summaryrefslogtreecommitdiffstats
path: root/include/haproxy/channel.h
blob: 22949e14531ebd1797e5d0432e65d3a4229622c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
/*
 * include/haproxy/channel.h
 * Channel management definitions, macros and inline functions.
 *
 * Copyright (C) 2000-2020 Willy Tarreau - w@1wt.eu
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation, version 2.1
 * exclusively.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef _HAPROXY_CHANNEL_H
#define _HAPROXY_CHANNEL_H

#include <haproxy/api.h>
#include <haproxy/channel-t.h>
#include <haproxy/dynbuf.h>
#include <haproxy/global.h>
#include <haproxy/htx.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/tools-t.h>

struct stconn;

/* perform minimal initializations, report 0 in case of error, 1 if OK. */
int init_channel();

unsigned long long __channel_forward(struct channel *chn, unsigned long long bytes);

/* SI-to-channel functions working with buffers */
int ci_putblk(struct channel *chn, const char *str, int len);
int ci_putchr(struct channel *chn, char c);
int ci_getline_nc(const struct channel *chn, char **blk1, size_t *len1, char **blk2, size_t *len2);
int ci_getblk_nc(const struct channel *chn, char **blk1, size_t *len1, char **blk2, size_t *len2);
int ci_insert_line2(struct channel *c, int pos, const char *str, int len);
int co_inject(struct channel *chn, const char *msg, int len);
int co_getchar(const struct channel *chn, char *c);
int co_getline(const struct channel *chn, char *str, int len);
int co_getdelim(const struct channel *chn, char *str, int len, const char *delim, char escape);
int co_getword(const struct channel *chn, char *str, int len, char sep);
int co_getblk(const struct channel *chn, char *blk, int len, int offset);
int co_getline_nc(const struct channel *chn, const char **blk1, size_t *len1, const char **blk2, size_t *len2);
int co_getblk_nc(const struct channel *chn, const char **blk1, size_t *len1, const char **blk2, size_t *len2);


/* returns a pointer to the stream the channel belongs to */
static inline struct stream *chn_strm(const struct channel *chn)
{
	if (chn->flags & CF_ISRESP)
		return LIST_ELEM(chn, struct stream *, res);
	else
		return LIST_ELEM(chn, struct stream *, req);
}

/* returns a pointer to the stream connector feeding the channel (producer) */
static inline struct stconn *chn_prod(const struct channel *chn)
{
	if (chn->flags & CF_ISRESP)
		return LIST_ELEM(chn, struct stream *, res)->scb;
	else
		return LIST_ELEM(chn, struct stream *, req)->scf;
}

/* returns a pointer to the stream connector consuming the channel (producer) */
static inline struct stconn *chn_cons(const struct channel *chn)
{
	if (chn->flags & CF_ISRESP)
		return LIST_ELEM(chn, struct stream *, res)->scf;
	else
		return LIST_ELEM(chn, struct stream *, req)->scb;
}

/* c_orig() : returns the pointer to the channel buffer's origin */
static inline char *c_orig(const struct channel *c)
{
	return b_orig(&c->buf);
}

/* c_size() : returns the size of the channel's buffer */
static inline size_t c_size(const struct channel *c)
{
	return b_size(&c->buf);
}

/* c_wrap() : returns the pointer to the channel buffer's wrapping point */
static inline char *c_wrap(const struct channel *c)
{
	return b_wrap(&c->buf);
}

/* c_data() : returns the amount of data in the channel's buffer */
static inline size_t c_data(const struct channel *c)
{
	return b_data(&c->buf);
}

/* c_room() : returns the room left in the channel's buffer */
static inline size_t c_room(const struct channel *c)
{
	return b_size(&c->buf) - b_data(&c->buf);
}

/* c_empty() : returns a boolean indicating if the channel's buffer is empty */
static inline size_t c_empty(const struct channel *c)
{
	return !c_data(c);
}

/* c_full() : returns a boolean indicating if the channel's buffer is full */
static inline size_t c_full(const struct channel *c)
{
	return !c_room(c);
}

/* co_data() : returns the amount of output data in the channel's buffer */
static inline size_t co_data(const struct channel *c)
{
	CHECK_IF_HOT(c->output > c_data(c));
	return c->output;
}

/* ci_data() : returns the amount of input data in the channel's buffer */
static inline size_t ci_data(const struct channel *c)
{
	return c_data(c) - co_data(c);
}

