summaryrefslogtreecommitdiffstats
path: root/src/task.c
blob: 1ab5212018764cf18c7b4ac3b7160baf0dc76304 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*
 * Task management functions.
 *
 * Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 */

#include <string.h>

#include <import/eb32tree.h>

#include <haproxy/api.h>
#include <haproxy/activity.h>
#include <haproxy/cfgparse.h>
#include <haproxy/clock.h>
#include <haproxy/fd.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/task.h>
#include <haproxy/tools.h>

extern struct task *process_stream(struct task *t, void *context, unsigned int state);
extern void stream_update_timings(struct task *t, uint64_t lat, uint64_t cpu);

DECLARE_POOL(pool_head_task,    "task",    sizeof(struct task));
DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet));

/* This is the memory pool containing all the signal structs. These
 * struct are used to store each required signal between two tasks.
 */
DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification));

/* The lock protecting all wait queues at once. For now we have no better
 * alternative since a task may have to be removed from a queue and placed
 * into another one. Storing the WQ index into the task doesn't seem to be
 * sufficient either.
 */
__decl_aligned_rwlock(wq_lock);

/* Flags the task <t> for immediate destruction and puts it into its first
 * thread's shared tasklet list if not yet queued/running. This will bypass
 * the priority scheduling and make the task show up as fast as possible in
 * the other thread's queue. Note that this operation isn't idempotent and is
 * not supposed to be run on the same task from multiple threads at once. It's
 * the caller's responsibility to make sure it is the only one able to kill the
 * task.
 */
void task_kill(struct task *t)
{
	unsigned int state = t->state;
	unsigned int thr;

	BUG_ON(state & TASK_KILLED);

	while (1) {
		while (state & (TASK_RUNNING | TASK_QUEUED)) {
			/* task already in the queue and about to be executed,
			 * or even currently running. Just add the flag and be
			 * done with it, the process loop will detect it and kill
			 * it. The CAS will fail if we arrive too late.
			 */
			if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_KILLED))
				return;
		}

		/* We'll have to wake it up, but we must also secure it so that
		 * it doesn't vanish under us. TASK_QUEUED guarantees nobody will
		 * add past us.
		 */
		if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_QUEUED | TASK_KILLED)) {
			/* Bypass the tree and go directly into the shared tasklet list.
			 * Note: that's a task so it must be accounted for as such. Pick
			 * the task's first thread for the job.
			 */
			thr = t->tid >= 0 ? t->tid : tid;

			/* Beware: tasks that have never run don't have their ->list empty yet! */
			MT_LIST_APPEND(&ha_thread_ctx[thr].shared_tasklet_list,
			               list_to_mt_list(&((struct tasklet *)t)->list));
			_HA_ATOMIC_INC(&ha_thread_ctx[thr].rq_total);
			_HA_ATOMIC_INC(&ha_thread_ctx[thr].tasks_in_list);
			wake_thread(thr);
			return;
		}
	}
}

/* Equivalent of task_kill for tasklets. Mark the tasklet <t> for destruction.
 * It will be deleted on the next scheduler invocation. This function is
 * thread-safe : a thread can kill a tasklet of another thread.
 */
void tasklet_kill(struct tasklet *t)
{
	unsigned int state = t->state;
	unsigned int thr;

	BUG_ON(state & TASK_KILLED);

	while (1) {
		while (state & (TASK_IN_LIST)) {
			/* Tasklet already in the list ready to be executed. Add
			 * the killed flag and wait for the process loop to
			 * detect it.
			 */
			if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_KILLED))
				return;
		}

		/* Mark the tasklet as killed and wake the thread to process it
		 * as soon as possible.
		 */
		if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_IN_LIST | TASK_KILLED)) {
			thr = t->tid >= 0 ? t->tid : tid;
			MT_LIST_APPEND(&ha_thread_ctx[thr].shared_tasklet_list,
			               list_to_mt_list(&t->list));
			_HA_ATOMIC_INC(&ha_thread_ctx[thr].rq_total);
			wake_thread(thr);
			return;
		}
	}
}

