++
		switch o {
		case _endSeq:
			break printloop
		case _startAgg:
			printcomma()
			print("{")
			start = true
			continue
		case _endAgg:
			print("}")
		case _dotdotdot:
			printcomma()
			print("...")
		case _offsetTooLarge:
			printcomma()
			print("_")
		default:
			printcomma()
			sz := p[pi]
			pi++
			print1(o, sz, slotIdx)
			if o >= startOffset {
				slotIdx++
			}
		}
		start = false
	}
}

// funcNamePiecesForPrint returns the function name for printing to the user.
// It returns three pieces so it doesn't need an allocation for string
// concatenation.
func funcNamePiecesForPrint(name string) (string, string, string) {
	// Replace the shape name in generic function with "...".
	i := bytealg.IndexByteString(name, '[')
	if i < 0 {
		return name, "", ""
	}
	j := len(name) - 1
	for name[j] != ']' {
		j--
	}
	if j <= i {
		return name, "", ""
	}
	return name[:i], "[...]", name[j+1:]
}

// funcNameForPrint returns the function name for printing to the user.
func funcNameForPrint(name string) string {
	a, b, c := funcNamePiecesForPrint(name)
	return a + b + c
}

// printFuncName prints a function name. name is the function name in
// the binary's func data table.
func printFuncName(name string) {
	if name == "runtime.gopanic" {
		print("panic")
		return
	}
	a, b, c := funcNamePiecesForPrint(name)
	print(a, b, c)
}

func printcreatedby(gp *g) {
	// Show what created goroutine, except main goroutine (goid 1).
	pc := gp.gopc
	f := findfunc(pc)
	if f.valid() && showframe(f.srcFunc(), gp, false, abi.FuncIDNormal) && gp.goid != 1 {
		printcreatedby1(f, pc, gp.parentGoid)
	}
}

func printcreatedby1(f funcInfo, pc uintptr, goid uint64) {
	print("created by ")
	printFuncName(funcname(f))
	if goid != 0 {
		print(" in goroutine ", goid)
	}
	print("\n")
	tracepc := pc // back up to CALL instruction for funcline.
	if pc > f.entry() {
		tracepc -= sys.PCQuantum
	}
	file, line := funcline(f, tracepc)
	print("\t", file, ":", line)
	if pc > f.entry() {
		print(" +", hex(pc-f.entry()))
	}
	print("\n")
}

func traceback(pc, sp, lr uintptr, gp *g) {
	traceback1(pc, sp, lr, gp, 0)
}

// tracebacktrap is like traceback but expects that the PC and SP were obtained
// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
// Because they are from a trap instead of from a saved pair,
// the initial PC must not be rewound to the previous instruction.
// (All the saved pairs record a PC that is a return address, so we
// rewind it into the CALL instruction.)
// If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
// the pc/sp/lr passed in.
func tracebacktrap(pc, sp, lr uintptr, gp *g) {
	if gp.m.libcallsp != 0 {
		// We're in C code somewhere, traceback from the saved position.
		traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
		return
	}
	traceback1(pc, sp, lr, gp, unwindTrap)
}

func traceback1(pc, sp, lr uintptr, gp *g, flags unwindFlags) {
	// If the goroutine is in cgo, and we have a cgo traceback, print that.
	if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
		// Lock cgoCallers so that a signal handler won't
		// change it, copy the array, reset it, unlock it.
		// We are locked to the thread and are not running
		// concurrently with a signal handler.
		// We just have to stop a signal handler from interrupting
		// in the middle of our copy.
		gp.m.cgoCallersUse.Store(1)
		cgoCallers := *gp.m.cgoCallers
		gp.m.cgoCallers[0] = 0
		gp.m.cgoCallersUse.Store(0)

		printCgoTraceback(&cgoCallers)
	}

	if readgstatus(gp)&^_Gscan == _Gsyscall {
		// Override registers if blocked in system call.
		pc = gp.syscallpc
		sp = gp.syscallsp
		flags &^= unwindTrap
	}
	if gp.m != nil && gp.m.vdsoSP != 0 {
		// Override registers if running in VDSO. This comes after the
		// _Gsyscall check to cover VDSO calls after entersyscall.
		pc = gp.m.vdsoPC
		sp = gp.m.vdsoSP
		flags &^= unwindTrap
	}