/* ci_next() : for an absolute pointer <p> or a relative offset <o> pointing to
 * a valid location within channel <c>'s buffer, returns either the absolute
 * pointer or the relative offset pointing to the next byte, which usually is
 * at (p + 1) unless p reaches the wrapping point and wrapping is needed.
 */
static inline size_t ci_next_ofs(const struct channel *c, size_t o)
{
	return b_next_ofs(&c->buf, o);
}
static inline char *ci_next(const struct channel *c, const char *p)
{
	return b_next(&c->buf, p);
}


/* c_ptr() : returns a pointer to an offset relative to the beginning of the
 * input data in the buffer. If instead the offset is negative, a pointer to
 * existing output data is returned. The function only takes care of wrapping,
 * it's up to the caller to ensure the offset is always within byte count
 * bounds.
 */
static inline char *c_ptr(const struct channel *c, ssize_t ofs)
{
	return b_peek(&c->buf, co_data(c) + ofs);
}

/* c_adv() : advances the channel's buffer by <adv> bytes, which means that the
 * buffer's pointer advances, and that as many bytes from in are transferred
 * from in to out. The caller is responsible for ensuring that adv is always
 * smaller than or equal to b->i.
 */
static inline void c_adv(struct channel *c, size_t adv)
{
	c->output += adv;
	BUG_ON_HOT(c->output > c_data(c));
}

/* c_rew() : rewinds the channel's buffer by <adv> bytes, which means that the
 * buffer's pointer goes backwards, and that as many bytes from out are moved
 * to in. The caller is responsible for ensuring that adv is always smaller
 * than or equal to b->o.
 */
static inline void c_rew(struct channel *c, size_t adv)
{
	BUG_ON_HOT(c->output < adv);
	c->output -= adv;
}

/* c_realign_if_empty() : realign the channel's buffer if it's empty */
static inline void c_realign_if_empty(struct channel *chn)
{
	b_realign_if_empty(&chn->buf);
}

/* Sets the amount of output for the channel */
static inline void co_set_data(struct channel *c, size_t output)
{
	BUG_ON_HOT(output > c_data(c));
	c->output = output;
}


/* co_head() : returns a pointer to the beginning of output data in the buffer.
 *             The "__" variants don't support wrapping, "ofs" are relative to
 *             the buffer's origin.
 */
static inline size_t __co_head_ofs(const struct channel *c)
{
	return __b_peek_ofs(&c->buf, 0);
}
static inline char *__co_head(const struct channel *c)
{
	return __b_peek(&c->buf, 0);
}
static inline size_t co_head_ofs(const struct channel *c)
{
	return b_peek_ofs(&c->buf, 0);
}
static inline char *co_head(const struct channel *c)
{
	return b_peek(&c->buf, 0);
}


/* co_tail() : returns a pointer to the end of output data in the buffer.
 *             The "__" variants don't support wrapping, "ofs" are relative to
 *             the buffer's origin.
 */
static inline size_t __co_tail_ofs(const struct channel *c)
{
	return __b_peek_ofs(&c->buf, co_data(c));
}
static inline char *__co_tail(const struct channel *c)
{
	return __b_peek(&c->buf, co_data(c));
}
static inline size_t co_tail_ofs(const struct channel *c)
{
	return b_peek_ofs(&c->buf, co_data(c));
}
static inline char *co_tail(const struct channel *c)
{
	return b_peek(&c->buf, co_data(c));
}


/* ci_head() : returns a pointer to the beginning of input data in the buffer.
 *             The "__" variants don't support wrapping, "ofs" are relative to
 *             the buffer's origin.
 */
static inline size_t __ci_head_ofs(const struct channel *c)
{
	return __b_peek_ofs(&c->buf, co_data(c));
}
static inline char *__ci_head(const struct channel *c)
{
	return __b_peek(&c->buf, co_data(c));
}
static inline size_t ci_head_ofs(const struct channel *c)
{
	return b_peek_ofs(&c->buf, co_data(c));
}
static inline char *ci_head(const struct channel *c)
{
	return b_peek(&c->buf, co_data(c));
}


/* ci_tail() : returns a pointer to the end of input data in the buffer.
 *             The "__" variants don't support wrapping, "ofs" are relative to
 *             the buffer's origin.
 */
static inline size_t __ci_tail_ofs(const struct channel *c)
{
	return __b_peek_ofs(&c->buf, c_data(c));
}
static inline char *__ci_tail(const struct channel *c)
{
	return __b_peek(&c->buf, c_data(c));
}
static inline size_t ci_tail_ofs(const struct channel *c)
{
	return b_peek_ofs(&c->buf, c_data(c));
}
static inline char *ci_tail(const struct channel *c)
{
	return b_peek(&c->buf, c_data(c));
}