/* Do not call this one, please use tasklet_wakeup_on() instead, as this one is
 * the slow path of tasklet_wakeup_on() which performs some preliminary checks
 * and sets TASK_IN_LIST before calling this one. A negative <thr> designates
 * the current thread.
 */
void __tasklet_wakeup_on(struct tasklet *tl, int thr)
{
	if (likely(thr < 0)) {
		/* this tasklet runs on the caller thread */
		if (tl->state & TASK_HEAVY) {
			LIST_APPEND(&th_ctx->tasklets[TL_HEAVY], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_HEAVY;
		}
		else if (tl->state & TASK_SELF_WAKING) {
			LIST_APPEND(&th_ctx->tasklets[TL_BULK], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_BULK;
		}
		else if ((struct task *)tl == th_ctx->current) {
			_HA_ATOMIC_OR(&tl->state, TASK_SELF_WAKING);
			LIST_APPEND(&th_ctx->tasklets[TL_BULK], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_BULK;
		}
		else if (th_ctx->current_queue < 0) {
			LIST_APPEND(&th_ctx->tasklets[TL_URGENT], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_URGENT;
		}
		else {
			LIST_APPEND(&th_ctx->tasklets[th_ctx->current_queue], &tl->list);
			th_ctx->tl_class_mask |= 1 << th_ctx->current_queue;
		}
		_HA_ATOMIC_INC(&th_ctx->rq_total);
	} else {
		/* this tasklet runs on a specific thread. */
		MT_LIST_APPEND(&ha_thread_ctx[thr].shared_tasklet_list, list_to_mt_list(&tl->list));
		_HA_ATOMIC_INC(&ha_thread_ctx[thr].rq_total);
		wake_thread(thr);
	}
}

/* Do not call this one, please use tasklet_wakeup_after_on() instead, as this one is
 * the slow path of tasklet_wakeup_after() which performs some preliminary checks
 * and sets TASK_IN_LIST before calling this one.
 */
struct list *__tasklet_wakeup_after(struct list *head, struct tasklet *tl)
{
	BUG_ON(tl->tid >= 0 && tid != tl->tid);
	/* this tasklet runs on the caller thread */
	if (!head) {
		if (tl->state & TASK_HEAVY) {
			LIST_INSERT(&th_ctx->tasklets[TL_HEAVY], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_HEAVY;
		}
		else if (tl->state & TASK_SELF_WAKING) {
			LIST_INSERT(&th_ctx->tasklets[TL_BULK], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_BULK;
		}
		else if ((struct task *)tl == th_ctx->current) {
			_HA_ATOMIC_OR(&tl->state, TASK_SELF_WAKING);
			LIST_INSERT(&th_ctx->tasklets[TL_BULK], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_BULK;
		}
		else if (th_ctx->current_queue < 0) {
			LIST_INSERT(&th_ctx->tasklets[TL_URGENT], &tl->list);
			th_ctx->tl_class_mask |= 1 << TL_URGENT;
		}
		else {
			LIST_INSERT(&th_ctx->tasklets[th_ctx->current_queue], &tl->list);
			th_ctx->tl_class_mask |= 1 << th_ctx->current_queue;
		}
	}
	else {
		LIST_APPEND(head, &tl->list);
	}
	_HA_ATOMIC_INC(&th_ctx->rq_total);
	return &tl->list;
}

/* Puts the task <t> in run queue at a position depending on t->nice. <t> is
 * returned. The nice value assigns boosts in 32th of the run queue size. A
 * nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value
 * of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so
 * the caller will have to set its flags after this call.
 * The task must not already be in the run queue. If unsure, use the safer
 * task_wakeup() function.
 */
void __task_wakeup(struct task *t)
{
	struct eb_root *root = &th_ctx->rqueue;
	int thr __maybe_unused = t->tid >= 0 ? t->tid : tid;

#ifdef USE_THREAD
	if (thr != tid) {
		root = &ha_thread_ctx[thr].rqueue_shared;

		_HA_ATOMIC_INC(&ha_thread_ctx[thr].rq_total);
		HA_SPIN_LOCK(TASK_RQ_LOCK, &ha_thread_ctx[thr].rqsh_lock);

		t->rq.key = _HA_ATOMIC_ADD_FETCH(&ha_thread_ctx[thr].rqueue_ticks, 1);
		__ha_barrier_store();
	} else
#endif
	{
		_HA_ATOMIC_INC(&th_ctx->rq_total);
		t->rq.key = _HA_ATOMIC_ADD_FETCH(&th_ctx->rqueue_ticks, 1);
	}

	if (likely(t->nice)) {
		int offset;

		_HA_ATOMIC_INC(&tg_ctx->niced_tasks);
		offset = t->nice * (int)global.tune.runqueue_depth;
		t->rq.key += offset;
	}

	if (_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_TASK_PROFILING)
		t->wake_date = now_mono_time();

	eb32_insert(root, &t->rq);

