summaryrefslogtreecommitdiffstats
path: root/shiny/iconvg/encode.go
diff options
context:
space:
mode:
Diffstat (limited to 'shiny/iconvg/encode.go')
-rw-r--r--shiny/iconvg/encode.go605
1 files changed, 605 insertions, 0 deletions
diff --git a/shiny/iconvg/encode.go b/shiny/iconvg/encode.go
new file mode 100644
index 0000000..3cf6360
--- /dev/null
+++ b/shiny/iconvg/encode.go
@@ -0,0 +1,605 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package iconvg
+
+import (
+ "errors"
+ "image/color"
+ "math"
+
+ "golang.org/x/image/math/f32"
+)
+
+var (
+ errCSELUsedAsBothGradientAndStop = errors.New("iconvg: CSEL used as both gradient and stop")
+ errDrawingOpsUsedInStylingMode = errors.New("iconvg: drawing ops used in styling mode")
+ errInvalidSelectorAdjustment = errors.New("iconvg: invalid selector adjustment")
+ errInvalidIncrementingAdjustment = errors.New("iconvg: invalid incrementing adjustment")
+ errStylingOpsUsedInDrawingMode = errors.New("iconvg: styling ops used in drawing mode")
+ errTooManyGradientStops = errors.New("iconvg: too many gradient stops")
+)
+
+type mode uint8
+
+const (
+ modeInitial mode = iota
+ modeStyling
+ modeDrawing
+)
+
+// Encoder is an IconVG encoder.
+//
+// The zero value is usable. Calling Reset, which is optional, sets the
+// Metadata for the subsequent encoded form. If Reset is not called before
+// other Encoder methods, the default metadata is implied.
+//
+// It aims to emit byte-identical Bytes output for the same input, independent
+// of the platform (and specifically its floating-point hardware).
+type Encoder struct {
+ // HighResolutionCoordinates is whether the encoder should encode
+ // coordinate numbers for subsequent paths at the best possible resolution
+ // afforded by the underlying graphic format.
+ //
+ // By default (false), the encoder quantizes coordinates to 1/64th of a
+ // unit if possible (the default graphic size is 64 by 64 units, so
+ // 1/4096th of the default width or height). Each such coordinate can
+ // therefore be encoded in either 1 or 2 bytes. If true, some coordinates
+ // will be encoded in 4 bytes, giving greater accuracy but larger file
+ // sizes. On the Material Design icon set, the 950 or so icons take up
+ // around 40% more bytes (172K vs 123K) at high resolution.
+ //
+ // See the package documentation for more details on the coordinate number
+ // encoding format.
+ HighResolutionCoordinates bool
+
+ // highResolutionCoordinates is a local copy, copied during StartPath, to
+ // avoid having to specify the semantics of modifying the exported field
+ // while drawing.
+ highResolutionCoordinates bool
+
+ buf buffer
+ altBuf buffer
+ metadata Metadata
+ err error
+
+ lod0 float32
+ lod1 float32
+ cSel uint8
+ nSel uint8
+
+ mode mode
+ drawOp byte
+ drawArgs []float32
+
+ scratch [12]byte
+}
+
+// Bytes returns the encoded form.
+func (e *Encoder) Bytes() ([]byte, error) {
+ if e.err != nil {
+ return nil, e.err
+ }
+ if e.mode == modeInitial {
+ e.appendDefaultMetadata()
+ }
+ return []byte(e.buf), nil
+}
+
+// Reset resets the Encoder for the given Metadata.
+//
+// This includes setting e.HighResolutionCoordinates to false.