/* ci_stop() : returns the pointer to the byte following the end of input data
 *             in the channel buffer. It may be out of the buffer. It's used to
 *             compute lengths or stop pointers.
 */
static inline size_t __ci_stop_ofs(const struct channel *c)
{
	return __b_stop_ofs(&c->buf);
}
static inline const char *__ci_stop(const struct channel *c)
{
	return __b_stop(&c->buf);
}
static inline size_t ci_stop_ofs(const struct channel *c)
{
	return b_stop_ofs(&c->buf);
}
static inline const char *ci_stop(const struct channel *c)
{
	return b_stop(&c->buf);
}


/* Returns the amount of input data that can contiguously be read at once */
static inline size_t ci_contig_data(const struct channel *c)
{
	return b_contig_data(&c->buf, co_data(c));
}

/* Initialize all fields in the channel. */
static inline void channel_init(struct channel *chn)
{
	chn->buf = BUF_NULL;
	chn->to_forward = 0;
	chn->last_read = now_ms;
	chn->xfer_small = chn->xfer_large = 0;
	chn->total = 0;
	chn->analysers = 0;
	chn->flags = 0;
	chn->output = 0;
}

/* Schedule up to <bytes> more bytes to be forwarded via the channel without
 * notifying the owner task. Any data pending in the buffer are scheduled to be
 * sent as well, in the limit of the number of bytes to forward. This must be
 * the only method to use to schedule bytes to be forwarded. If the requested
 * number is too large, it is automatically adjusted. The number of bytes taken
 * into account is returned. Directly touching ->to_forward will cause lockups
 * when buf->o goes down to zero if nobody is ready to push the remaining data.
 */
static inline unsigned long long channel_forward(struct channel *chn, unsigned long long bytes)
{
	/* hint: avoid comparisons on long long for the fast case, since if the
	 * length does not fit in an unsigned it, it will never be forwarded at
	 * once anyway.
	 */
	if (bytes <= ~0U) {
		unsigned int bytes32 = bytes;

		if (bytes32 <= ci_data(chn)) {
			/* OK this amount of bytes might be forwarded at once */
			c_adv(chn, bytes32);
			return bytes;
		}
	}
	return __channel_forward(chn, bytes);
}

/* Forwards any input data and marks the channel for permanent forwarding */
static inline void channel_forward_forever(struct channel *chn)
{
	c_adv(chn, ci_data(chn));
	chn->to_forward = CHN_INFINITE_FORWARD;
}

/* <len> bytes of input data was added into the channel <chn>. This functions
 * must be called to update the channel state. It also handles the fast
 * forwarding. */
static inline void channel_add_input(struct channel *chn, unsigned int len)
{
	if (chn->to_forward) {
		unsigned long fwd = len;
		if (chn->to_forward != CHN_INFINITE_FORWARD) {
			if (fwd > chn->to_forward)
				fwd = chn->to_forward;
			chn->to_forward -= fwd;
		}
		c_adv(chn, fwd);
	}
	/* notify that some data was read */
	chn->total += len;
	chn->flags |= CF_READ_EVENT;
}

static inline unsigned long long channel_htx_forward(struct channel *chn, struct htx *htx, unsigned long long bytes)
{
	unsigned long long ret = 0;

	if (htx->data) {
		b_set_data(&chn->buf, htx->data);
		ret = channel_forward(chn, bytes);
		b_set_data(&chn->buf, b_size(&chn->buf));
	}
	return ret;
}


static inline void channel_htx_forward_forever(struct channel *chn, struct htx *htx)
{
	c_adv(chn, htx->data - co_data(chn));
	chn->to_forward = CHN_INFINITE_FORWARD;
}
/*********************************************************************/
/* These functions are used to compute various channel content sizes */
/*********************************************************************/

/* Returns non-zero if the channel is rewritable, which means that the buffer
 * it is attached to has at least <maxrewrite> bytes immediately available.
 * This is used to decide when a request or response may be parsed when some
 * data from a previous exchange might still be present.
 */
static inline int channel_is_rewritable(const struct channel *chn)
{
	int rem = chn->buf.size;

	rem -= b_data(&chn->buf);
	rem -= global.tune.maxrewrite;
	return rem >= 0;
}

/* Tells whether data are likely to leave the buffer. This is used to know when
 * we can safely ignore the reserve since we know we cannot retry a connection.
 * It returns zero if data are blocked, non-zero otherwise.
 */
static inline int channel_may_send(const struct channel *chn)
{
	return chn_cons(chn)->state == SC_ST_EST;
}