#ifdef USE_THREAD
	if (thr != tid) {
		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &ha_thread_ctx[thr].rqsh_lock);

		/* If all threads that are supposed to handle this task are sleeping,
		 * wake one.
		 */
		wake_thread(thr);
	}
#endif
	return;
}

/*
 * __task_queue()
 *
 * Inserts a task into wait queue <wq> at the position given by its expiration
 * date. It does not matter if the task was already in the wait queue or not,
 * as it will be unlinked. The task MUST NOT have an infinite expiration timer.
 * Last, tasks must not be queued further than the end of the tree, which is
 * between <now_ms> and <now_ms> + 2^31 ms (now+24days in 32bit).
 *
 * This function should not be used directly, it is meant to be called by the
 * inline version of task_queue() which performs a few cheap preliminary tests
 * before deciding to call __task_queue(). Moreover this function doesn't care
 * at all about locking so the caller must be careful when deciding whether to
 * lock or not around this call.
 */
void __task_queue(struct task *task, struct eb_root *wq)
{
#ifdef USE_THREAD
	BUG_ON((wq == &tg_ctx->timers && task->tid >= 0) ||
	       (wq == &th_ctx->timers && task->tid < 0) ||
	       (wq != &tg_ctx->timers && wq != &th_ctx->timers));
#endif
	/* if this happens the process is doomed anyway, so better catch it now
	 * so that we have the caller in the stack.
	 */
	BUG_ON(task->expire == TICK_ETERNITY);

	if (likely(task_in_wq(task)))
		__task_unlink_wq(task);

	/* the task is not in the queue now */
	task->wq.key = task->expire;
#ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
	if (tick_is_lt(task->wq.key, now_ms))
		/* we're queuing too far away or in the past (most likely) */
		return;
#endif

	eb32_insert(wq, &task->wq);
}

/*
 * Extract all expired timers from the timer queue, and wakes up all
 * associated tasks.
 */
void wake_expired_tasks()
{
	struct thread_ctx * const tt = th_ctx; // thread's tasks
	int max_processed = global.tune.runqueue_depth;
	struct task *task;
	struct eb32_node *eb;
	__decl_thread(int key);

	while (1) {
		if (max_processed-- <= 0)
			goto leave;

		eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
		if (!eb) {
			/* we might have reached the end of the tree, typically because
			* <now_ms> is in the first half and we're first scanning the last
			* half. Let's loop back to the beginning of the tree now.
			*/
			eb = eb32_first(&tt->timers);
			if (likely(!eb))
				break;
		}

		/* It is possible that this task was left at an earlier place in the
		 * tree because a recent call to task_queue() has not moved it. This
		 * happens when the new expiration date is later than the old one.
		 * Since it is very unlikely that we reach a timeout anyway, it's a
		 * lot cheaper to proceed like this because we almost never update
		 * the tree. We may also find disabled expiration dates there. Since
		 * we have detached the task from the tree, we simply call task_queue
		 * to take care of this. Note that we might occasionally requeue it at
		 * the same place, before <eb>, so we have to check if this happens,
		 * and adjust <eb>, otherwise we may skip it which is not what we want.
		 * We may also not requeue the task (and not point eb at it) if its
		 * expiration time is not set. We also make sure we leave the real
		 * expiration date for the next task in the queue so that when calling
		 * next_timer_expiry() we're guaranteed to see the next real date and
		 * not the next apparent date. This is in order to avoid useless
		 * wakeups.
		 */

		task = eb32_entry(eb, struct task, wq);
		if (tick_is_expired(task->expire, now_ms)) {
			/* expired task, wake it up */
			__task_unlink_wq(task);
			_task_wakeup(task, TASK_WOKEN_TIMER, 0);
		}
		else if (task->expire != eb->key) {
			/* task is not expired but its key doesn't match so let's
			 * update it and skip to next apparently expired task.
			 */
			__task_unlink_wq(task);
			if (tick_isset(task->expire))
				__task_queue(task, &tt->timers);
		}
		else {
			/* task not expired and correctly placed. It may not be eternal. */
			BUG_ON(task->expire == TICK_ETERNITY);
			break;
		}
	}

#ifdef USE_THREAD
	if (eb_is_empty(&tg_ctx->timers))
		goto leave;

	HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
	eb = eb32_lookup_ge(&tg_ctx->timers, now_ms - TIMER_LOOK_BACK);
	if (!eb) {
		eb = eb32_first(&tg_ctx->timers);
		if (likely(!eb)) {
			HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
			goto leave;
		}
	}
	key = eb->key;

	if (tick_is_lt(now_ms, key)) {
		HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
		goto leave;
	}

	/* There's really something of interest here, let's visit the queue */

	if (HA_RWLOCK_TRYRDTOSK(TASK_WQ_LOCK, &wq_lock)) {
		/* if we failed to grab the lock it means another thread is
		 * already doing the same here, so let it do the job.
		 */
		HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
		goto leave;
	}

	while (1) {
  lookup_next:
		if (max_processed-- <= 0)
			break;
		eb = eb32_lookup_ge(&tg_ctx->timers, now_ms - TIMER_LOOK_BACK);
		if (!eb) {
			/* we might have reached the end of the tree, typically because
			* <now_ms> is in the first half and we're first scanning the last
			* half. Let's loop back to the beginning of the tree now.
			*/
			eb = eb32_first(&tg_ctx->timers);
			if (likely(!eb))
				break;
		}

		task = eb32_entry(eb, struct task, wq);

		/* Check for any competing run of the task (quite rare but may
		 * involve a dangerous concurrent access on task->expire). In
		 * order to protect against this, we'll take an exclusive access
		 * on TASK_RUNNING before checking/touching task->expire. If the
		 * task is already RUNNING on another thread, it will deal by
		 * itself with the requeuing so we must not do anything and
		 * simply quit the loop for now, because we cannot wait with the
		 * WQ lock held as this would prevent the running thread from
		 * requeuing the task. One annoying effect of holding RUNNING
		 * here is that a concurrent task_wakeup() will refrain from
		 * waking it up. This forces us to check for a wakeup after
		 * releasing the flag.
		 */
		if (HA_ATOMIC_FETCH_OR(&task->state, TASK_RUNNING) & TASK_RUNNING)
			break;

		if (tick_is_expired(task->expire, now_ms)) {
			/* expired task, wake it up */
			HA_RWLOCK_SKTOWR(TASK_WQ_LOCK, &wq_lock);
			__task_unlink_wq(task);
			HA_RWLOCK_WRTOSK(TASK_WQ_LOCK, &wq_lock);
			task_drop_running(task, TASK_WOKEN_TIMER);
		}
		else if (task->expire != eb->key) {
			/* task is not expired but its key doesn't match so let's
			 * update it and skip to next apparently expired task.
			 */
			HA_RWLOCK_SKTOWR(TASK_WQ_LOCK, &wq_lock);
			__task_unlink_wq(task);
			if (tick_isset(task->expire))
				__task_queue(task, &tg_ctx->timers);
			HA_RWLOCK_WRTOSK(TASK_WQ_LOCK, &wq_lock);
			task_drop_running(task, 0);
			goto lookup_next;
		}
		else {
			/* task not expired and correctly placed. It may not be eternal. */
			BUG_ON(task->expire == TICK_ETERNITY);
			task_drop_running(task, 0);
			break;
		}
	}

	HA_RWLOCK_SKUNLOCK(TASK_WQ_LOCK, &wq_lock);
#endif
leave:
	return;
}

/* Checks the next timer for the current thread by looking into its own timer
 * list and the global one. It may return TICK_ETERNITY if no timer is present.
 * Note that the next timer might very well be slightly in the past.
 */
int next_timer_expiry()
{
	struct thread_ctx * const tt = th_ctx; // thread's tasks
	struct eb32_node *eb;
	int ret = TICK_ETERNITY;
	__decl_thread(int key = TICK_ETERNITY);

	/* first check in the thread-local timers */
	eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
	if (!eb) {
		/* we might have reached the end of the tree, typically because
		 * <now_ms> is in the first half and we're first scanning the last
		 * half. Let's loop back to the beginning of the tree now.
		 */
		eb = eb32_first(&tt->timers);
	}

	if (eb)
		ret = eb->key;

#ifdef USE_THREAD
	if (!eb_is_empty(&tg_ctx->timers)) {
		HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
		eb = eb32_lookup_ge(&tg_ctx->timers, now_ms - TIMER_LOOK_BACK);
		if (!eb)
			eb = eb32_first(&tg_ctx->timers);
		if (eb)
			key = eb->key;
		HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
		if (eb)
			ret = tick_first(ret, key);
	}
#endif
	return ret;
}