+func (e *Encoder) Reset(m Metadata) {
+ *e = Encoder{
+ buf: append(e.buf[:0], magic...),
+ metadata: m,
+ mode: modeStyling,
+ lod1: positiveInfinity,
+ }
+
+ nMetadataChunks := 0
+ mcViewBox := m.ViewBox != DefaultViewBox
+ if mcViewBox {
+ nMetadataChunks++
+ }
+ mcSuggestedPalette := m.Palette != DefaultPalette
+ if mcSuggestedPalette {
+ nMetadataChunks++
+ }
+ e.buf.encodeNatural(uint32(nMetadataChunks))
+
+ if mcViewBox {
+ e.altBuf = e.altBuf[:0]
+ e.altBuf.encodeNatural(midViewBox)
+ e.altBuf.encodeCoordinate(m.ViewBox.Min[0])
+ e.altBuf.encodeCoordinate(m.ViewBox.Min[1])
+ e.altBuf.encodeCoordinate(m.ViewBox.Max[0])
+ e.altBuf.encodeCoordinate(m.ViewBox.Max[1])
+
+ e.buf.encodeNatural(uint32(len(e.altBuf)))
+ e.buf = append(e.buf, e.altBuf...)
+ }
+
+ if mcSuggestedPalette {
+ n := 63
+ for ; n >= 0 && m.Palette[n] == (color.RGBA{0x00, 0x00, 0x00, 0xff}); n-- {
+ }
+
+ // Find the shortest encoding that can represent all of m.Palette's n+1
+ // explicit colors.
+ enc1, enc2, enc3 := true, true, true
+ for _, c := range m.Palette[:n+1] {
+ if enc1 && (!is1(c.R) || !is1(c.G) || !is1(c.B) || !is1(c.A)) {
+ enc1 = false
+ }
+ if enc2 && (!is2(c.R) || !is2(c.G) || !is2(c.B) || !is2(c.A)) {
+ enc2 = false
+ }
+ if enc3 && (c.A != 0xff) {
+ enc3 = false
+ }
+ }
+
+ e.altBuf = e.altBuf[:0]
+ e.altBuf.encodeNatural(midSuggestedPalette)
+ if enc1 {
+ e.altBuf = append(e.altBuf, byte(n)|0x00)
+ for _, c := range m.Palette[:n+1] {
+ x, _ := encodeColor1(RGBAColor(c))
+ e.altBuf = append(e.altBuf, x)
+ }
+ } else if enc2 {
+ e.altBuf = append(e.altBuf, byte(n)|0x40)
+ for _, c := range m.Palette[:n+1] {
+ x, _ := encodeColor2(RGBAColor(c))
+ e.altBuf = append(e.altBuf, x[0], x[1])
+ }
+ } else if enc3 {
+ e.altBuf = append(e.altBuf, byte(n)|0x80)
+ for _, c := range m.Palette[:n+1] {
+ e.altBuf = append(e.altBuf, c.R, c.G, c.B)
+ }
+ } else {
+ e.altBuf = append(e.altBuf, byte(n)|0xc0)
+ for _, c := range m.Palette[:n+1] {
+ e.altBuf = append(e.altBuf, c.R, c.G, c.B, c.A)
+ }
+ }
+
+ e.buf.encodeNatural(uint32(len(e.altBuf)))
+ e.buf = append(e.buf, e.altBuf...)
+ }
+}
+
+func (e *Encoder) appendDefaultMetadata() {
+ e.buf = append(e.buf[:0], magic...)
+ e.buf = append(e.buf, 0x00) // There are zero metadata chunks.