/* HTX version of channel_may_recv(). Returns non-zero if the channel can still
 * receive data. */
static inline int channel_htx_may_recv(const struct channel *chn, const struct htx *htx)
{
	uint32_t rem;

	if (!htx->size)
		return 1;

	rem = htx_free_data_space(htx);
	if (!rem)
		return 0; /* htx already full */

	if (rem > global.tune.maxrewrite)
		return 1; /* reserve not yet reached */

	if (!channel_may_send(chn))
		return 0; /* don't touch reserve until we can send */

	/* Now we know there's some room left in the reserve and we may
	 * forward. As long as i-to_fwd < size-maxrw, we may still
	 * receive. This is equivalent to i+maxrw-size < to_fwd,
	 * which is logical since i+maxrw-size is what overlaps with
	 * the reserve, and we want to ensure they're covered by scheduled
	 * forwards.
	 */
	rem += co_data(chn);
	if (rem > global.tune.maxrewrite)
		return 1;

	return (global.tune.maxrewrite - rem < chn->to_forward);
}

/* Returns non-zero if the channel can still receive data. This is used to
 * decide when to stop reading into a buffer when we want to ensure that we
 * leave the reserve untouched after all pending outgoing data are forwarded.
 * The reserved space is taken into account if ->to_forward indicates that an
 * end of transfer is close to happen. Note that both ->buf.o and ->to_forward
 * are considered as available since they're supposed to leave the buffer. The
 * test is optimized to avoid as many operations as possible for the fast case
 * and to be used as an "if" condition. Just like channel_recv_limit(), we
 * never allow to overwrite the reserve until the output stream connector is
 * connected, otherwise we could spin on a POST with http-send-name-header.
 */
static inline int channel_may_recv(const struct channel *chn)
{
	int rem = chn->buf.size;

	if (IS_HTX_STRM(chn_strm(chn)))
		return channel_htx_may_recv(chn, htxbuf(&chn->buf));

	if (b_is_null(&chn->buf))
		return 1;

	rem -= b_data(&chn->buf);
	if (!rem)
		return 0; /* buffer already full */

	if (rem > global.tune.maxrewrite)
		return 1; /* reserve not yet reached */

	if (!channel_may_send(chn))
		return 0; /* don't touch reserve until we can send */

	/* Now we know there's some room left in the reserve and we may
	 * forward. As long as i-to_fwd < size-maxrw, we may still
	 * receive. This is equivalent to i+maxrw-size < to_fwd,
	 * which is logical since i+maxrw-size is what overlaps with
	 * the reserve, and we want to ensure they're covered by scheduled
	 * forwards.
	 */
	rem = ci_data(chn) + global.tune.maxrewrite - chn->buf.size;
	return rem < 0 || (unsigned int)rem < chn->to_forward;
}

/* Returns true if the channel's input is already closed */
static inline int channel_input_closed(struct channel *chn)
{
	return ((chn_prod(chn)->flags & (SC_FL_ABRT_DONE|SC_FL_EOS)) != 0);
}

/* Returns true if the channel's output is already closed */
static inline int channel_output_closed(struct channel *chn)
{
	return ((chn_cons(chn)->flags & SC_FL_SHUT_DONE) != 0);
}

/* Check channel timeouts, and set the corresponding flags. */
static inline void channel_check_timeout(struct channel *chn)
{
	if (likely(!(chn->flags & CF_READ_EVENT)) && unlikely(tick_is_expired(chn->analyse_exp, now_ms)))
		chn->flags |= CF_READ_EVENT;
}


/* Erase any content from channel <buf> and adjusts flags accordingly. Note
 * that any spliced data is not affected since we may not have any access to
 * it.
 */
static inline void channel_erase(struct channel *chn)
{
	chn->to_forward = 0;
	chn->output = 0;
	b_reset(&chn->buf);
}

static inline void channel_htx_erase(struct channel *chn, struct htx *htx)
{
	htx_reset(htx);
	channel_erase(chn);
}


/* marks the channel as "shutdown" ASAP in both directions */
static inline void channel_abort(struct channel *chn)
{
	chn_prod(chn)->flags |= SC_FL_ABRT_WANTED;
	chn_cons(chn)->flags |= SC_FL_SHUT_WANTED;
	chn->flags |= CF_AUTO_CLOSE;
	chn->flags &= ~CF_AUTO_CONNECT;
}

/* allow the consumer to try to establish a new connection. */
static inline void channel_auto_connect(struct channel *chn)
{
	chn->flags |= CF_AUTO_CONNECT;
}

/* prevent the consumer from trying to establish a new connection, and also
 * disable auto shutdown forwarding.
 */
static inline void channel_dont_connect(struct channel *chn)
{
	chn->flags &= ~(CF_AUTO_CONNECT|CF_AUTO_CLOSE);
}