/* Walks over tasklet lists th_ctx->tasklets[0..TL_CLASSES-1] and run at most
 * budget[TL_*] of them. Returns the number of entries effectively processed
 * (tasks and tasklets merged). The count of tasks in the list for the current
 * thread is adjusted.
 */
unsigned int run_tasks_from_lists(unsigned int budgets[])
{
	struct task *(*process)(struct task *t, void *ctx, unsigned int state);
	struct list *tl_queues = th_ctx->tasklets;
	struct task *t;
	uint8_t budget_mask = (1 << TL_CLASSES) - 1;
	struct sched_activity *profile_entry = NULL;
	unsigned int done = 0;
	unsigned int queue;
	unsigned int state;
	void *ctx;

	for (queue = 0; queue < TL_CLASSES;) {
		th_ctx->current_queue = queue;

		/* global.tune.sched.low-latency is set */
		if (global.tune.options & GTUNE_SCHED_LOW_LATENCY) {
			if (unlikely(th_ctx->tl_class_mask & budget_mask & ((1 << queue) - 1))) {
				/* a lower queue index has tasks again and still has a
				 * budget to run them. Let's switch to it now.
				 */
				queue = (th_ctx->tl_class_mask & 1) ? 0 :
					(th_ctx->tl_class_mask & 2) ? 1 : 2;
				continue;
			}

			if (unlikely(queue > TL_URGENT &&
				     budget_mask & (1 << TL_URGENT) &&
				     !MT_LIST_ISEMPTY(&th_ctx->shared_tasklet_list))) {
				/* an urgent tasklet arrived from another thread */
				break;
			}

			if (unlikely(queue > TL_NORMAL &&
				     budget_mask & (1 << TL_NORMAL) &&
				     (!eb_is_empty(&th_ctx->rqueue) || !eb_is_empty(&th_ctx->rqueue_shared)))) {
				/* a task was woken up by a bulk tasklet or another thread */
				break;
			}
		}

		if (LIST_ISEMPTY(&tl_queues[queue])) {
			th_ctx->tl_class_mask &= ~(1 << queue);
			queue++;
			continue;
		}

		if (!budgets[queue]) {
			budget_mask &= ~(1 << queue);
			queue++;
			continue;
		}

		budgets[queue]--;
		activity[tid].ctxsw++;

		t = (struct task *)LIST_ELEM(tl_queues[queue].n, struct tasklet *, list);
		ctx = t->context;
		process = t->process;
		t->calls++;

		th_ctx->sched_wake_date = t->wake_date;
		if (th_ctx->sched_wake_date) {
			uint32_t now_ns = now_mono_time();
			uint32_t lat = now_ns - th_ctx->sched_wake_date;

			t->wake_date = 0;
			th_ctx->sched_call_date = now_ns;
			profile_entry = sched_activity_entry(sched_activity, t->process, t->caller);
			th_ctx->sched_profile_entry = profile_entry;
			HA_ATOMIC_ADD(&profile_entry->lat_time, lat);
			HA_ATOMIC_INC(&profile_entry->calls);
		}
		__ha_barrier_store();

		th_ctx->current = t;
		_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK); // this thread is still running

		_HA_ATOMIC_DEC(&th_ctx->rq_total);
		LIST_DEL_INIT(&((struct tasklet *)t)->list);
		__ha_barrier_store();

		if (t->state & TASK_F_TASKLET) {
			/* this is a tasklet */
			state = _HA_ATOMIC_FETCH_AND(&t->state, TASK_PERSISTENT);
			__ha_barrier_atomic_store();

			if (likely(!(state & TASK_KILLED))) {
				process(t, ctx, state);
			}
			else {
				done++;
				th_ctx->current = NULL;
				pool_free(pool_head_tasklet, t);
				__ha_barrier_store();
				continue;
			}
		} else {
			/* This is a regular task */

			/* We must be the exclusive owner of the TASK_RUNNING bit, and
			 * have to be careful that the task is not being manipulated on
			 * another thread finding it expired in wake_expired_tasks().
			 * The TASK_RUNNING bit will be set during these operations,
			 * they are extremely rare and do not last long so the best to
			 * do here is to wait.
			 */
			state = _HA_ATOMIC_LOAD(&t->state);
			do {
				while (unlikely(state & TASK_RUNNING)) {
					__ha_cpu_relax();
					state = _HA_ATOMIC_LOAD(&t->state);
				}
			} while (!_HA_ATOMIC_CAS(&t->state, &state, (state & TASK_PERSISTENT) | TASK_RUNNING));

