1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
// run
//go:build darwin || linux
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test that maps don't go quadratic for NaNs and other values.
package main
import (
"fmt"
"math"
"time"
)
// checkLinear asserts that the running time of f(n) is in O(n).
// tries is the initial number of iterations.
func checkLinear(typ string, tries int, f func(n int)) {
// Depending on the machine and OS, this test might be too fast
// to measure with accurate enough granularity. On failure,
// make it run longer, hoping that the timing granularity
// is eventually sufficient.
timeF := func(n int) time.Duration {
t1 := time.Now()
f(n)
return time.Since(t1)
}
t0 := time.Now()
n := tries
fails := 0
for {
t1 := timeF(n)
t2 := timeF(2 * n)
// should be 2x (linear); allow up to 3x
if t2 < 3*t1 {
if false {
fmt.Println(typ, "\t", time.Since(t0))
}
return
}
// If n ops run in under a second and the ratio
// doesn't work out, make n bigger, trying to reduce
// the effect that a constant amount of overhead has
// on the computed ratio.
if t1 < 1*time.Second {
n *= 2
continue
}
// Once the test runs long enough for n ops,
// try to get the right ratio at least once.
// If five in a row all fail, give up.
if fails++; fails >= 5 {
panic(fmt.Sprintf("%s: too slow: %d inserts: %v; %d inserts: %v\n",
typ, n, t1, 2*n, t2))
}
}
}
type I interface {
f()
}
type C int
func (C) f() {}
func main() {
// NaNs. ~31ms on a 1.6GHz Zeon.
checkLinear("NaN", 30000, func(n int) {
m := map[float64]int{}
nan := math.NaN()
for i := 0; i < n; i++ {
m[nan] = 1
}
if len(m) != n {
panic("wrong size map after nan insertion")
}
})
// ~6ms on a 1.6GHz Zeon.
checkLinear("eface", 10000, func(n int) {
m := map[interface{}]int{}
for i := 0; i < n; i++ {
m[i] = 1
}
})
// ~7ms on a 1.6GHz Zeon.
// Regression test for CL 119360043.
checkLinear("iface", 10000, func(n int) {
m := map[I]int{}
for i := 0; i < n; i++ {
m[C(i)] = 1
}
})
// ~6ms on a 1.6GHz Zeon.
checkLinear("int", 10000, func(n int) {
m := map[int]int{}
for i := 0; i < n; i++ {
m[i] = 1
}
})
// ~18ms on a 1.6GHz Zeon.
checkLinear("string", 10000, func(n int) {
m := map[string]int{}
for i := 0; i < n; i++ {
m[fmt.Sprint(i)] = 1
}
})
// ~6ms on a 1.6GHz Zeon.
checkLinear("float32", 10000, func(n int) {
m := map[float32]int{}
for i := 0; i < n; i++ {
m[float32(i)] = 1
}
})
// ~6ms on a 1.6GHz Zeon.
checkLinear("float64", 10000, func(n int) {
m := map[float64]int{}
for i := 0; i < n; i++ {
m[float64(i)] = 1
}
})
// ~22ms on a 1.6GHz Zeon.
checkLinear("complex64", 10000, func(n int) {
m := map[complex64]int{}
for i := 0; i < n; i++ {
m[complex(float32(i), float32(i))] = 1
}
})
// ~32ms on a 1.6GHz Zeon.
checkLinear("complex128", 10000, func(n int) {
m := map[complex128]int{}
for i := 0; i < n; i++ {
m[complex(float64(i), float64(i))] = 1
}
})
// ~70ms on a 1.6GHz Zeon.
// The iterate/delete idiom currently takes expected
// O(n lg n) time. Fortunately, the checkLinear test
// leaves enough wiggle room to include n lg n time
// (it actually tests for O(n^log_2(3)).
// To prevent false positives, average away variation
// by doing multiple rounds within a single run.
checkLinear("iterdelete", 2500, func(n int) {
for round := 0; round < 4; round++ {
m := map[int]int{}
for i := 0; i < n; i++ {
m[i] = i
}
for i := 0; i < n; i++ {
for k := range m {
delete(m, k)
break
}
}
}
})
}
|