/* allow the producer to forward shutdown requests */
static inline void channel_auto_close(struct channel *chn)
{
	chn->flags |= CF_AUTO_CLOSE;
}

/* prevent the producer from forwarding shutdown requests */
static inline void channel_dont_close(struct channel *chn)
{
	chn->flags &= ~CF_AUTO_CLOSE;
}

/* allow the producer to read / poll the input */
static inline void channel_auto_read(struct channel *chn)
{
	chn->flags &= ~CF_DONT_READ;
}

/* prevent the producer from read / poll the input */
static inline void channel_dont_read(struct channel *chn)
{
	chn->flags |= CF_DONT_READ;
}


/*************************************************/
/* Buffer operations in the context of a channel */
/*************************************************/


/* Return the max number of bytes the buffer can contain so that once all the
 * pending bytes are forwarded, the buffer still has global.tune.maxrewrite
 * bytes free. The result sits between chn->size - maxrewrite and chn->size.
 * It is important to mention that if buf->i is already larger than size-maxrw
 * the condition above cannot be satisfied and the lowest size will be returned
 * anyway. The principles are the following :
 *   0) the empty buffer has a limit of zero
 *   1) a non-connected buffer cannot touch the reserve
 *   2) infinite forward can always fill the buffer since all data will leave
 *   3) all output bytes are considered in transit since they're leaving
 *   4) all input bytes covered by to_forward are considered in transit since
 *      they'll be converted to output bytes.
 *   5) all input bytes not covered by to_forward as considered remaining
 *   6) all bytes scheduled to be forwarded minus what is already in the input
 *      buffer will be in transit during future rounds.
 *   7) 4+5+6 imply that the amount of input bytes (i) is irrelevant to the max
 *      usable length, only to_forward and output count. The difference is
 *      visible when to_forward > i.
 *   8) the reserve may be covered up to the amount of bytes in transit since
 *      these bytes will only take temporary space.
 *
 * A typical buffer looks like this :
 *
 *      <-------------- max_len ----------->
 *      <---- o ----><----- i ----->        <--- 0..maxrewrite --->
 *      +------------+--------------+-------+----------------------+
 *      |////////////|\\\\\\\\\\\\\\|xxxxxxx|        reserve       |
 *      +------------+--------+-----+-------+----------------------+
 *                   <- fwd ->      <-avail->
 *
 * Or when to_forward > i :
 *
 *      <-------------- max_len ----------->
 *      <---- o ----><----- i ----->        <--- 0..maxrewrite --->
 *      +------------+--------------+-------+----------------------+
 *      |////////////|\\\\\\\\\\\\\\|xxxxxxx|        reserve       |
 *      +------------+--------+-----+-------+----------------------+
 *                                  <-avail->
 *                   <------------------ fwd ---------------->
 *
 * - the amount of buffer bytes in transit is : min(i, fwd) + o
 * - some scheduled bytes may be in transit (up to fwd - i)
 * - the reserve is max(0, maxrewrite - transit)
 * - the maximum usable buffer length is size - reserve.
 * - the available space is max_len - i - o
 *
 * So the formula to compute the buffer's maximum length to protect the reserve
 * when reading new data is :
 *
 *    max = size - maxrewrite + min(maxrewrite, transit)
 *        = size - max(maxrewrite - transit, 0)
 *
 * But WARNING! The conditions might change during the transfer and it could
 * very well happen that a buffer would contain more bytes than max_len due to
 * i+o already walking over the reserve (eg: after a header rewrite), including
 * i or o alone hitting the limit. So it is critical to always consider that
 * bounds may have already been crossed and that available space may be negative
 * for example. Due to this it is perfectly possible for this function to return
 * a value that is lower than current i+o.
 */
static inline int channel_recv_limit(const struct channel *chn)
{
	unsigned int transit;
	int reserve;

	/* return zero if empty */
	reserve = chn->buf.size;
	if (b_is_null(&chn->buf))
		goto end;

	/* return size - maxrewrite if we can't send */
	reserve = global.tune.maxrewrite;
	if (unlikely(!channel_may_send(chn)))
		goto end;

	/* We need to check what remains of the reserve after o and to_forward
	 * have been transmitted, but they can overflow together and they can
	 * cause an integer underflow in the comparison since both are unsigned
	 * while maxrewrite is signed.
	 * The code below has been verified for being a valid check for this :
	 *   - if (o + to_forward) overflow => return size  [ large enough ]
	 *   - if o + to_forward >= maxrw   => return size  [ large enough ]
	 *   - otherwise return size - (maxrw - (o + to_forward))
	 */
	transit = co_data(chn) + chn->to_forward;
	reserve -= transit;
	if (transit < chn->to_forward ||                 // addition overflow
	    transit >= (unsigned)global.tune.maxrewrite) // enough transit data
		return chn->buf.size;
 end:
	return chn->buf.size - reserve;
}