			__ha_barrier_atomic_store();

			_HA_ATOMIC_DEC(&ha_thread_ctx[tid].tasks_in_list);

			/* Note for below: if TASK_KILLED arrived before we've read the state, we
			 * directly free the task. Otherwise it will be seen after processing and
			 * it's freed on the exit path.
			 */
			if (likely(!(state & TASK_KILLED) && process == process_stream))
				t = process_stream(t, ctx, state);
			else if (!(state & TASK_KILLED) && process != NULL)
				t = process(t, ctx, state);
			else {
				task_unlink_wq(t);
				__task_free(t);
				th_ctx->current = NULL;
				__ha_barrier_store();
				/* We don't want max_processed to be decremented if
				 * we're just freeing a destroyed task, we should only
				 * do so if we really ran a task.
				 */
				continue;
			}

			/* If there is a pending state  we have to wake up the task
			 * immediately, else we defer it into wait queue
			 */
			if (t != NULL) {
				state = _HA_ATOMIC_LOAD(&t->state);
				if (unlikely(state & TASK_KILLED)) {
					task_unlink_wq(t);
					__task_free(t);
				}
				else {
					task_queue(t);
					task_drop_running(t, 0);
				}
			}
		}

		th_ctx->current = NULL;
		__ha_barrier_store();

		/* stats are only registered for non-zero wake dates */
		if (unlikely(th_ctx->sched_wake_date))
			HA_ATOMIC_ADD(&profile_entry->cpu_time, (uint32_t)(now_mono_time() - th_ctx->sched_call_date));
		done++;
	}
	th_ctx->current_queue = -1;

	return done;
}

/* The run queue is chronologically sorted in a tree. An insertion counter is
 * used to assign a position to each task. This counter may be combined with
 * other variables (eg: nice value) to set the final position in the tree. The
 * counter may wrap without a problem, of course. We then limit the number of
 * tasks processed to 200 in any case, so that general latency remains low and
 * so that task positions have a chance to be considered. The function scans
 * both the global and local run queues and picks the most urgent task between
 * the two. We need to grab the global runqueue lock to touch it so it's taken
 * on the very first access to the global run queue and is released as soon as
 * it reaches the end.
 *
 * The function adjusts <next> if a new event is closer.
 */
void process_runnable_tasks()
{
	struct thread_ctx * const tt = th_ctx;
	struct eb32_node *lrq; // next local run queue entry
	struct eb32_node *grq; // next global run queue entry
	struct task *t;
	const unsigned int default_weights[TL_CLASSES] = {
		[TL_URGENT] = 64, // ~50% of CPU bandwidth for I/O
		[TL_NORMAL] = 48, // ~37% of CPU bandwidth for tasks
		[TL_BULK]   = 16, // ~13% of CPU bandwidth for self-wakers
		[TL_HEAVY]  = 1,  // never more than 1 heavy task at once
	};
	unsigned int max[TL_CLASSES]; // max to be run per class
	unsigned int max_total;       // sum of max above
	struct mt_list *tmp_list;
	unsigned int queue;
	int max_processed;
	int lpicked, gpicked;
	int heavy_queued = 0;
	int budget;

	_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK); // this thread is still running

	if (!thread_has_tasks()) {
		activity[tid].empty_rq++;
		return;
	}

	max_processed = global.tune.runqueue_depth;

	if (likely(tg_ctx->niced_tasks))
		max_processed = (max_processed + 3) / 4;

	if (max_processed < th_ctx->rq_total && th_ctx->rq_total <= 2*max_processed) {
		/* If the run queue exceeds the budget by up to 50%, let's cut it
		 * into two identical halves to improve latency.
		 */
		max_processed = th_ctx->rq_total / 2;
	}

 not_done_yet:
	max[TL_URGENT] = max[TL_NORMAL] = max[TL_BULK] = 0;

	/* urgent tasklets list gets a default weight of ~50% */
	if ((tt->tl_class_mask & (1 << TL_URGENT)) ||
	    !MT_LIST_ISEMPTY(&tt->shared_tasklet_list))
		max[TL_URGENT] = default_weights[TL_URGENT];

	/* normal tasklets list gets a default weight of ~37% */
	if ((tt->tl_class_mask & (1 << TL_NORMAL)) ||
	    !eb_is_empty(&th_ctx->rqueue) || !eb_is_empty(&th_ctx->rqueue_shared))
		max[TL_NORMAL] = default_weights[TL_NORMAL];