	// Print traceback.
	//
	// We print the first tracebackInnerFrames frames, and the last
	// tracebackOuterFrames frames. There are many possible approaches to this.
	// There are various complications to this:
	//
	// - We'd prefer to walk the stack once because in really bad situations
	//   traceback may crash (and we want as much output as possible) or the stack
	//   may be changing.
	//
	// - Each physical frame can represent several logical frames, so we might
	//   have to pause in the middle of a physical frame and pick up in the middle
	//   of a physical frame.
	//
	// - The cgo symbolizer can expand a cgo PC to more than one logical frame,
	//   and involves juggling state on the C side that we don't manage. Since its
	//   expansion state is managed on the C side, we can't capture the expansion
	//   state part way through, and because the output strings are managed on the
	//   C side, we can't capture the output. Thus, our only choice is to replay a
	//   whole expansion, potentially discarding some of it.
	//
	// Rejected approaches:
	//
	// - Do two passes where the first pass just counts and the second pass does
	//   all the printing. This is undesirable if the stack is corrupted or changing
	//   because we won't see a partial stack if we panic.
	//
	// - Keep a ring buffer of the last N logical frames and use this to print
	//   the bottom frames once we reach the end of the stack. This works, but
	//   requires keeping a surprising amount of state on the stack, and we have
	//   to run the cgo symbolizer twice—once to count frames, and a second to
	//   print them—since we can't retain the strings it returns.
	//
	// Instead, we print the outer frames, and if we reach that limit, we clone
	// the unwinder, count the remaining frames, and then skip forward and
	// finish printing from the clone. This makes two passes over the outer part
	// of the stack, but the single pass over the inner part ensures that's
	// printed immediately and not revisited. It keeps minimal state on the
	// stack. And through a combination of skip counts and limits, we can do all
	// of the steps we need with a single traceback printer implementation.
	//
	// We could be more lax about exactly how many frames we print, for example
	// always stopping and resuming on physical frame boundaries, or at least
	// cgo expansion boundaries. It's not clear that's much simpler.
	flags |= unwindPrintErrors
	var u unwinder
	tracebackWithRuntime := func(showRuntime bool) int {
		const maxInt int = 0x7fffffff
		u.initAt(pc, sp, lr, gp, flags)
		n, lastN := traceback2(&u, showRuntime, 0, tracebackInnerFrames)
		if n < tracebackInnerFrames {
			// We printed the whole stack.
			return n
		}
		// Clone the unwinder and figure out how many frames are left. This
		// count will include any logical frames already printed for u's current
		// physical frame.
		u2 := u
		remaining, _ := traceback2(&u, showRuntime, maxInt, 0)
		elide := remaining - lastN - tracebackOuterFrames
		if elide > 0 {
			print("...", elide, " frames elided...\n")
			traceback2(&u2, showRuntime, lastN+elide, tracebackOuterFrames)
		} else if elide <= 0 {
			// There are tracebackOuterFrames or fewer frames left to print.
			// Just print the rest of the stack.
			traceback2(&u2, showRuntime, lastN, tracebackOuterFrames)
		}
		return n
	}
	// By default, omits runtime frames. If that means we print nothing at all,
	// repeat forcing all frames printed.
	if tracebackWithRuntime(false) == 0 {
		tracebackWithRuntime(true)
	}
	printcreatedby(gp)

	if gp.ancestors == nil {
		return
	}
	for _, ancestor := range *gp.ancestors {
		printAncestorTraceback(ancestor)
	}
}

// traceback2 prints a stack trace starting at u. It skips the first "skip"
// logical frames, after which it prints at most "max" logical frames. It
// returns n, which is the number of logical frames skipped and printed, and
// lastN, which is the number of logical frames skipped or printed just in the
// physical frame that u references.
func traceback2(u *unwinder, showRuntime bool, skip, max int) (n, lastN int) {
	// commitFrame commits to a logical frame and returns whether this frame
	// should be printed and whether iteration should stop.
	commitFrame := func() (pr, stop bool) {
		if skip == 0 && max == 0 {
			// Stop
			return false, true
		}
		n++
		lastN++
		if skip > 0 {
			// Skip
			skip--
			return false, false
		}
		// Print
		max--
		return true, false
	}

	gp := u.g.ptr()
	level, _, _ := gotraceback()
	var cgoBuf [32]uintptr
	for ; u.valid(); u.next() {
		lastN = 0
		f := u.frame.fn
		for iu, uf := newInlineUnwinder(f, u.symPC()); uf.valid(); uf = iu.next(uf) {
			sf := iu.srcFunc(uf)
			callee := u.calleeFuncID
			u.calleeFuncID = sf.funcID
			if !(showRuntime || showframe(sf, gp, n == 0, callee)) {
				continue
			}

			if pr, stop := commitFrame(); stop {
				return
			} else if !pr {
				continue
			}

			name := sf.name()
			file, line := iu.fileLine(uf)
			// Print during crash.
			//	main(0x1, 0x2, 0x3)
			//		/home/rsc/go/src/runtime/x.go:23 +0xf
			//
			printFuncName(name)
			print("(")
			if iu.isInlined(uf) {
				print("...")
			} else {
				argp := unsafe.Pointer(u.frame.argp)
				printArgs(f, argp, u.symPC())
			}
			print(")\n")
			print("\t", file, ":", line)
			if !iu.isInlined(uf) {
				if u.frame.pc > f.entry() {
					print(" +", hex(u.frame.pc-f.entry()))
				}
				if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
					print(" fp=", hex(u.frame.fp), " sp=", hex(u.frame.sp), " pc=", hex(u.frame.pc))
				}
			}
			print("\n")
		}

		// Print cgo frames.
		if cgoN := u.cgoCallers(cgoBuf[:]); cgoN > 0 {
			var arg cgoSymbolizerArg
			anySymbolized := false
			stop := false
			for _, pc := range cgoBuf[:cgoN] {
				if cgoSymbolizer == nil {
					if pr, stop := commitFrame(); stop {
						break
					} else if pr {
						print("non-Go function at pc=", hex(pc), "\n")
					}
				} else {
					stop = printOneCgoTraceback(pc, commitFrame, &arg)
					anySymbolized = true
					if stop {
						break
					}
				}
			}
			if anySymbolized {
				// Free symbolization state.
				arg.pc = 0
				callCgoSymbolizer(&arg)
			}
			if stop {
				return
			}
		}
	}
	return n, 0
}

// printAncestorTraceback prints the traceback of the given ancestor.
// TODO: Unify this with gentraceback and CallersFrames.
func printAncestorTraceback(ancestor ancestorInfo) {
	print("[originating from goroutine ", ancestor.goid, "]:\n")
	for fidx, pc := range ancestor.pcs {
		f := findfunc(pc) // f previously validated
		if showfuncinfo(f.srcFunc(), fidx == 0, abi.FuncIDNormal) {
			printAncestorTracebackFuncInfo(f, pc)
		}
	}
	if len(ancestor.pcs) == tracebackInnerFrames {
		print("...additional frames elided...\n")
	}
	// Show what created goroutine, except main goroutine (goid 1).
	f := findfunc(ancestor.gopc)
	if f.valid() && showfuncinfo(f.srcFunc(), false, abi.FuncIDNormal) && ancestor.goid != 1 {
		// In ancestor mode, we'll already print the goroutine ancestor.
		// Pass 0 for the goid parameter so we don't print it again.
		printcreatedby1(f, ancestor.gopc, 0)
	}
}

// printAncestorTracebackFuncInfo prints the given function info at a given pc
// within an ancestor traceback. The precision of this info is reduced
// due to only have access to the pcs at the time of the caller
// goroutine being created.
func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
	u, uf := newInlineUnwinder(f, pc)
	file, line := u.fileLine(uf)
	printFuncName(u.srcFunc(uf).name())
	print("(...)\n")
	print("\t", file, ":", line)
	if pc > f.entry() {
		print(" +", hex(pc-f.entry()))
	}
	print("\n")
}

func callers(skip int, pcbuf []uintptr) int {
	sp := getcallersp()
	pc := getcallerpc()
	gp := getg()
	var n int
	systemstack(func() {
		var u unwinder
		u.initAt(pc, sp, 0, gp, unwindSilentErrors)
		n = tracebackPCs(&u, skip, pcbuf)
	})
	return n
}

func gcallers(gp *g, skip int, pcbuf []uintptr) int {
	var u unwinder
	u.init(gp, unwindSilentErrors)
	return tracebackPCs(&u, skip, pcbuf)
}

// showframe reports whether the frame with the given characteristics should
// be printed during a traceback.
func showframe(sf srcFunc, gp *g, firstFrame bool, calleeID abi.FuncID) bool {
	mp := getg().m
	if mp.throwing >= throwTypeRuntime && gp != nil && (gp == mp.curg || gp == mp.caughtsig.ptr()) {
		return true
	}
	return showfuncinfo(sf, firstFrame, calleeID)
}

// showfuncinfo reports whether a function with the given characteristics should
// be printed during a traceback.
func showfuncinfo(sf srcFunc, firstFrame bool, calleeID abi.FuncID) bool {
	level, _, _ := gotraceback()
	if level > 1 {
		// Show all frames.
		return true
	}

	if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) {
		return false
	}

	name := sf.name()

	// Special case: always show runtime.gopanic frame
	// in the middle of a stack trace, so that we can
	// see the boundary between ordinary code and
	// panic-induced deferred code.
	// See golang.org/issue/5832.
	if name == "runtime.gopanic" && !firstFrame {
		return true
	}

	return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
}

// isExportedRuntime reports whether name is an exported runtime function.
// It is only for runtime functions, so ASCII A-Z is fine.
// TODO: this handles exported functions but not exported methods.
func isExportedRuntime(name string) bool {
	const n = len("runtime.")
	return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
}

// elideWrapperCalling reports whether a wrapper function that called
// function id should be elided from stack traces.
func elideWrapperCalling(id abi.FuncID) bool {
	// If the wrapper called a panic function instead of the
	// wrapped function, we want to include it in stacks.
	return !(id == abi.FuncID_gopanic || id == abi.FuncID_sigpanic || id == abi.FuncID_panicwrap)
}

var gStatusStrings = [...]string{
	_Gidle:      "idle",
	_Grunnable:  "runnable",
	_Grunning:   "running",
	_Gsyscall:   "syscall",
	_Gwaiting:   "waiting",
	_Gdead:      "dead",
	_Gcopystack: "copystack",
	_Gpreempted: "preempted",
}

func goroutineheader(gp *g) {
	level, _, _ := gotraceback()

	gpstatus := readgstatus(gp)

	isScan := gpstatus&_Gscan != 0
	gpstatus &^= _Gscan // drop the scan bit

	// Basic string status
	var status string
	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
		status = gStatusStrings[gpstatus]
	} else {
		status = "???"
	}

	// Override.
	if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
		status = gp.waitreason.String()
	}

	// approx time the G is blocked, in minutes
	var waitfor int64
	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
		waitfor = (nanotime() - gp.waitsince) / 60e9
	}
	print("goroutine ", gp.goid)
	if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
		print(" gp=", gp)
		if gp.m != nil {
			print(" m=", gp.m.id, " mp=", gp.m)
		} else {
			print(" m=nil")
		}
	}
	print(" [", status)
	if isScan {
		print(" (scan)")
	}
	if waitfor >= 1 {
		print(", ", waitfor, " minutes")
	}
	if gp.lockedm != 0 {
		print(", locked to thread")
	}
	print("]:\n")
}

func tracebackothers(me *g) {
	level, _, _ := gotraceback()

	// Show the current goroutine first, if we haven't already.
	curgp := getg().m.curg
	if curgp != nil && curgp != me {
		print("\n")
		goroutineheader(curgp)
		traceback(^uintptr(0), ^uintptr(0), 0, curgp)
	}

	// We can't call locking forEachG here because this may be during fatal
	// throw/panic, where locking could be out-of-order or a direct
	// deadlock.
	//
	// Instead, use forEachGRace, which requires no locking. We don't lock
	// against concurrent creation of new Gs, but even with allglock we may
	// miss Gs created after this loop.
	forEachGRace(func(gp *g) {
		if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
			return
		}
		print("\n")
		goroutineheader(gp)
		// Note: gp.m == getg().m occurs when tracebackothers is called
		// from a signal handler initiated during a systemstack call.
		// The original G is still in the running state, and we want to
		// print its stack.
		if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
			print("\tgoroutine running on other thread; stack unavailable\n")
			printcreatedby(gp)
		} else {
			traceback(^uintptr(0), ^uintptr(0), 0, gp)
		}
	})
}

// tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
// for debugging purposes. If the address bad is included in the
// hexdumped range, it will mark it as well.
func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
	const expand = 32 * goarch.PtrSize
	const maxExpand = 256 * goarch.PtrSize
	// Start around frame.sp.
	lo, hi := frame.sp, frame.sp
	// Expand to include frame.fp.
	if frame.fp != 0 && frame.fp < lo {
		lo = frame.fp
	}
	if frame.fp != 0 && frame.fp > hi {
		hi = frame.fp
	}
	// Expand a bit more.
	lo, hi = lo-expand, hi+expand
	// But don't go too far from frame.sp.
	if lo < frame.sp-maxExpand {
		lo = frame.sp - maxExpand
	}
	if hi > frame.sp+maxExpand {
		hi = frame.sp + maxExpand
	}
	// And don't go outside the stack bounds.
	if lo < stk.lo {
		lo = stk.lo
	}
	if hi > stk.hi {
		hi = stk.hi
	}

	// Print the hex dump.
	print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
	hexdumpWords(lo, hi, func(p uintptr) byte {
		switch p {
		case frame.fp:
			return '>'
		case frame.sp:
			return '<'
		case bad:
			return '!'
		}
		return 0
	})
}

// isSystemGoroutine reports whether the goroutine g must be omitted
// in stack dumps and deadlock detector. This is any goroutine that
// starts at a runtime.* entry point, except for runtime.main,
// runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
//
// If fixed is true, any goroutine that can vary between user and
// system (that is, the finalizer goroutine) is considered a user
// goroutine.
func isSystemGoroutine(gp *g, fixed bool) bool {
	// Keep this in sync with internal/trace.IsSystemGoroutine.
	f := findfunc(gp.startpc)
	if !f.valid() {
		return false
	}
	if f.funcID == abi.FuncID_runtime_main || f.funcID == abi.FuncID_corostart || f.funcID == abi.FuncID_handleAsyncEvent {
		return false
	}
	if f.funcID == abi.FuncID_runfinq {
		// We include the finalizer goroutine if it's calling
		// back into user code.
		if fixed {
			// This goroutine can vary. In fixed mode,
			// always consider it a user goroutine.
			return false
		}
		return fingStatus.Load()&fingRunningFinalizer == 0
	}
	return hasPrefix(funcname(f), "runtime.")
}

// SetCgoTraceback records three C functions to use to gather
// traceback information from C code and to convert that traceback
// information into symbolic information. These are used when printing
// stack traces for a program that uses cgo.
//
// The traceback and context functions may be called from a signal
// handler, and must therefore use only async-signal safe functions.
// The symbolizer function may be called while the program is
// crashing, and so must be cautious about using memory.  None of the
// functions may call back into Go.
//
// The context function will be called with a single argument, a
// pointer to a struct:
//
//	struct {
//		Context uintptr
//	}
//
// In C syntax, this struct will be
//
//	struct {
//		uintptr_t Context;
//	};
//
// If the Context field is 0, the context function is being called to
// record the current traceback context. It should record in the
// Context field whatever information is needed about the current
// point of execution to later produce a stack trace, probably the
// stack pointer and PC. In this case the context function will be
// called from C code.
//
// If the Context field is not 0, then it is a value returned by a
// previous call to the context function. This case is called when the
// context is no longer needed; that is, when the Go code is returning
// to its C code caller. This permits the context function to release
// any associated resources.
//
// While it would be correct for the context function to record a
// complete a stack trace whenever it is called, and simply copy that
// out in the traceback function, in a typical program the context
// function will be called many times without ever recording a
// traceback for that context. Recording a complete stack trace in a
// call to the context function is likely to be inefficient.
//
// The traceback function will be called with a single argument, a
// pointer to a struct:
//
//	struct {
//		Context    uintptr
//		SigContext uintptr
//		Buf        *uintptr
//		Max        uintptr
//	}
//
// In C syntax, this struct will be
//
//	struct {
//		uintptr_t  Context;
//		uintptr_t  SigContext;
//		uintptr_t* Buf;
//		uintptr_t  Max;
//	};
//
// The Context field will be zero to gather a traceback from the
// current program execution point. In this case, the traceback
// function will be called from C code.
//
// Otherwise Context will be a value previously returned by a call to
// the context function. The traceback function should gather a stack
// trace from that saved point in the program execution. The traceback
// function may be called from an execution thread other than the one
// that recorded the context, but only when the context is known to be
// valid and unchanging. The traceback function may also be called
// deeper in the call stack on the same thread that recorded the
// context. The traceback function may be called multiple times with
// the same Context value; it will usually be appropriate to cache the
// result, if possible, the first time this is called for a specific
// context value.
//
// If the traceback function is called from a signal handler on a Unix
// system, SigContext will be the signal context argument passed to
// the signal handler (a C ucontext_t* cast to uintptr_t). This may be
// used to start tracing at the point where the signal occurred. If
// the traceback function is not called from a signal handler,
// SigContext will be zero.
//
// Buf is where the traceback information should be stored. It should
// be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
// the PC of that function's caller, and so on.  Max is the maximum
// number of entries to store.  The function should store a zero to
// indicate the top of the stack, or that the caller is on a different
// stack, presumably a Go stack.
//
// Unlike runtime.Callers, the PC values returned should, when passed
// to the symbolizer function, return the file/line of the call
// instruction.  No additional subtraction is required or appropriate.
//
// On all platforms, the traceback function is invoked when a call from
// Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
// linux/arm64, and freebsd/amd64, the traceback function is also invoked
// when a signal is received by a thread that is executing a cgo call.
// The traceback function should not make assumptions about when it is
// called, as future versions of Go may make additional calls.
//
// The symbolizer function will be called with a single argument, a
// pointer to a struct:
//
//	struct {
//		PC      uintptr // program counter to fetch information for
//		File    *byte   // file name (NUL terminated)
//		Lineno  uintptr // line number
//		Func    *byte   // function name (NUL terminated)
//		Entry   uintptr // function entry point
//		More    uintptr // set non-zero if more info for this PC
//		Data    uintptr // unused by runtime, available for function
//	}
//
// In C syntax, this struct will be
//
//	struct {
//		uintptr_t PC;
//		char*     File;
//		uintptr_t Lineno;
//		char*     Func;
//		uintptr_t Entry;
//		uintptr_t More;
//		uintptr_t Data;
//	};
//
// The PC field will be a value returned by a call to the traceback
// function.
//
// The first time the function is called for a particular traceback,
// all the fields except PC will be 0. The function should fill in the
// other fields if possible, setting them to 0/nil if the information
// is not available. The Data field may be used to store any useful
// information across calls. The More field should be set to non-zero
// if there is more information for this PC, zero otherwise. If More
// is set non-zero, the function will be called again with the same
// PC, and may return different information (this is intended for use
// with inlined functions). If More is zero, the function will be
// called with the next PC value in the traceback. When the traceback
// is complete, the function will be called once more with PC set to
// zero; this may be used to free any information. Each call will
// leave the fields of the struct set to the same values they had upon
// return, except for the PC field when the More field is zero. The
// function must not keep a copy of the struct pointer between calls.
//
// When calling SetCgoTraceback, the version argument is the version
// number of the structs that the functions expect to receive.
// Currently this must be zero.
//
// The symbolizer function may be nil, in which case the results of
// the traceback function will be displayed as numbers. If the
// traceback function is nil, the symbolizer function will never be
// called. The context function may be nil, in which case the
// traceback function will only be called with the context field set
// to zero.  If the context function is nil, then calls from Go to C
// to Go will not show a traceback for the C portion of the call stack.
//
// SetCgoTraceback should be called only once, ideally from an init function.
func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
	if version != 0 {
		panic("unsupported version")
	}

	if cgoTraceback != nil && cgoTraceback != traceback ||
		cgoContext != nil && cgoContext != context ||
		cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
		panic("call SetCgoTraceback only once")
	}

	cgoTraceback = traceback
	cgoContext = context
	cgoSymbolizer = symbolizer

	// The context function is called when a C function calls a Go
	// function. As such it is only called by C code in runtime/cgo.
	if _cgo_set_context_function != nil {
		cgocall(_cgo_set_context_function, context)
	}
}

var cgoTraceback unsafe.Pointer
var cgoContext unsafe.Pointer
var cgoSymbolizer unsafe.Pointer

// cgoTracebackArg is the type passed to cgoTraceback.
type cgoTracebackArg struct {
	context    uintptr
	sigContext uintptr
	buf        *uintptr
	max        uintptr
}

// cgoContextArg is the type passed to the context function.
type cgoContextArg struct {
	context uintptr
}

// cgoSymbolizerArg is the type passed to cgoSymbolizer.
type cgoSymbolizerArg struct {
	pc       uintptr
	file     *byte
	lineno   uintptr
	funcName *byte
	entry    uintptr
	more     uintptr
	data     uintptr
}

// printCgoTraceback prints a traceback of callers.
func printCgoTraceback(callers *cgoCallers) {
	if cgoSymbolizer == nil {
		for _, c := range callers {
			if c == 0 {
				break
			}
			print("non-Go function at pc=", hex(c), "\n")
		}
		return
	}

	commitFrame := func() (pr, stop bool) { return true, false }
	var arg cgoSymbolizerArg
	for _, c := range callers {
		if c == 0 {
			break
		}
		printOneCgoTraceback(c, commitFrame, &arg)
	}
	arg.pc = 0
	callCgoSymbolizer(&arg)
}

// printOneCgoTraceback prints the traceback of a single cgo caller.
// This can print more than one line because of inlining.
// It returns the "stop" result of commitFrame.
func printOneCgoTraceback(pc uintptr, commitFrame func() (pr, stop bool), arg *cgoSymbolizerArg) bool {
	arg.pc = pc
	for {
		if pr, stop := commitFrame(); stop {
			return true
		} else if !pr {
			continue
		}

		callCgoSymbolizer(arg)
		if arg.funcName != nil {
			// Note that we don't print any argument
			// information here, not even parentheses.
			// The symbolizer must add that if appropriate.
			println(gostringnocopy(arg.funcName))
		} else {
			println("non-Go function")
		}
		print("\t")
		if arg.file != nil {
			print(gostringnocopy(arg.file), ":", arg.lineno, " ")
		}
		print("pc=", hex(pc), "\n")
		if arg.more == 0 {
			return false
		}
	}
}

// callCgoSymbolizer calls the cgoSymbolizer function.
func callCgoSymbolizer(arg *cgoSymbolizerArg) {
	call := cgocall
	if panicking.Load() > 0 || getg().m.curg != getg() {
		// We do not want to call into the scheduler when panicking
		// or when on the system stack.
		call = asmcgocall
	}
	if msanenabled {
		msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
	}
	if asanenabled {
		asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
	}
	call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
}

// cgoContextPCs gets the PC values from a cgo traceback.
func cgoContextPCs(ctxt uintptr, buf []uintptr) {
	if cgoTraceback == nil {
		return
	}
	call := cgocall
	if panicking.Load() > 0 || getg().m.curg != getg() {
		// We do not want to call into the scheduler when panicking
		// or when on the system stack.
		call = asmcgocall
	}
	arg := cgoTracebackArg{
		context: ctxt,
		buf:     (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
		max:     uintptr(len(buf)),
	}
	if msanenabled {
		msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
	}
	if asanenabled {
		asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
	}
	call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
}