/* HTX version of channel_recv_limit(). Return the max number of bytes the HTX
 * buffer can contain so that once all the pending bytes are forwarded, the
 * buffer still has global.tune.maxrewrite bytes free.
 */
static inline int channel_htx_recv_limit(const struct channel *chn, const struct htx *htx)
{
	unsigned int transit;
	int reserve;

	/* return zeor if not allocated */
	if (!htx->size)
		return 0;

	/* return max_data_space - maxrewrite if we can't send */
	reserve = global.tune.maxrewrite;
	if (unlikely(!channel_may_send(chn)))
		goto end;

	/* We need to check what remains of the reserve after o and to_forward
	 * have been transmitted, but they can overflow together and they can
	 * cause an integer underflow in the comparison since both are unsigned
	 * while maxrewrite is signed.
	 * The code below has been verified for being a valid check for this :
	 *   - if (o + to_forward) overflow => return htx->size  [ large enough ]
	 *   - if o + to_forward >= maxrw   => return htx->size  [ large enough ]
	 *   - otherwise return htx->size - (maxrw - (o + to_forward))
	 */
	transit = co_data(chn) + chn->to_forward;
	reserve -= transit;
	if (transit < chn->to_forward ||                 // addition overflow
	    transit >= (unsigned)global.tune.maxrewrite) // enough transit data
		return htx->size;
 end:
	return (htx->size - reserve);
}

/* HTX version of channel_full(). Instead of checking if INPUT data exceeds
 * (size - reserve), this function checks if the free space for data in <htx>
 * and the data scheduled for output are lower to the reserve. In such case, the
 * channel is considered as full.
 */
static inline int channel_htx_full(const struct channel *c, const struct htx *htx,
				   unsigned int reserve)
{
	if (!htx->size)
		return 0;
	return (htx_free_data_space(htx) + co_data(c) <= reserve);
}

/* Returns non-zero if the channel's INPUT buffer's is considered full, which
 * means that it holds at least as much INPUT data as (size - reserve). This
 * also means that data that are scheduled for output are considered as potential
 * free space, and that the reserved space is always considered as not usable.
 * This information alone cannot be used as a general purpose free space indicator.
 * However it accurately indicates that too many data were fed in the buffer
 * for an analyzer for instance. See the channel_may_recv() function for a more
 * generic function taking everything into account.
 */
static inline int channel_full(const struct channel *c, unsigned int reserve)
{
	if (b_is_null(&c->buf))
		return 0;

	if (IS_HTX_STRM(chn_strm(c)))
		return channel_htx_full(c, htxbuf(&c->buf), reserve);

	return (ci_data(c) + reserve >= c_size(c));
}

/* HTX version of channel_recv_max(). */
static inline int channel_htx_recv_max(const struct channel *chn, const struct htx *htx)
{
	int ret;

	ret = channel_htx_recv_limit(chn, htx) - htx_used_space(htx);
	if (ret < 0)
		ret = 0;
	return ret;
}

/* Returns the amount of space available at the input of the buffer, taking the
 * reserved space into account if ->to_forward indicates that an end of transfer
 * is close to happen. The test is optimized to avoid as many operations as
 * possible for the fast case.
 */
static inline int channel_recv_max(const struct channel *chn)
{
	int ret;

	if (IS_HTX_STRM(chn_strm(chn)))
		return channel_htx_recv_max(chn, htxbuf(&chn->buf));

	ret = channel_recv_limit(chn) - b_data(&chn->buf);
	if (ret < 0)
		ret = 0;
	return ret;
}

/* Returns the maximum absolute amount of data that can be copied in a channel,
 * taking the reserved space into account but also the HTX overhead for HTX
 * streams.
 */
static inline size_t channel_data_limit(const struct channel *chn)
{
	size_t max = (global.tune.bufsize - global.tune.maxrewrite);

	if (IS_HTX_STRM(chn_strm(chn)))
		max -= HTX_BUF_OVERHEAD;
	return max;
}

/* Returns the amount of data in a channel, taking the HTX streams into
 * account. For raw channels, it is equivalent to c_data. For HTX channels, we
 * rely on the HTX api.
 */
static inline size_t channel_data(const struct channel *chn)
{
	return (IS_HTX_STRM(chn_strm(chn)) ? htx_used_space(htxbuf(&chn->buf)) : c_data(chn));
}

/* Returns the amount of input data in a channel, taking he HTX streams into
 * account. This function relies on channel_data().
 */
static inline size_t channel_input_data(const struct channel *chn)
{
	return channel_data(chn) - co_data(chn);
}

/* Returns 1 if the channel is empty, taking he HTX streams into account */
static inline size_t channel_empty(const struct channel *chn)
{
	return (IS_HTX_STRM(chn) ? htx_is_empty(htxbuf(&chn->buf)) : c_empty(chn));
}

/* Check channel's last_read date against the idle timeer to verify the producer
 * is still streaming data or not
 */
static inline void channel_check_idletimer(struct channel *chn)
{
	if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !co_data(chn) &&
	    global.tune.idle_timer &&
	    (unsigned short)(now_ms - chn->last_read) >= global.tune.idle_timer) {
		/* The buffer was empty and nothing was transferred for more
		 * than one second. This was caused by a pause and not by
		 * congestion. Reset any streaming mode to reduce latency.
		 */
		chn->xfer_small = 0;
		chn->xfer_large = 0;
		chn->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
	}
}

/* Check amount of transferred data after a receive. If <xferred> is greater
 * than 0, the <last_read> date is updated and STREAMER flags for the channels
 * are verified.
 */
static inline void channel_check_xfer(struct channel *chn, size_t xferred)
{
	if (!xferred)
		return;

	if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
	    (xferred <= c_size(chn) / 2)) {
		chn->xfer_large = 0;
		chn->xfer_small++;
		if (chn->xfer_small >= 3) {
			/* we have read less than half of the buffer in
			 * one pass, and this happened at least 3 times.
			 * This is definitely not a streamer.
			 */
			chn->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
		}
		else if (chn->xfer_small >= 2) {
			/* if the buffer has been at least half full twchne,
			 * we receive faster than we send, so at least it
			 * is not a "fast streamer".
			 */
			chn->flags &= ~CF_STREAMER_FAST;
		}
	}
	else if (!(chn->flags & CF_STREAMER_FAST) && (xferred >= channel_data_limit(chn))) {
		/* we read a full buffer at once */
		chn->xfer_small = 0;
		chn->xfer_large++;
		if (chn->xfer_large >= 3) {
			/* we call this buffer a fast streamer if it manages
			 * to be filled in one call 3 consecutive times.
			 */
			chn->flags |= (CF_STREAMER | CF_STREAMER_FAST);
		}
	}
	else {
		chn->xfer_small = 0;
		chn->xfer_large = 0;
	}
	chn->last_read = now_ms;
}

/* Returns the amount of bytes that can be written over the input data at once,
 * including reserved space which may be overwritten. This is used by Lua to
 * insert data in the input side just before the other data using buffer_replace().
 * The goal is to transfer these new data in the output buffer.
 */
static inline int ci_space_for_replace(const struct channel *chn)
{
	const struct buffer *buf = &chn->buf;
	const char *end;

	/* If the input side data overflows, we cannot insert data contiguously. */
	if (b_head(buf) + b_data(buf) >= b_wrap(buf))
		return 0;

	/* Check the last byte used in the buffer, it may be a byte of the output
	 * side if the buffer wraps, or its the end of the buffer.
	 */
	end = b_head(buf);
	if (end <= ci_head(chn))
		end = b_wrap(buf);

	/* Compute the amount of bytes which can be written. */
	return end - ci_tail(chn);
}

/* Allocates a buffer for channel <chn>. Returns 0 in case of failure, non-zero
 * otherwise.
 *
 * If no buffer are available, the requester, represented by <wait> pointer,
 * will be added in the list of objects waiting for an available buffer.
 */
static inline int channel_alloc_buffer(struct channel *chn, struct buffer_wait *wait)
{
	int force_noqueue;

	/* If the producer has been notified of recent availability, we must
	 * not check the queue again.
	 */
	force_noqueue = !!(chn_prod(chn)->flags & SC_FL_HAVE_BUFF);

	if (b_alloc(&chn->buf, DB_CHANNEL | (force_noqueue ? DB_F_NOQUEUE : 0)) != NULL)
		return 1;

	b_requeue(DB_CHANNEL, wait);
	return 0;
}

/* Releases a possibly allocated buffer for channel <chn>. If it was not
 * allocated, this function does nothing. Else the buffer is released and we try
 * to wake up as many streams/applets as possible. */
static inline void channel_release_buffer(struct channel *chn, struct buffer_wait *wait)
{
	if (c_size(chn) && c_empty(chn)) {
		b_free(&chn->buf);
		offer_buffers(wait->target, 1);
	}
}