+ e.mode = modeStyling
+}
+
+func (e *Encoder) CSel() uint8 {
+ if e.mode == modeInitial {
+ e.appendDefaultMetadata()
+ }
+ return e.cSel
+}
+
+func (e *Encoder) NSel() uint8 {
+ if e.mode == modeInitial {
+ e.appendDefaultMetadata()
+ }
+ return e.nSel
+}
+
+func (e *Encoder) LOD() (lod0, lod1 float32) {
+ if e.mode == modeInitial {
+ e.appendDefaultMetadata()
+ }
+ return e.lod0, e.lod1
+}
+
+func (e *Encoder) checkModeStyling() {
+ if e.mode == modeStyling {
+ return
+ }
+ if e.mode == modeInitial {
+ e.appendDefaultMetadata()
+ return
+ }
+ e.err = errStylingOpsUsedInDrawingMode
+}
+
+func (e *Encoder) SetCSel(cSel uint8) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ e.cSel = cSel & 0x3f
+ e.buf = append(e.buf, e.cSel)
+}
+
+func (e *Encoder) SetNSel(nSel uint8) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ e.nSel = nSel & 0x3f
+ e.buf = append(e.buf, e.nSel|0x40)
+}
+
+func (e *Encoder) SetCReg(adj uint8, incr bool, c Color) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ if adj > 6 {
+ e.err = errInvalidSelectorAdjustment
+ return
+ }
+ if incr {
+ if adj != 0 {
+ e.err = errInvalidIncrementingAdjustment
+ }
+ adj = 7
+ }
+
+ if x, ok := encodeColor1(c); ok {
+ e.buf = append(e.buf, adj|0x80, x)
+ return
+ }
+ if x, ok := encodeColor2(c); ok {
+ e.buf = append(e.buf, adj|0x88, x[0], x[1])
+ return
+ }
+ if x, ok := encodeColor3Direct(c); ok {
+ e.buf = append(e.buf, adj|0x90, x[0], x[1], x[2])
+ return
+ }
+ if x, ok := encodeColor4(c); ok {
+ e.buf = append(e.buf, adj|0x98, x[0], x[1], x[2], x[3])
+ return
+ }
+ if x, ok := encodeColor3Indirect(c); ok {
+ e.buf = append(e.buf, adj|0xa0, x[0], x[1], x[2])
+ return
+ }
+ panic("unreachable")
+}
+
+func (e *Encoder) SetNReg(adj uint8, incr bool, f float32) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ if adj > 6 {
+ e.err = errInvalidSelectorAdjustment
+ return
+ }
+ if incr {
+ if adj != 0 {
+ e.err = errInvalidIncrementingAdjustment
+ }
+ adj = 7
+ }
+
+ // Try three different encodings and pick the shortest.
+ b := buffer(e.scratch[0:0])
+ opcode, iBest, nBest := uint8(0xa8), 0, b.encodeReal(f)
+
+ b = buffer(e.scratch[4:4])
+ if n := b.encodeCoordinate(f); n < nBest {
+ opcode, iBest, nBest = 0xb0, 4, n
+ }
+
+ b = buffer(e.scratch[8:8])
+ if n := b.encodeZeroToOne(f); n < nBest {
+ opcode, iBest, nBest = 0xb8, 8, n
+ }
+
+ e.buf = append(e.buf, adj|opcode)
+ e.buf = append(e.buf, e.scratch[iBest:iBest+nBest]...)
+}
+
+func (e *Encoder) SetLOD(lod0, lod1 float32) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ e.lod0 = lod0
+ e.lod1 = lod1
+ e.buf = append(e.buf, 0xc7)
+ e.buf.encodeReal(lod0)
+ e.buf.encodeReal(lod1)
+}
+
+// SetGradient sets CREG[CSEL] to encode the gradient whose colors defined by
+// spread and stops. Its geometry is either linear or radial, depending on the
+// radial argument, and the given affine transformation matrix maps from
+// graphic coordinate space defined by the metadata's viewBox (e.g. from (-32,
+// -32) to (+32, +32)) to gradient coordinate space. Gradient coordinate space
+// is where a linear gradient ranges from x=0 to x=1, and a radial gradient has
+// center (0, 0) and radius 1.
+//
+// The colors of the n stops are encoded at CREG[cBase+0], CREG[cBase+1], ...,
+// CREG[cBase+n-1]. Similarly, the offsets of the n stops are encoded at
+// NREG[nBase+0], NREG[nBase+1], ..., NREG[nBase+n-1]. Additional parameters
+// are stored at NREG[nBase-4], NREG[nBase-3], NREG[nBase-2] and NREG[nBase-1].
+//
+// The CSEL and NSEL selector registers maintain the same values after the
+// method returns as they had when the method was called.
+//
+// See the package documentation for more details on the gradient encoding
+// format and the derivation of common transformation matrices.
+func (e *Encoder) SetGradient(cBase, nBase uint8, radial bool, transform f32.Aff3, spread GradientSpread, stops []GradientStop) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ if len(stops) > 64-len(transform) {
+ e.err = errTooManyGradientStops
+ return
+ }
+ if x, y := e.cSel, e.cSel+64; (cBase <= x && x < cBase+uint8(len(stops))) ||
+ (cBase <= y && y < cBase+uint8(len(stops))) {
+ e.err = errCSELUsedAsBothGradientAndStop
+ return
+ }
+
+ oldCSel := e.cSel
+ oldNSel := e.nSel
+ cBase &= 0x3f
+ nBase &= 0x3f
+ bFlags := uint8(0x80)
+ if radial {
+ bFlags = 0xc0
+ }
+ e.SetCReg(0, false, RGBAColor(color.RGBA{
+ R: uint8(len(stops)),
+ G: cBase | uint8(spread<<6),
+ B: nBase | bFlags,
+ A: 0x00,
+ }))
+ e.SetCSel(cBase)
+ e.SetNSel(nBase)
+ for i, v := range transform {
+ e.SetNReg(uint8(len(transform)-i), false, v)
+ }
+ for _, s := range stops {
+ r, g, b, a := s.Color.RGBA()
+ e.SetCReg(0, true, RGBAColor(color.RGBA{
+ R: uint8(r >> 8),
+ G: uint8(g >> 8),
+ B: uint8(b >> 8),
+ A: uint8(a >> 8),
+ }))
+ e.SetNReg(0, true, s.Offset)
+ }
+ e.SetCSel(oldCSel)
+ e.SetNSel(oldNSel)
+}
+
+// SetLinearGradient is like SetGradient with radial=false except that the
+// transformation matrix is implicitly defined by two boundary points (x1, y1)
+// and (x2, y2).
+func (e *Encoder) SetLinearGradient(cBase, nBase uint8, x1, y1, x2, y2 float32, spread GradientSpread, stops []GradientStop) {
+ // See the package documentation's appendix for a derivation of the
+ // transformation matrix.
+ dx, dy := x2-x1, y2-y1
+ d := dx*dx + dy*dy
+ ma := dx / d
+ mb := dy / d
+ e.SetGradient(cBase, nBase, false, f32.Aff3{
+ ma, mb, -ma*x1 - mb*y1,
+ 0, 0, 0,
+ }, spread, stops)
+}
+
+// SetCircularGradient is like SetGradient with radial=true except that the
+// transformation matrix is implicitly defined by a center (cx, cy) and a
+// radius vector (rx, ry) such that (cx+rx, cy+ry) is on the circle.
+func (e *Encoder) SetCircularGradient(cBase, nBase uint8, cx, cy, rx, ry float32, spread GradientSpread, stops []GradientStop) {
+ // See the package documentation's appendix for a derivation of the
+ // transformation matrix.
+ invR := float32(1 / math.Sqrt(float64(rx*rx+ry*ry)))
+ e.SetGradient(cBase, nBase, true, f32.Aff3{
+ invR, 0, -cx * invR,
+ 0, invR, -cy * invR,
+ }, spread, stops)
+}
+
+// SetEllipticalGradient is like SetGradient with radial=true except that the
+// transformation matrix is implicitly defined by a center (cx, cy) and two
+// axis vectors (rx, ry) and (sx, sy) such that (cx+rx, cy+ry) and (cx+sx,
+// cy+sy) are on the ellipse.
+func (e *Encoder) SetEllipticalGradient(cBase, nBase uint8, cx, cy, rx, ry, sx, sy float32, spread GradientSpread, stops []GradientStop) {
+ // Explicitly disable FMA in the floating-point calculations below
+ // to get consistent results on all platforms, and in turn produce
+ // a byte-identical encoding.
+ // See https://golang.org/ref/spec#Floating_point_operators and issue 43219.
+
+ // See the package documentation's appendix for a derivation of the
+ // transformation matrix.
+ invRSSR := 1 / (float32(rx*sy) - float32(sx*ry))
+
+ ma := +sy * invRSSR
+ mb := -sx * invRSSR
+ mc := -float32(ma*cx) - float32(mb*cy)
+ md := -ry * invRSSR
+ me := +rx * invRSSR
+ mf := -float32(md*cx) - float32(me*cy)
+
+ e.SetGradient(cBase, nBase, true, f32.Aff3{
+ ma, mb, mc,
+ md, me, mf,
+ }, spread, stops)
+}
+
+func (e *Encoder) StartPath(adj uint8, x, y float32) {
+ e.checkModeStyling()
+ if e.err != nil {
+ return
+ }
+ if adj > 6 {
+ e.err = errInvalidSelectorAdjustment
+ return
+ }
+ e.highResolutionCoordinates = e.HighResolutionCoordinates
+ e.buf = append(e.buf, uint8(0xc0+adj))
+ e.buf.encodeCoordinate(quantize(x, e.highResolutionCoordinates))
+ e.buf.encodeCoordinate(quantize(y, e.highResolutionCoordinates))
+ e.mode = modeDrawing
+}
+
+func (e *Encoder) AbsHLineTo(x float32) { e.draw('H', x, 0, 0, 0, 0, 0) }
+func (e *Encoder) RelHLineTo(x float32) { e.draw('h', x, 0, 0, 0, 0, 0) }
+func (e *Encoder) AbsVLineTo(y float32) { e.draw('V', y, 0, 0, 0, 0, 0) }
+func (e *Encoder) RelVLineTo(y float32) { e.draw('v', y, 0, 0, 0, 0, 0) }
+func (e *Encoder) AbsLineTo(x, y float32) { e.draw('L', x, y, 0, 0, 0, 0) }
+func (e *Encoder) RelLineTo(x, y float32) { e.draw('l', x, y, 0, 0, 0, 0) }
+func (e *Encoder) AbsSmoothQuadTo(x, y float32) { e.draw('T', x, y, 0, 0, 0, 0) }
+func (e *Encoder) RelSmoothQuadTo(x, y float32) { e.draw('t', x, y, 0, 0, 0, 0) }
+func (e *Encoder) AbsQuadTo(x1, y1, x, y float32) { e.draw('Q', x1, y1, x, y, 0, 0) }
+func (e *Encoder) RelQuadTo(x1, y1, x, y float32) { e.draw('q', x1, y1, x, y, 0, 0) }
+func (e *Encoder) AbsSmoothCubeTo(x2, y2, x, y float32) { e.draw('S', x2, y2, x, y, 0, 0) }
+func (e *Encoder) RelSmoothCubeTo(x2, y2, x, y float32) { e.draw('s', x2, y2, x, y, 0, 0) }
+func (e *Encoder) AbsCubeTo(x1, y1, x2, y2, x, y float32) { e.draw('C', x1, y1, x2, y2, x, y) }
+func (e *Encoder) RelCubeTo(x1, y1, x2, y2, x, y float32) { e.draw('c', x1, y1, x2, y2, x, y) }
+func (e *Encoder) ClosePathEndPath() { e.draw('Z', 0, 0, 0, 0, 0, 0) }
+func (e *Encoder) ClosePathAbsMoveTo(x, y float32) { e.draw('Y', x, y, 0, 0, 0, 0) }
+func (e *Encoder) ClosePathRelMoveTo(x, y float32) { e.draw('y', x, y, 0, 0, 0, 0) }
+
+func (e *Encoder) AbsArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
+ e.arcTo('A', rx, ry, xAxisRotation, largeArc, sweep, x, y)
+}
+
+func (e *Encoder) RelArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
+ e.arcTo('a', rx, ry, xAxisRotation, largeArc, sweep, x, y)
+}
+
+func (e *Encoder) arcTo(drawOp byte, rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) {
+ flags := uint32(0)
+ if largeArc {
+ flags |= 0x01
+ }
+ if sweep {
+ flags |= 0x02
+ }
+ e.draw(drawOp, rx, ry, xAxisRotation, float32(flags), x, y)
+}
+
+func (e *Encoder) draw(drawOp byte, arg0, arg1, arg2, arg3, arg4, arg5 float32) {
+ if e.err != nil {
+ return
+ }
+ if e.mode != modeDrawing {
+ e.err = errDrawingOpsUsedInStylingMode
+ return
+ }
+ if e.drawOp != drawOp {
+ e.flushDrawOps()
+ }
+ e.drawOp = drawOp
+ switch drawOps[drawOp].nArgs {
+ case 0:
+ // No-op.
+ case 1:
+ e.drawArgs = append(e.drawArgs, arg0)
+ case 2:
+ e.drawArgs = append(e.drawArgs, arg0, arg1)
+ case 4:
+ e.drawArgs = append(e.drawArgs, arg0, arg1, arg2, arg3)
+ case 6:
+ e.drawArgs = append(e.drawArgs, arg0, arg1, arg2, arg3, arg4, arg5)
+ default:
+ panic("unreachable")
+ }
+
+ switch drawOp {
+ case 'Z':
+ e.mode = modeStyling
+ fallthrough
+ case 'Y', 'y':
+ e.flushDrawOps()
+ }
+}
+
+func (e *Encoder) flushDrawOps() {
+ if e.drawOp == 0x00 {
+ return
+ }
+
+ if op := drawOps[e.drawOp]; op.nArgs == 0 {
+ e.buf = append(e.buf, op.opcodeBase)
+ } else {
+ n := len(e.drawArgs) / int(op.nArgs)
+ for i := 0; n > 0; {
+ m := n
+ if m > int(op.maxRepCount) {
+ m = int(op.maxRepCount)
+ }
+ e.buf = append(e.buf, op.opcodeBase+uint8(m)-1)
+
+ switch e.drawOp {
+ default:
+ for j := m * int(op.nArgs); j > 0; j-- {
+ e.buf.encodeCoordinate(quantize(e.drawArgs[i], e.highResolutionCoordinates))
+ i++
+ }
+ case 'A', 'a':
+ for j := m; j > 0; j-- {
+ e.buf.encodeCoordinate(quantize(e.drawArgs[i+0], e.highResolutionCoordinates))
+ e.buf.encodeCoordinate(quantize(e.drawArgs[i+1], e.highResolutionCoordinates))
+ e.buf.encodeAngle(e.drawArgs[i+2])
+ e.buf.encodeNatural(uint32(e.drawArgs[i+3]))
+ e.buf.encodeCoordinate(quantize(e.drawArgs[i+4], e.highResolutionCoordinates))
+ e.buf.encodeCoordinate(quantize(e.drawArgs[i+5], e.highResolutionCoordinates))
+ i += 6
+ }
+ }
+
+ n -= m
+ }
+ }
+
+ e.drawOp = 0x00
+ e.drawArgs = e.drawArgs[:0]
+}
+
+func quantize(coord float32, highResolutionCoordinates bool) float32 {
+ if !highResolutionCoordinates && (-128 <= coord && coord < 128) {
+ x := math.Floor(float64(coord*64 + 0.5))
+ return float32(x) / 64
+ }
+ return coord
+}
+
+var drawOps = [256]struct {
+ opcodeBase byte
+ maxRepCount uint8
+ nArgs uint8
+}{
+ 'L': {0x00, 32, 2},
+ 'l': {0x20, 32, 2},
+ 'T': {0x40, 16, 2},
+ 't': {0x50, 16, 2},
+ 'Q': {0x60, 16, 4},
+ 'q': {0x70, 16, 4},
+ 'S': {0x80, 16, 4},
+ 's': {0x90, 16, 4},
+ 'C': {0xa0, 16, 6},
+ 'c': {0xb0, 16, 6},
+ 'A': {0xc0, 16, 6},
+ 'a': {0xd0, 16, 6},
+
+ // Z means close path and then end path.
+ 'Z': {0xe1, 1, 0},
+ // Y/y means close path and then open a new path (with a MoveTo/moveTo).
+ 'Y': {0xe2, 1, 2},
+ 'y': {0xe3, 1, 2},
+
+ 'H': {0xe6, 1, 1},
+ 'h': {0xe7, 1, 1},
+ 'V': {0xe8, 1, 1},
+ 'v': {0xe9, 1, 1},
+}