	/* bulk tasklets list gets a default weight of ~13% */
	if ((tt->tl_class_mask & (1 << TL_BULK)))
		max[TL_BULK] = default_weights[TL_BULK];

	/* heavy tasks are processed only once and never refilled in a
	 * call round. That budget is not lost either as we don't reset
	 * it unless consumed.
	 */
	if (!heavy_queued) {
		if ((tt->tl_class_mask & (1 << TL_HEAVY)))
			max[TL_HEAVY] = default_weights[TL_HEAVY];
		else
			max[TL_HEAVY] = 0;
		heavy_queued = 1;
	}

	/* Now compute a fair share of the weights. Total may slightly exceed
	 * 100% due to rounding, this is not a problem. Note that while in
	 * theory the sum cannot be NULL as we cannot get there without tasklets
	 * to process, in practice it seldom happens when multiple writers
	 * conflict and rollback on MT_LIST_TRY_APPEND(shared_tasklet_list), causing
	 * a first MT_LIST_ISEMPTY() to succeed for thread_has_task() and the
	 * one above to finally fail. This is extremely rare and not a problem.
	 */
	max_total = max[TL_URGENT] + max[TL_NORMAL] + max[TL_BULK] + max[TL_HEAVY];
	if (!max_total)
		goto leave;

	for (queue = 0; queue < TL_CLASSES; queue++)
		max[queue]  = ((unsigned)max_processed * max[queue] + max_total - 1) / max_total;

	/* The heavy queue must never process more than very few tasks at once
	 * anyway. We set the limit to 1 if running on low_latency scheduling,
	 * given that we know that other values can have an impact on latency
	 * (~500us end-to-end connection achieved at 130kcps in SSL), 1 + one
	 * per 1024 tasks if there is at least one non-heavy task while still
	 * respecting the ratios above, or 1 + one per 128 tasks if only heavy
	 * tasks are present. This allows to drain excess SSL handshakes more
	 * efficiently if the queue becomes congested.
	 */
	if (max[TL_HEAVY] > 1) {
		if (global.tune.options & GTUNE_SCHED_LOW_LATENCY)
			budget = 1;
		else if (tt->tl_class_mask & ~(1 << TL_HEAVY))
			budget = 1 + tt->rq_total / 1024;
		else
			budget = 1 + tt->rq_total / 128;

		if (max[TL_HEAVY] > budget)
			max[TL_HEAVY] = budget;
	}

	lrq = grq = NULL;

	/* pick up to max[TL_NORMAL] regular tasks from prio-ordered run queues */
	/* Note: the grq lock is always held when grq is not null */
	lpicked = gpicked = 0;
	budget = max[TL_NORMAL] - tt->tasks_in_list;
	while (lpicked + gpicked < budget) {
		if (!eb_is_empty(&th_ctx->rqueue_shared) && !grq) {
#ifdef USE_THREAD
			HA_SPIN_LOCK(TASK_RQ_LOCK, &th_ctx->rqsh_lock);
			grq = eb32_lookup_ge(&th_ctx->rqueue_shared, _HA_ATOMIC_LOAD(&tt->rqueue_ticks) - TIMER_LOOK_BACK);
			if (unlikely(!grq)) {
				grq = eb32_first(&th_ctx->rqueue_shared);
				if (!grq)
					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &th_ctx->rqsh_lock);
			}
#endif
		}

		/* If a global task is available for this thread, it's in grq
		 * now and the global RQ is locked.
		 */

		if (!lrq) {
			lrq = eb32_lookup_ge(&tt->rqueue, _HA_ATOMIC_LOAD(&tt->rqueue_ticks) - TIMER_LOOK_BACK);
			if (unlikely(!lrq))
				lrq = eb32_first(&tt->rqueue);
		}

		if (!lrq && !grq)
			break;

		if (likely(!grq || (lrq && (int)(lrq->key - grq->key) <= 0))) {
			t = eb32_entry(lrq, struct task, rq);
			lrq = eb32_next(lrq);
			eb32_delete(&t->rq);
			lpicked++;
		}
#ifdef USE_THREAD
		else {
			t = eb32_entry(grq, struct task, rq);
			grq = eb32_next(grq);
			eb32_delete(&t->rq);

			if (unlikely(!grq)) {
				grq = eb32_first(&th_ctx->rqueue_shared);
				if (!grq)
					HA_SPIN_UNLOCK(TASK_RQ_LOCK, &th_ctx->rqsh_lock);
			}
			gpicked++;
		}
#endif
		if (t->nice)
			_HA_ATOMIC_DEC(&tg_ctx->niced_tasks);

		/* Add it to the local task list */
		LIST_APPEND(&tt->tasklets[TL_NORMAL], &((struct tasklet *)t)->list);
	}

	/* release the rqueue lock */
	if (grq) {
		HA_SPIN_UNLOCK(TASK_RQ_LOCK, &th_ctx->rqsh_lock);
		grq = NULL;
	}

	if (lpicked + gpicked) {
		tt->tl_class_mask |= 1 << TL_NORMAL;
		_HA_ATOMIC_ADD(&tt->tasks_in_list, lpicked + gpicked);
		activity[tid].tasksw += lpicked + gpicked;
	}

	/* Merge the list of tasklets waken up by other threads to the
	 * main list.
	 */
	tmp_list = MT_LIST_BEHEAD(&tt->shared_tasklet_list);
	if (tmp_list) {
		LIST_SPLICE_END_DETACHED(&tt->tasklets[TL_URGENT], (struct list *)tmp_list);
		if (!LIST_ISEMPTY(&tt->tasklets[TL_URGENT]))
			tt->tl_class_mask |= 1 << TL_URGENT;
	}

	/* execute tasklets in each queue */
	max_processed -= run_tasks_from_lists(max);

	/* some tasks may have woken other ones up */
	if (max_processed > 0 && thread_has_tasks())
		goto not_done_yet;

 leave:
	if (tt->tl_class_mask)
		activity[tid].long_rq++;
}

/*
 * Delete every tasks before running the master polling loop
 */
void mworker_cleantasks()
{
	struct task *t;
	int i;
	struct eb32_node *tmp_wq = NULL;
	struct eb32_node *tmp_rq = NULL;

#ifdef USE_THREAD
	/* cleanup the global run queue */
	tmp_rq = eb32_first(&th_ctx->rqueue_shared);
	while (tmp_rq) {
		t = eb32_entry(tmp_rq, struct task, rq);
		tmp_rq = eb32_next(tmp_rq);
		task_destroy(t);
	}
	/* cleanup the timers queue */
	tmp_wq = eb32_first(&tg_ctx->timers);
	while (tmp_wq) {
		t = eb32_entry(tmp_wq, struct task, wq);
		tmp_wq = eb32_next(tmp_wq);
		task_destroy(t);
	}
#endif
	/* clean the per thread run queue */
	for (i = 0; i < global.nbthread; i++) {
		tmp_rq = eb32_first(&ha_thread_ctx[i].rqueue);
		while (tmp_rq) {
			t = eb32_entry(tmp_rq, struct task, rq);
			tmp_rq = eb32_next(tmp_rq);
			task_destroy(t);
		}
		/* cleanup the per thread timers queue */
		tmp_wq = eb32_first(&ha_thread_ctx[i].timers);
		while (tmp_wq) {
			t = eb32_entry(tmp_wq, struct task, wq);
			tmp_wq = eb32_next(tmp_wq);
			task_destroy(t);
		}
	}
}

/* perform minimal initializations */
static void init_task()
{
	int i, q;

	for (i = 0; i < MAX_TGROUPS; i++)
		memset(&ha_tgroup_ctx[i].timers, 0, sizeof(ha_tgroup_ctx[i].timers));

	for (i = 0; i < MAX_THREADS; i++) {
		for (q = 0; q < TL_CLASSES; q++)
			LIST_INIT(&ha_thread_ctx[i].tasklets[q]);
		MT_LIST_INIT(&ha_thread_ctx[i].shared_tasklet_list);
	}
}

/* config parser for global "tune.sched.low-latency", accepts "on" or "off" */
static int cfg_parse_tune_sched_low_latency(char **args, int section_type, struct proxy *curpx,
                                      const struct proxy *defpx, const char *file, int line,
                                      char **err)
{
	if (too_many_args(1, args, err, NULL))
		return -1;

	if (strcmp(args[1], "on") == 0)
		global.tune.options |= GTUNE_SCHED_LOW_LATENCY;
	else if (strcmp(args[1], "off") == 0)
		global.tune.options &= ~GTUNE_SCHED_LOW_LATENCY;
	else {
		memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
		return -1;
	}
	return 0;
}

/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
	{ CFG_GLOBAL, "tune.sched.low-latency", cfg_parse_tune_sched_low_latency },
	{ 0, NULL, NULL }
}};

INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
INITCALL0(STG_PREPARE, init_task);

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */