1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This C program generates the file cmplxdivide1.go. It uses the
// output of the operations by C99 as the reference to check
// the implementation of complex numbers in Go.
// The generated file, cmplxdivide1.go, is compiled along
// with the driver cmplxdivide.go (the names are confusing
// and unimaginative) to run the actual test. This is done by
// the usual test runner.
//
// The file cmplxdivide1.go is checked in to the repository, but
// if it needs to be regenerated, compile and run this C program
// like this:
// gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#define nelem(x) (sizeof(x)/sizeof((x)[0]))
double f[] = {
0.0,
-0.0,
1.0,
-1.0,
2.0,
NAN,
INFINITY,
-INFINITY,
};
char* fmt(double g) {
static char buf[10][30];
static int n;
char *p;
p = buf[n++];
if(n == 10) {
n = 0;
}
sprintf(p, "%g", g);
if(strcmp(p, "0") == 0) {
strcpy(p, "zero");
return p;
}
if(strcmp(p, "-0") == 0) {
strcpy(p, "-zero");
return p;
}
return p;
}
int main(void) {
int i, j, k, l;
double complex n, d, q;
printf("// skip\n");
printf("// # generated by cmplxdivide.c\n");
printf("\n");
printf("package main\n");
printf("\n");
printf("import \"math\"\n");
printf("\n");
printf("var (\n");
printf("\tnan = math.NaN()\n");
printf("\tinf = math.Inf(1)\n");
printf("\tzero = 0.0\n");
printf(")\n");
printf("\n");
printf("var tests = []struct {\n");
printf("\tf, g complex128\n");
printf("\tout complex128\n");
printf("}{\n");
for(i=0; i<nelem(f); i++)
for(j=0; j<nelem(f); j++)
for(k=0; k<nelem(f); k++)
for(l=0; l<nelem(f); l++) {
n = f[i] + f[j]*I;
d = f[k] + f[l]*I;
q = n/d;
printf("\t{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n",
fmt(creal(n)), fmt(cimag(n)),
fmt(creal(d)), fmt(cimag(d)),
fmt(creal(q)), fmt(cimag(q)));
}
printf("}\n");
return 0;
}
|