1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"internal/testenv"
"os"
"os/exec"
"reflect"
"runtime"
"strconv"
"strings"
"testing"
)
// This is the function we'll be testing.
// It has a simple write barrier in it.
func setGlobalPointer() {
globalPointer = nil
}
var globalPointer *int
func TestUnsafePoint(t *testing.T) {
testenv.MustHaveExec(t)
switch runtime.GOARCH {
case "amd64", "arm64":
default:
t.Skipf("test not enabled for %s", runtime.GOARCH)
}
// Get a reference we can use to ask the runtime about
// which of its instructions are unsafe preemption points.
f := runtime.FuncForPC(reflect.ValueOf(setGlobalPointer).Pointer())
// Disassemble the test function.
// Note that normally "go test runtime" would strip symbols
// and prevent this step from working. So there's a hack in
// cmd/go/internal/test that exempts runtime tests from
// symbol stripping.
cmd := exec.Command(testenv.GoToolPath(t), "tool", "objdump", "-s", "setGlobalPointer", os.Args[0])
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("can't objdump %v", err)
}
lines := strings.Split(string(out), "\n")[1:]
// Walk through assembly instructions, checking preemptible flags.
var entry uint64
var startedWB bool
var doneWB bool
instructionCount := 0
unsafeCount := 0
for _, line := range lines {
line = strings.TrimSpace(line)
t.Logf("%s", line)
parts := strings.Fields(line)
if len(parts) < 4 {
continue
}
if !strings.HasPrefix(parts[0], "unsafepoint_test.go:") {
continue
}
pc, err := strconv.ParseUint(parts[1][2:], 16, 64)
if err != nil {
t.Fatalf("can't parse pc %s: %v", parts[1], err)
}
if entry == 0 {
entry = pc
}
// Note that some platforms do ASLR, so the PCs in the disassembly
// don't match PCs in the address space. Only offsets from function
// entry make sense.
unsafe := runtime.UnsafePoint(f.Entry() + uintptr(pc-entry))
t.Logf("unsafe: %v\n", unsafe)
instructionCount++
if unsafe {
unsafeCount++
}
// All the instructions inside the write barrier must be unpreemptible.
if startedWB && !doneWB && !unsafe {
t.Errorf("instruction %s must be marked unsafe, but isn't", parts[1])
}
// Detect whether we're in the write barrier.
switch runtime.GOARCH {
case "arm64":
if parts[3] == "MOVWU" {
// The unpreemptible region starts after the
// load of runtime.writeBarrier.
startedWB = true
}
if parts[3] == "MOVD" && parts[4] == "ZR," {
// The unpreemptible region ends after the
// write of nil.
doneWB = true
}
case "amd64":
if parts[3] == "CMPL" {
startedWB = true
}
if parts[3] == "MOVQ" && parts[4] == "$0x0," {
doneWB = true
}
}
}
if instructionCount == 0 {
t.Errorf("no instructions")
}
if unsafeCount == instructionCount {
t.Errorf("no interruptible instructions")
}
// Note that there are other instructions marked unpreemptible besides
// just the ones required by the write barrier. Those include possibly
// the preamble and postamble, as well as bleeding out from the
// write barrier proper into adjacent instructions (in both directions).
// Hopefully we can clean up the latter at some point.
}
|