/* Truncate any unread data in the channel's buffer, and disable forwarding.
 * Outgoing data are left intact. This is mainly to be used to send error
 * messages after existing data.
 */
static inline void channel_truncate(struct channel *chn)
{
	if (!co_data(chn))
		return channel_erase(chn);

	chn->to_forward = 0;
	if (!ci_data(chn))
		return;

	chn->buf.data = co_data(chn);
}

static inline void channel_htx_truncate(struct channel *chn, struct htx *htx)
{
	if (!co_data(chn))
		return channel_htx_erase(chn, htx);

	chn->to_forward = 0;
	if (htx->data == co_data(chn))
		return;
	htx_truncate(htx, co_data(chn));
}

/* This function realigns a possibly wrapping channel buffer so that the input
 * part is contiguous and starts at the beginning of the buffer and the output
 * part ends at the end of the buffer. This provides the best conditions since
 * it allows the largest inputs to be processed at once and ensures that once
 * the output data leaves, the whole buffer is available at once.
 */
static inline void channel_slow_realign(struct channel *chn, char *swap)
{
	return b_slow_realign(&chn->buf, swap, co_data(chn));
}


/* Forward all headers of an HTX message, starting from the SL to the EOH. This
 * function returns the position of the block after the EOH, if
 * found. Otherwise, it returns -1.
 */
static inline int32_t channel_htx_fwd_headers(struct channel *chn, struct htx *htx)
{
	int32_t pos;
	size_t  data = 0;

	for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
		struct htx_blk *blk = htx_get_blk(htx, pos);
		data += htx_get_blksz(blk);
		if (htx_get_blk_type(blk) == HTX_BLK_EOH) {
			pos = htx_get_next(htx, pos);
			break;
		}
	}
	c_adv(chn, data);
	return pos;
}

/*
 * Advance the channel buffer's read pointer by <len> bytes. This is useful
 * when data have been read directly from the buffer. It is illegal to call
 * this function with <len> causing a wrapping at the end of the buffer. It's
 * the caller's responsibility to ensure that <len> is never larger than
 * chn->o.
 */
static inline void co_skip(struct channel *chn, int len)
{
	BUG_ON_HOT(len > chn->output);
	b_del(&chn->buf, len);
	chn->output -= len;
	c_realign_if_empty(chn);
}

/* HTX version of co_skip(). This function skips at most <len> bytes from the
 * output of the channel <chn>. Depending on how data are stored in <htx> less
 * than <len> bytes can be skipped..
 */
static inline void co_htx_skip(struct channel *chn, struct htx *htx, int len)
{
	struct htx_ret htxret;

	htxret = htx_drain(htx, len);
	if (htxret.ret) {
		BUG_ON_HOT(htxret.ret > chn->output);
		chn->output -= htxret.ret;
	}
}

/* Tries to copy chunk <chunk> into the channel's buffer after length controls.
 * The chn->o and to_forward pointers are updated. If the channel's input is
 * closed, -2 is returned. If the block is too large for this buffer, -3 is
 * returned. If there is not enough room left in the buffer, -1 is returned.
 * Otherwise the number of bytes copied is returned (0 being a valid number).
 * Channel flag READ_PARTIAL is updated if some data can be transferred. The
 * chunk's length is updated with the number of bytes sent.
 */
static inline int ci_putchk(struct channel *chn, struct buffer *chunk)
{
	int ret;

	ret = ci_putblk(chn, chunk->area, chunk->data);
	if (ret > 0)
		chunk->data -= ret;
	return ret;
}

/* Tries to copy string <str> at once into the channel's buffer after length
 * controls.  The chn->o and to_forward pointers are updated. If the channel's
 * input is closed, -2 is returned. If the block is too large for this buffer,
 * -3 is returned. If there is not enough room left in the buffer, -1 is
 * returned.  Otherwise the number of bytes copied is returned (0 being a valid
 * number).  Channel flag READ_PARTIAL is updated if some data can be
 * transferred.
 */
static inline int ci_putstr(struct channel *chn, const char *str)
{
	return ci_putblk(chn, str, strlen(str));
}

/*
 * Return one char from the channel's buffer. If the buffer is empty and the
 * channel is closed, return -2. If the buffer is just empty, return -1. The
 * buffer's pointer is not advanced, it's up to the caller to call co_skip(buf,
 * 1) when it has consumed the char.  Also note that this function respects the
 * chn->o limit.
 */
static inline int co_getchr(struct channel *chn)
{
	/* closed or empty + imminent close = -2; empty = -1 */
	if (unlikely((chn_cons(chn)->flags & SC_FL_SHUT_DONE) || !co_data(chn))) {
		if (chn_cons(chn)->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))
			return -2;
		return -1;
	}
	return *co_head(chn);
}

#endif /* _HAPROXY_CHANNEL_H */

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */