summaryrefslogtreecommitdiffstats
path: root/src/tools.c
blob: e1ba2411ef897ae36e2931b06a24947d3aec7d69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
/*
 * General purpose functions.
 *
 * Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 */

#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
#define _GNU_SOURCE
#include <dlfcn.h>
#include <link.h>
#endif

#if defined(__FreeBSD__)
#include <elf.h>
#include <dlfcn.h>
extern void *__elf_aux_vector;
#endif

#if defined(__NetBSD__)
#include <sys/exec_elf.h>
#include <dlfcn.h>
#endif

#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#if defined(__linux__) && defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
#include <sys/auxv.h>
#endif

#include <import/eb32sctree.h>
#include <import/eb32tree.h>
#include <import/ebmbtree.h>

#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/chunk.h>
#include <haproxy/dgram.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/listener.h>
#include <haproxy/namespace.h>
#include <haproxy/net_helper.h>
#include <haproxy/protocol.h>
#include <haproxy/quic_sock.h>
#include <haproxy/resolvers.h>
#include <haproxy/sc_strm.h>
#include <haproxy/sock.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/ssl_utils.h>
#include <haproxy/stconn.h>
#include <haproxy/task.h>
#include <haproxy/tools.h>
#include <haproxy/xxhash.h>

/* This macro returns false if the test __x is false. Many
 * of the following parsing function must be abort the processing
 * if it returns 0, so this macro is useful for writing light code.
 */
#define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0)

/* Define the number of line of hash_word */
#define NB_L_HASH_WORD 15

/* return the hash of a string and length for a given key. All keys are valid. */
#define HA_ANON(key, str, len) (XXH32(str, len, key) & 0xFFFFFF)

/* enough to store NB_ITOA_STR integers of :
 *   2^64-1 = 18446744073709551615 or
 *    -2^63 = -9223372036854775808
 *
 * The HTML version needs room for adding the 25 characters
 * '<span class="rls"></span>' around digits at positions 3N+1 in order
 * to add spacing at up to 6 positions : 18 446 744 073 709 551 615
 */
THREAD_LOCAL char itoa_str[NB_ITOA_STR][171];
THREAD_LOCAL int itoa_idx = 0; /* index of next itoa_str to use */

/* sometimes we'll need to quote strings (eg: in stats), and we don't expect
 * to quote strings larger than a max configuration line.
 */
THREAD_LOCAL char quoted_str[NB_QSTR][QSTR_SIZE + 1];
THREAD_LOCAL int quoted_idx = 0;

/* thread-local PRNG state. It's modified to start from a different sequence
 * on all threads upon startup. It must not be used or anything beyond getting
 * statistical values as it's 100% predictable.
 */
THREAD_LOCAL unsigned int statistical_prng_state = 2463534242U;

/* set to true if this is a static build */
int build_is_static = 0;

/* A global static table to store hashed words */
static THREAD_LOCAL char hash_word[NB_L_HASH_WORD][20];
static THREAD_LOCAL int index_hash = 0;

/*
 * unsigned long long ASCII representation
 *
 * return the last char '\0' or NULL if no enough
 * space in dst
 */
char *ulltoa(unsigned long long n, char *dst, size_t size)
{
	int i = 0;
	char *res;

	switch(n) {
		case 1ULL ... 9ULL:
			i = 0;
			break;

		case 10ULL ... 99ULL:
			i = 1;
			break;

		case 100ULL ... 999ULL:
			i = 2;
			break;

		case 1000ULL ... 9999ULL:
			i = 3;
			break;

		case 10000ULL ... 99999ULL:
			i = 4;
			break;

		case 100000ULL ... 999999ULL:
			i = 5;
			break;

		case 1000000ULL ... 9999999ULL:
			i = 6;
			break;

		case 10000000ULL ... 99999999ULL:
			i = 7;
			break;

		case 100000000ULL ... 999999999ULL:
			i = 8;
			break;

		case 1000000000ULL ... 9999999999ULL:
			i = 9;
			break;

		case 10000000000ULL ... 99999999999ULL:
			i = 10;
			break;

		case 100000000000ULL ... 999999999999ULL:
			i = 11;
			break;

		case 1000000000000ULL ... 9999999999999ULL:
			i = 12;
			break;

		case 10000000000000ULL ... 99999999999999ULL:
			i = 13;
			break;

		case 100000000000000ULL ... 999999999999999ULL:
			i = 14;
			break;

		case 1000000000000000ULL ... 9999999999999999ULL:
			i = 15;
			break;

		case 10000000000000000ULL ... 99999999999999999ULL:
			i = 16;
			break;

		case 100000000000000000ULL ... 999999999999999999ULL:
			i = 17;
			break;

		case 1000000000000000000ULL ... 9999999999999999999ULL:
			i = 18;
			break;

		case 10000000000000000000ULL ... ULLONG_MAX:
			i = 19;
			break;
	}
	if (i + 2 > size) // (i + 1) + '\0'
		return NULL;  // too long
	res = dst + i + 1;
	*res = '\0';
	for (; i >= 0; i--) {
		dst[i] = n % 10ULL + '0';
		n /= 10ULL;
	}
	return res;
}

/*
 * unsigned long ASCII representation
 *
 * return the last char '\0' or NULL if no enough
 * space in dst
 */
char *ultoa_o(unsigned long n, char *dst, size_t size)
{
	int i = 0;
	char *res;

	switch (n) {
		case 0U ... 9UL:
			i = 0;
			break;

		case 10U ... 99UL:
			i = 1;
			break;

		case 100U ... 999UL:
			i = 2;
			break;

		case 1000U ... 9999UL:
			i = 3;
			break;

		case 10000U ... 99999UL:
			i = 4;
			break;

		case 100000U ... 999999UL:
			i = 5;
			break;

		case 1000000U ... 9999999UL:
			i = 6;
			break;

		case 10000000U ... 99999999UL:
			i = 7;
			break;

		case 100000000U ... 999999999UL:
			i = 8;
			break;
#if __WORDSIZE == 32

		case 1000000000ULL ... ULONG_MAX:
			i = 9;
			break;

#elif __WORDSIZE == 64

		case 1000000000ULL ... 9999999999UL:
			i = 9;
			break;

		case 10000000000ULL ... 99999999999UL:
			i = 10;
			break;

		case 100000000000ULL ... 999999999999UL:
			i = 11;
			break;

		case 1000000000000ULL ... 9999999999999UL:
			i = 12;
			break;

		case 10000000000000ULL ... 99999999999999UL:
			i = 13;
			break;

		case 100000000000000ULL ... 999999999999999UL:
			i = 14;
			break;

		case 1000000000000000ULL ... 9999999999999999UL:
			i = 15;
			break;

		case 10000000000000000ULL ... 99999999999999999UL:
			i = 16;
			break;

		case 100000000000000000ULL ... 999999999999999999UL:
			i = 17;
			break;

		case 1000000000000000000ULL ... 9999999999999999999UL:
			i = 18;
			break;

		case 10000000000000000000ULL ... ULONG_MAX:
			i = 19;
			break;

#endif
	}
	if (i + 2 > size) // (i + 1) + '\0'
		return NULL;  // too long
	res = dst + i + 1;
	*res = '\0';
	for (; i >= 0; i--) {
		dst[i] = n % 10U + '0';
		n /= 10U;
	}
	return res;
}

/*
 * signed long ASCII representation
 *
 * return the last char '\0' or NULL if no enough
 * space in dst
 */
char *ltoa_o(long int n, char *dst, size_t size)
{
	char *pos = dst;

	if (n < 0) {
		if (size < 3)
			return NULL; // min size is '-' + digit + '\0' but another test in ultoa
		*pos = '-';
		pos++;
		dst = ultoa_o(-n, pos, size - 1);
	} else {
		dst = ultoa_o(n, dst, size);
	}
	return dst;
}

/*
 * signed long long ASCII representation
 *
 * return the last char '\0' or NULL if no enough
 * space in dst
 */
char *lltoa(long long n, char *dst, size_t size)
{
	char *pos = dst;

	if (n < 0) {
		if (size < 3)
			return NULL; // min size is '-' + digit + '\0' but another test in ulltoa
		*pos = '-';
		pos++;
		dst = ulltoa(-n, pos, size - 1);
	} else {
		dst = ulltoa(n, dst, size);
	}
	return dst;
}

/*
 * write a ascii representation of a unsigned into dst,
 * return a pointer to the last character
 * Pad the ascii representation with '0', using size.
 */
char *utoa_pad(unsigned int n, char *dst, size_t size)
{
	int i = 0;
	char *ret;

	switch(n) {
		case 0U ... 9U:
			i = 0;
			break;

		case 10U ... 99U:
			i = 1;
			break;

		case 100U ... 999U:
			i = 2;
			break;

		case 1000U ... 9999U:
			i = 3;
			break;

		case 10000U ... 99999U:
			i = 4;
			break;

		case 100000U ... 999999U:
			i = 5;
			break;

		case 1000000U ... 9999999U:
			i = 6;
			break;

		case 10000000U ... 99999999U:
			i = 7;
			break;

		case 100000000U ... 999999999U:
			i = 8;
			break;

		case 1000000000U ... 4294967295U:
			i = 9;
			break;
	}
	if (i + 2 > size) // (i + 1) + '\0'
		return NULL;  // too long
	i = size - 2; // padding - '\0'

	ret = dst + i + 1;
	*ret = '\0';
	for (; i >= 0; i--) {
		dst[i] = n % 10U + '0';
		n /= 10U;
	}
	return ret;
}

/*
 * copies at most <size-1> chars from <src> to <dst>. Last char is always
 * set to 0, unless <size> is 0. The number of chars copied is returned
 * (excluding the terminating zero).
 * This code has been optimized for size and speed : on x86, it's 45 bytes
 * long, uses only registers, and consumes only 4 cycles per char.
 */
int strlcpy2(char *dst, const char *src, int size)
{
	char *orig = dst;
	if (size) {
		while (--size && (*dst = *src)) {
			src++; dst++;
		}
		*dst = 0;
	}
	return dst - orig;
}

/*
 * This function simply returns a locally allocated string containing
 * the ascii representation for number 'n' in decimal.
 */
char *ultoa_r(unsigned long n, char *buffer, int size)
{
	char *pos;
	
	pos = buffer + size - 1;
	*pos-- = '\0';
	
	do {
		*pos-- = '0' + n % 10;
		n /= 10;
	} while (n && pos >= buffer);
	return pos + 1;
}

/*
 * This function simply returns a locally allocated string containing
 * the ascii representation for number 'n' in decimal.
 */
char *lltoa_r(long long int in, char *buffer, int size)
{
	char *pos;
	int neg = 0;
	unsigned long long int n;

	pos = buffer + size - 1;
	*pos-- = '\0';

	if (in < 0) {
		neg = 1;
		n = -in;
	}
	else
		n = in;

	do {
		*pos-- = '0' + n % 10;
		n /= 10;
	} while (n && pos >= buffer);
	if (neg && pos > buffer)
		*pos-- = '-';
	return pos + 1;
}

/*
 * This function simply returns a locally allocated string containing
 * the ascii representation for signed number 'n' in decimal.
 */
char *sltoa_r(long n, char *buffer, int size)
{
	char *pos;

	if (n >= 0)
		return ultoa_r(n, buffer, size);

	pos = ultoa_r(-n, buffer + 1, size - 1) - 1;
	*pos = '-';
	return pos;
}

/*
 * This function simply returns a locally allocated string containing
 * the ascii representation for number 'n' in decimal, formatted for
 * HTML output with tags to create visual grouping by 3 digits. The
 * output needs to support at least 171 characters.
 */
const char *ulltoh_r(unsigned long long n, char *buffer, int size)
{
	char *start;
	int digit = 0;
	
	start = buffer + size;
	*--start = '\0';
	
	do {
		if (digit == 3 && start >= buffer + 7)
			memcpy(start -= 7, "</span>", 7);

		if (start >= buffer + 1) {
			*--start = '0' + n % 10;
			n /= 10;
		}

		if (digit == 3 && start >= buffer + 18)
			memcpy(start -= 18, "<span class=\"rls\">", 18);

		if (digit++ == 3)
			digit = 1;
	} while (n && start > buffer);
	return start;
}

/*
 * This function simply returns a locally allocated string containing the ascii
 * representation for number 'n' in decimal, unless n is 0 in which case it
 * returns the alternate string (or an empty string if the alternate string is
 * NULL). It use is intended for limits reported in reports, where it's
 * desirable not to display anything if there is no limit. Warning! it shares
 * the same vector as ultoa_r().
 */
const char *limit_r(unsigned long n, char *buffer, int size, const char *alt)
{
	return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : "");
}

/* Trims the first "%f" float in a string to its minimum number of digits after
 * the decimal point by trimming trailing zeroes, even dropping the decimal
 * point if not needed. The string is in <buffer> of length <len>, and the
 * number is expected to start at or after position <num_start> (the first
 * point appearing there is considered). A NUL character is always placed at
 * the end if some trimming occurs. The new buffer length is returned.
 */
size_t flt_trim(char *buffer, size_t num_start, size_t len)
{
	char *end = buffer + len;
	char *p = buffer + num_start;
	char *trim;

	do {
		if (p >= end)
			return len;
		trim = p++;
	} while (*trim != '.');

	/* For now <trim> is on the decimal point. Let's look for any other
	 * meaningful digit after it.
	 */
	while (p < end) {
		if (*p++ != '0')
			trim = p;
	}

	if (trim < end)
		*trim = 0;

	return trim - buffer;
}

/*
 * This function simply returns a locally allocated string containing
 * the ascii representation for number 'n' in decimal with useless trailing
 * zeroes trimmed.
 */
char *ftoa_r(double n, char *buffer, int size)
{
	flt_trim(buffer, 0, snprintf(buffer, size, "%f", n));
	return buffer;
}

/* returns a locally allocated string containing the quoted encoding of the
 * input string. The output may be truncated to QSTR_SIZE chars, but it is
 * guaranteed that the string will always be properly terminated. Quotes are
 * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
 * always be at least 4 chars.
 */
const char *qstr(const char *str)
{
	char *ret = quoted_str[quoted_idx];
	char *p, *end;

	if (++quoted_idx >= NB_QSTR)
		quoted_idx = 0;

	p = ret;
	end = ret + QSTR_SIZE;

	*p++ = '"';

	/* always keep 3 chars to support passing "" and the ending " */
	while (*str && p < end - 3) {
		if (*str == '"') {
			*p++ = '"';
			*p++ = '"';
		}
		else
			*p++ = *str;
		str++;
	}
	*p++ = '"';
	return ret;
}

/*
 * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
 *
 * It looks like this one would be a good candidate for inlining, but this is
 * not interesting because it around 35 bytes long and often called multiple
 * times within the same function.
 */
int ishex(char s)
{
	s -= '0';
	if ((unsigned char)s <= 9)
		return 1;
	s -= 'A' - '0';
	if ((unsigned char)s <= 5)
		return 1;
	s -= 'a' - 'A';
	if ((unsigned char)s <= 5)
		return 1;
	return 0;
}

/* rounds <i> down to the closest value having max 2 digits */
unsigned int round_2dig(unsigned int i)
{
	unsigned int mul = 1;

	while (i >= 100) {
		i /= 10;
		mul *= 10;
	}
	return i * mul;
}

/*
 * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
 * invalid character is found, a pointer to it is returned. If everything is
 * fine, NULL is returned.
 */
const char *invalid_char(const char *name)
{
	if (!*name)
		return name;

	while (*name) {
		if (!isalnum((unsigned char)*name) && *name != '.' && *name != ':' &&
		    *name != '_' && *name != '-')
			return name;
		name++;
	}
	return NULL;
}

/*
 * Checks <name> for invalid characters. Valid chars are [_.-] and those
 * accepted by <f> function.
 * If an invalid character is found, a pointer to it is returned.
 * If everything is fine, NULL is returned.
 */
static inline const char *__invalid_char(const char *name, int (*f)(int)) {

	if (!*name)
		return name;

	while (*name) {
		if (!f((unsigned char)*name) && *name != '.' &&
		    *name != '_' && *name != '-')
			return name;

		name++;
	}

	return NULL;
}

/*
 * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_.-].
 * If an invalid character is found, a pointer to it is returned.
 * If everything is fine, NULL is returned.
 */
const char *invalid_domainchar(const char *name) {
	return __invalid_char(name, isalnum);
}

/*
 * Checks <name> for invalid characters. Valid chars are [A-Za-z_.-].
 * If an invalid character is found, a pointer to it is returned.
 * If everything is fine, NULL is returned.
 */
const char *invalid_prefix_char(const char *name) {
	return __invalid_char(name, isalnum);
}

/*
 * converts <str> to a struct sockaddr_storage* provided by the caller. The
 * caller must have zeroed <sa> first, and may have set sa->ss_family to force
 * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
 * the function tries to guess the address family from the syntax. If the
 * family is forced and the format doesn't match, an error is returned. The
 * string is assumed to contain only an address, no port. The address can be a
 * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
 * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
 * The return address will only have the address family and the address set,
 * all other fields remain zero. The string is not supposed to be modified.
 * The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname
 * is resolved, otherwise only IP addresses are resolved, and anything else
 * returns NULL. If the address contains a port, this one is preserved.
 */
struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve)
{
	struct hostent *he;
	/* max IPv6 length, including brackets and terminating NULL */
	char tmpip[48];
	int port = get_host_port(sa);

	/* check IPv6 with square brackets */
	if (str[0] == '[') {
		size_t iplength = strlen(str);

		if (iplength < 4) {
			/* minimal size is 4 when using brackets "[::]" */
			goto fail;
		}
		else if (iplength >= sizeof(tmpip)) {
			/* IPv6 literal can not be larger than tmpip */
			goto fail;
		}
		else {
			if (str[iplength - 1] != ']') {
				/* if address started with bracket, it should end with bracket */
				goto fail;
			}
			else {
				memcpy(tmpip, str + 1, iplength - 2);
				tmpip[iplength - 2] = '\0';
				str = tmpip;
			}
		}
	}

	/* Any IPv6 address */
	if (str[0] == ':' && str[1] == ':' && !str[2]) {
		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
			sa->ss_family = AF_INET6;
		else if (sa->ss_family != AF_INET6)
			goto fail;
		set_host_port(sa, port);
		return sa;
	}

	/* Any address for the family, defaults to IPv4 */
	if (!str[0] || (str[0] == '*' && !str[1])) {
		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
			sa->ss_family = AF_INET;
		set_host_port(sa, port);
		return sa;
	}

	/* check for IPv6 first */
	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) &&
	    inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) {
		sa->ss_family = AF_INET6;
		set_host_port(sa, port);
		return sa;
	}

	/* then check for IPv4 */
	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) &&
	    inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) {
		sa->ss_family = AF_INET;
		set_host_port(sa, port);
		return sa;
	}

	if (!resolve)
		return NULL;

	if (!resolv_hostname_validation(str, NULL))
		return NULL;

#ifdef USE_GETADDRINFO
	if (global.tune.options & GTUNE_USE_GAI) {
		struct addrinfo hints, *result;
		int success = 0;

		memset(&result, 0, sizeof(result));
		memset(&hints, 0, sizeof(hints));
		hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC;
		hints.ai_socktype = SOCK_DGRAM;
		hints.ai_flags = 0;
		hints.ai_protocol = 0;

		if (getaddrinfo(str, NULL, &hints, &result) == 0) {
			if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
				sa->ss_family = result->ai_family;
			else if (sa->ss_family != result->ai_family) {
				freeaddrinfo(result);
				goto fail;
			}

			switch (result->ai_family) {
			case AF_INET:
				memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen);
				set_host_port(sa, port);
				success = 1;
				break;
			case AF_INET6:
				memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen);
				set_host_port(sa, port);
				success = 1;
				break;
			}
		}

		if (result)
			freeaddrinfo(result);

		if (success)
			return sa;
	}
#endif
	/* try to resolve an IPv4/IPv6 hostname */
	he = gethostbyname(str);
	if (he) {
		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
			sa->ss_family = he->h_addrtype;
		else if (sa->ss_family != he->h_addrtype)
			goto fail;

		switch (sa->ss_family) {
		case AF_INET:
			((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
			set_host_port(sa, port);
			return sa;
		case AF_INET6:
			((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
			set_host_port(sa, port);
			return sa;
		}
	}

	/* unsupported address family */
 fail:
	return NULL;
}

/*
 * Converts <str> to a locally allocated struct sockaddr_storage *, and a port
 * range or offset consisting in two integers that the caller will have to
 * check to find the relevant input format. The following format are supported :
 *
 *   String format           | address |  port  |  low   |  high
 *    addr                   | <addr>  |   0    |   0    |   0
 *    addr:                  | <addr>  |   0    |   0    |   0
 *    addr:port              | <addr>  | <port> | <port> | <port>
 *    addr:pl-ph             | <addr>  |  <pl>  |  <pl>  |  <ph>
 *    addr:+port             | <addr>  | <port> |   0    | <port>
 *    addr:-port             | <addr>  |-<port> | <port> |   0
 *
 * The detection of a port range or increment by the caller is made by
 * comparing <low> and <high>. If both are equal, then port 0 means no port
 * was specified. The caller may pass NULL for <low> and <high> if it is not
 * interested in retrieving port ranges.
 *
 * Note that <addr> above may also be :
 *    - empty ("")  => family will be AF_INET and address will be INADDR_ANY
 *    - "*"         => family will be AF_INET and address will be INADDR_ANY
 *    - "::"        => family will be AF_INET6 and address will be IN6ADDR_ANY
 *    - a host name => family and address will depend on host name resolving.
 *
 * A prefix may be passed in before the address above to force the family :
 *    - "ipv4@"  => force address to resolve as IPv4 and fail if not possible.
 *    - "ipv6@"  => force address to resolve as IPv6 and fail if not possible.
 *    - "unix@"  => force address to be a path to a UNIX socket even if the
 *                  path does not start with a '/'
 *    - 'abns@'  -> force address to belong to the abstract namespace (Linux
 *                  only). These sockets are just like Unix sockets but without
 *                  the need for an underlying file system. The address is a
 *                  string. Technically it's like a Unix socket with a zero in
 *                  the first byte of the address.
 *    - "fd@"    => an integer must follow, and is a file descriptor number.
 *
 * IPv6 addresses can be declared with or without square brackets. When using
 * square brackets for IPv6 addresses, the port separator (colon) is optional.
 * If not using square brackets, and in order to avoid any ambiguity with
 * IPv6 addresses, the last colon ':' is mandatory even when no port is specified.
 * NULL is returned if the address cannot be parsed. The <low> and <high> ports
 * are always initialized if non-null, even for non-IP families.
 *
 * If <pfx> is non-null, it is used as a string prefix before any path-based
 * address (typically the path to a unix socket).
 *
 * if <fqdn> is non-null, it will be filled with :
 *   - a pointer to the FQDN of the server name to resolve if there's one, and
 *     that the caller will have to free(),
 *   - NULL if there was an explicit address that doesn't require resolution.
 *
 * Hostnames are only resolved if <opts> has PA_O_RESOLVE. Otherwise <fqdn> is
 * still honored so it is possible for the caller to know whether a resolution
 * failed by clearing this flag and checking if <fqdn> was filled, indicating
 * the need for a resolution.
 *
 * When a file descriptor is passed, its value is put into the s_addr part of
 * the address when cast to sockaddr_in and the address family is
 * AF_CUST_EXISTING_FD.
 *
 * The matching protocol will be set into <proto> if non-null.
 * The address protocol and transport types hints which are directly resolved
 * will be set into <sa_type> if not NULL.
 *
 * Any known file descriptor is also assigned to <fd> if non-null, otherwise it
 * is forced to -1.
 */
struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, int *fd,
                                      struct protocol **proto, struct net_addr_type *sa_type,
                                      char **err, const char *pfx, char **fqdn, unsigned int opts)
{
	static THREAD_LOCAL struct sockaddr_storage ss;
	struct sockaddr_storage *ret = NULL;
	struct protocol *new_proto = NULL;
	char *back, *str2;
	char *port1, *port2;
	int portl, porth, porta;
	int abstract = 0;
	int new_fd = -1;
	enum proto_type proto_type = 0; // to shut gcc warning
	int ctrl_type = 0; // to shut gcc warning

	portl = porth = porta = 0;
	if (fqdn)
		*fqdn = NULL;

	str2 = back = env_expand(strdup(str));
	if (str2 == NULL) {
		memprintf(err, "out of memory in '%s'", __FUNCTION__);
		goto out;
	}

	if (!*str2) {
		memprintf(err, "'%s' resolves to an empty address (environment variable missing?)", str);
		goto out;
	}

	memset(&ss, 0, sizeof(ss));

	/* prepare the default socket types */
	if ((opts & (PA_O_STREAM|PA_O_DGRAM)) == PA_O_DGRAM ||
	    ((opts & (PA_O_STREAM|PA_O_DGRAM)) == (PA_O_DGRAM|PA_O_STREAM) && (opts & PA_O_DEFAULT_DGRAM))) {
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	} else {
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}

	if (strncmp(str2, "stream+", 7) == 0) {
		str2 += 7;
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "dgram+", 6) == 0) {
		str2 += 6;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	}
	else if (strncmp(str2, "quic+", 5) == 0) {
		str2 += 5;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_STREAM;
	}

	if (strncmp(str2, "unix@", 5) == 0) {
		str2 += 5;
		abstract = 0;
		ss.ss_family = AF_UNIX;
	}
	else if (strncmp(str2, "uxdg@", 5) == 0) {
		str2 += 5;
		abstract = 0;
		ss.ss_family = AF_UNIX;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	}
	else if (strncmp(str2, "uxst@", 5) == 0) {
		str2 += 5;
		abstract = 0;
		ss.ss_family = AF_UNIX;
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "abns@", 5) == 0) {
		str2 += 5;
		abstract = 1;
		ss.ss_family = AF_UNIX;
	}
	else if (strncmp(str2, "ip@", 3) == 0) {
		str2 += 3;
		ss.ss_family = AF_UNSPEC;
	}
	else if (strncmp(str2, "ipv4@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET;
	}
	else if (strncmp(str2, "ipv6@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET6;
	}
	else if (strncmp(str2, "tcp4@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET;
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "udp4@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	}
	else if (strncmp(str2, "tcp6@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET6;
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "udp6@", 5) == 0) {
		str2 += 5;
		ss.ss_family = AF_INET6;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	}
	else if (strncmp(str2, "tcp@", 4) == 0) {
		str2 += 4;
		ss.ss_family = AF_UNSPEC;
		proto_type = PROTO_TYPE_STREAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "udp@", 4) == 0) {
		str2 += 4;
		ss.ss_family = AF_UNSPEC;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_DGRAM;
	}
	else if (strncmp(str2, "quic4@", 6) == 0) {
		str2 += 6;
		ss.ss_family = AF_INET;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "quic6@", 6) == 0) {
		str2 += 6;
		ss.ss_family = AF_INET6;
		proto_type = PROTO_TYPE_DGRAM;
		ctrl_type = SOCK_STREAM;
	}
	else if (strncmp(str2, "fd@", 3) == 0) {
		str2 += 3;
		ss.ss_family = AF_CUST_EXISTING_FD;
	}
	else if (strncmp(str2, "sockpair@", 9) == 0) {
		str2 += 9;
		ss.ss_family = AF_CUST_SOCKPAIR;
	}
	else if (strncmp(str2, "rhttp@", 3) == 0) {
		/* TODO duplicated code from check_kw_experimental() */
		if (!experimental_directives_allowed) {
			memprintf(err, "Address '%s' is experimental, must be allowed via a global 'expose-experimental-directives'", str2);
			goto out;
		}
		mark_tainted(TAINTED_CONFIG_EXP_KW_DECLARED);

		str2 += 4;
		ss.ss_family = AF_CUST_RHTTP_SRV;
	}
	else if (*str2 == '/') {
		ss.ss_family = AF_UNIX;
	}
	else
		ss.ss_family = AF_UNSPEC;

	if (ss.ss_family == AF_CUST_SOCKPAIR) {
		struct sockaddr_storage ss2;
		socklen_t addr_len;
		char *endptr;

		new_fd = strtol(str2, &endptr, 10);
		if (!*str2 || new_fd < 0 || *endptr) {
			memprintf(err, "file descriptor '%s' is not a valid integer in '%s'", str2, str);
			goto out;
		}

		/* just verify that it's a socket */
		addr_len = sizeof(ss2);
		if (getsockname(new_fd, (struct sockaddr *)&ss2, &addr_len) == -1) {
			memprintf(err, "cannot use file descriptor '%d' : %s.", new_fd, strerror(errno));
			goto out;
		}

		((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
		((struct sockaddr_in *)&ss)->sin_port = 0;
	}
	else if (ss.ss_family == AF_CUST_EXISTING_FD) {
		char *endptr;

		new_fd = strtol(str2, &endptr, 10);
		if (!*str2 || new_fd < 0 || *endptr) {
			memprintf(err, "file descriptor '%s' is not a valid integer in '%s'", str2, str);
			goto out;
		}

		if (opts & PA_O_SOCKET_FD) {
			socklen_t addr_len;
			int type;

			addr_len = sizeof(ss);
			if (getsockname(new_fd, (struct sockaddr *)&ss, &addr_len) == -1) {
				memprintf(err, "cannot use file descriptor '%d' : %s.", new_fd, strerror(errno));
				goto out;
			}

			addr_len = sizeof(type);
			if (getsockopt(new_fd, SOL_SOCKET, SO_TYPE, &type, &addr_len) != 0 ||
			    (type == SOCK_STREAM) != (proto_type == PROTO_TYPE_STREAM)) {
				memprintf(err, "socket on file descriptor '%d' is of the wrong type.", new_fd);
				goto out;
			}

			porta = portl = porth = get_host_port(&ss);
		} else if (opts & PA_O_RAW_FD) {
			((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
			((struct sockaddr_in *)&ss)->sin_port = 0;
		} else {
			memprintf(err, "a file descriptor is not acceptable here in '%s'", str);
			goto out;
		}
	}
	else if (ss.ss_family == AF_UNIX) {
		struct sockaddr_un *un = (struct sockaddr_un *)&ss;
		int prefix_path_len;
		int max_path_len;
		int adr_len;

		/* complete unix socket path name during startup or soft-restart is
		 * <unix_bind_prefix><path>.<pid>.<bak|tmp>
		 */
		prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0;
		max_path_len = (sizeof(un->sun_path) - 1) -
			(abstract ? 0 : prefix_path_len + 1 + 5 + 1 + 3);

		adr_len = strlen(str2);
		if (adr_len > max_path_len) {
			memprintf(err, "socket path '%s' too long (max %d)", str, max_path_len);
			goto out;
		}

		/* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */
		memset(un->sun_path, 0, sizeof(un->sun_path));
		if (prefix_path_len)
			memcpy(un->sun_path, pfx, prefix_path_len);
		memcpy(un->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract);
	}
	else if (ss.ss_family == AF_CUST_RHTTP_SRV) {
		/* Nothing to do here. */
	}
	else { /* IPv4 and IPv6 */
		char *end = str2 + strlen(str2);
		char *chr;

		/* search for : or ] whatever comes first */
		for (chr = end-1; chr > str2; chr--) {
			if (*chr == ']' || *chr == ':')
				break;
		}

		if (*chr == ':') {
			/* Found a colon before a closing-bracket, must be a port separator.
			 * This guarantee backward compatibility.
			 */
			if (!(opts & PA_O_PORT_OK)) {
				memprintf(err, "port specification not permitted here in '%s'", str);
				goto out;
			}
			*chr++ = '\0';
			port1 = chr;
		}
		else {
			/* Either no colon and no closing-bracket
			 * or directly ending with a closing-bracket.
			 * However, no port.
			 */
			if (opts & PA_O_PORT_MAND) {
				memprintf(err, "missing port specification in '%s'", str);
				goto out;
			}
			port1 = "";
		}

		if (isdigit((unsigned char)*port1)) {	/* single port or range */
			char *endptr;

			port2 = strchr(port1, '-');
			if (port2) {
				if (!(opts & PA_O_PORT_RANGE)) {
					memprintf(err, "port range not permitted here in '%s'", str);
					goto out;
				}
				*port2++ = '\0';
			}
			else
				port2 = port1;
			portl = strtol(port1, &endptr, 10);
			if (*endptr != '\0') {
				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1, str);
				goto out;
			}
			porth = strtol(port2, &endptr, 10);
			if (*endptr != '\0') {
				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port2, str);
				goto out;
			}

			if (portl < !!(opts & PA_O_PORT_MAND) || portl > 65535) {
				memprintf(err, "invalid port '%s'", port1);
				goto out;
			}

			if (porth < !!(opts & PA_O_PORT_MAND) || porth > 65535) {
				memprintf(err, "invalid port '%s'", port2);
				goto out;
			}

			if (portl > porth) {
				memprintf(err, "invalid port range '%d-%d'", portl, porth);
				goto out;
			}

			porta = portl;
		}
		else if (*port1 == '-') { /* negative offset */
			char *endptr;

			if (!(opts & PA_O_PORT_OFS)) {
				memprintf(err, "port offset not permitted here in '%s'", str);
				goto out;
			}
			portl = strtol(port1 + 1, &endptr, 10);
			if (*endptr != '\0') {
				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1 + 1, str);
				goto out;
			}
			porta = -portl;
		}
		else if (*port1 == '+') { /* positive offset */
			char *endptr;

			if (!(opts & PA_O_PORT_OFS)) {
				memprintf(err, "port offset not permitted here in '%s'", str);
				goto out;
			}
			porth = strtol(port1 + 1,  &endptr, 10);
			if (*endptr != '\0') {
				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1 + 1, str);
				goto out;
			}
			porta = porth;
		}
		else if (*port1) { /* other any unexpected char */
			memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *port1, port1, str);
			goto out;
		}
		else if (opts & PA_O_PORT_MAND) {
			memprintf(err, "missing port specification in '%s'", str);
			goto out;
		}

		/* first try to parse the IP without resolving. If it fails, it
		 * tells us we need to keep a copy of the FQDN to resolve later
		 * and to enable DNS. In this case we can proceed if <fqdn> is
		 * set or if PA_O_RESOLVE is set, otherwise it's an error.
		 */
		if (str2ip2(str2, &ss, 0) == NULL) {
			if ((!(opts & PA_O_RESOLVE) && !fqdn) ||
			    ((opts & PA_O_RESOLVE) && str2ip2(str2, &ss, 1) == NULL)) {
				memprintf(err, "invalid address: '%s' in '%s'", str2, str);
				goto out;
			}

			if (fqdn) {
				if (str2 != back)
					memmove(back, str2, strlen(str2) + 1);
				*fqdn = back;
				back = NULL;
			}
		}
		set_host_port(&ss, porta);
	}

	if (ctrl_type == SOCK_STREAM && !(opts & PA_O_STREAM)) {
		memprintf(err, "stream-type address not acceptable in '%s'", str);
		goto out;
	}
	else if (ctrl_type == SOCK_DGRAM && !(opts & PA_O_DGRAM)) {
		memprintf(err, "dgram-type address not acceptable in '%s'", str);
		goto out;
	}

	if (proto || (opts & PA_O_CONNECT)) {
		/* Note: if the caller asks for a proto, we must find one,
		 * except if we inherit from a raw FD (family == AF_CUST_EXISTING_FD)
		 * orif we return with an fqdn that will resolve later,
		 * in which case the address is not known yet (this is only
		 * for servers actually).
		 */
		new_proto = protocol_lookup(ss.ss_family,
					    proto_type,
					    ctrl_type == SOCK_DGRAM);

		if (!new_proto && (!fqdn || !*fqdn) && (ss.ss_family != AF_CUST_EXISTING_FD)) {
			memprintf(err, "unsupported %s protocol for %s family %d address '%s'%s",
				  (ctrl_type == SOCK_DGRAM) ? "datagram" : "stream",
				  (proto_type == PROTO_TYPE_DGRAM) ? "datagram" : "stream",
				  ss.ss_family,
				  str,
#ifndef USE_QUIC
				  (ctrl_type == SOCK_STREAM && proto_type == PROTO_TYPE_DGRAM)
				  ? "; QUIC is not compiled in if this is what you were looking for."
				  : ""
#else
				  ""
#endif
				);
			goto out;
		}

		if ((opts & PA_O_CONNECT) && new_proto && !new_proto->connect) {
			memprintf(err, "connect() not supported for this protocol family %d used by address '%s'", ss.ss_family, str);
			goto out;
		}
	}

	ret = &ss;
 out:
	if (port)
		*port = porta;
	if (low)
		*low = portl;
	if (high)
		*high = porth;
	if (fd)
		*fd = new_fd;
	if (proto)
		*proto = new_proto;
	if (sa_type) {
		sa_type->proto_type = proto_type;
		sa_type->xprt_type = (ctrl_type == SOCK_DGRAM) ? PROTO_TYPE_DGRAM : PROTO_TYPE_STREAM;
	}
	free(back);
	return ret;
}

/* converts <addr> and <port> into a string representation of the address and port. This is sort
 * of an inverse of str2sa_range, with some restrictions. The supported families are AF_INET,
 * AF_INET6, AF_UNIX, and AF_CUST_SOCKPAIR. If the family is unsopported NULL is returned.
 * If map_ports is true, then the sign of the port is included in the output, to indicate it is
 * relative to the incoming port. AF_INET and AF_INET6 will be in the form "<addr>:<port>".
 * AF_UNIX will either be just the path (if using a pathname) or "abns@<path>" if it is abstract.
 * AF_CUST_SOCKPAIR will be of the form "sockpair@<fd>".
 *
 * The returned char* is allocated, and it is the responsibility of the caller to free it.
 */
char * sa2str(const struct sockaddr_storage *addr, int port, int map_ports)
{
	char buffer[INET6_ADDRSTRLEN];
	char *out = NULL;
	const void *ptr;
	const char *path;

	switch (addr->ss_family) {
	case AF_INET:
		ptr = &((struct sockaddr_in *)addr)->sin_addr;
		break;
	case AF_INET6:
		ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
		break;
	case AF_UNIX:
		path = ((struct sockaddr_un *)addr)->sun_path;
		if (path[0] == '\0') {
			const int max_length = sizeof(struct sockaddr_un) - offsetof(struct sockaddr_un, sun_path) - 1;
			return memprintf(&out, "abns@%.*s", max_length, path+1);
		} else {
			return strdup(path);
		}
	case AF_CUST_SOCKPAIR:
		return memprintf(&out, "sockpair@%d", ((struct sockaddr_in *)addr)->sin_addr.s_addr);
	default:
		return NULL;
	}
	if (inet_ntop(addr->ss_family, ptr, buffer, sizeof(buffer)) == NULL) {
		BUG_ON(errno == ENOSPC);
		return NULL;
	}
	if (map_ports)
		return memprintf(&out, "%s:%+d", buffer, port);
	else
		return memprintf(&out, "%s:%d", buffer, port);
}


/* converts <str> to a struct in_addr containing a network mask. It can be
 * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
 * if the conversion succeeds otherwise zero.
 */
int str2mask(const char *str, struct in_addr *mask)
{
	if (strchr(str, '.') != NULL) {	    /* dotted notation */
		if (!inet_pton(AF_INET, str, mask))
			return 0;
	}
	else { /* mask length */
		char *err;
		unsigned long len = strtol(str, &err, 10);

		if (!*str || (err && *err) || (unsigned)len > 32)
			return 0;

		len2mask4(len, mask);
	}
	return 1;
}

/* converts <str> to a struct in6_addr containing a network mask. It can be
 * passed in quadruplet form (ffff:ffff::) or in CIDR form (64). It returns 1
 * if the conversion succeeds otherwise zero.
 */
int str2mask6(const char *str, struct in6_addr *mask)
{
	if (strchr(str, ':') != NULL) {	    /* quadruplet notation */
		if (!inet_pton(AF_INET6, str, mask))
			return 0;
	}
	else { /* mask length */
		char *err;
		unsigned long len = strtol(str, &err, 10);

		if (!*str || (err && *err) || (unsigned)len > 128)
			return 0;

		len2mask6(len, mask);
	}
	return 1;
}

/* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
 * succeeds otherwise zero.
 */
int cidr2dotted(int cidr, struct in_addr *mask) {

	if (cidr < 0 || cidr > 32)
		return 0;

	mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0;
	return 1;
}

/* Convert mask from bit length form to in_addr form.
 * This function never fails.
 */
void len2mask4(int len, struct in_addr *addr)
{
	if (len >= 32) {
		addr->s_addr = 0xffffffff;
		return;
	}
	if (len <= 0) {
		addr->s_addr = 0x00000000;
		return;
	}
	addr->s_addr = 0xffffffff << (32 - len);
	addr->s_addr = htonl(addr->s_addr);
}

/* Convert mask from bit length form to in6_addr form.
 * This function never fails.
 */
void len2mask6(int len, struct in6_addr *addr)
{
	len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */
	len -= 32;
	len2mask4(len, (struct in_addr *)&addr->s6_addr[4]);
	len -= 32;
	len2mask4(len, (struct in_addr *)&addr->s6_addr[8]);
	len -= 32;
	len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */
}

/*
 * converts <str> to two struct in_addr* which must be pre-allocated.
 * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 * is optional and either in the dotted or CIDR notation.
 * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
 */
int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask)
{
	__label__ out_free, out_err;
	char *c, *s;
	int ret_val;

	s = strdup(str);
	if (!s)
		return 0;

	memset(mask, 0, sizeof(*mask));
	memset(addr, 0, sizeof(*addr));

	if ((c = strrchr(s, '/')) != NULL) {
		*c++ = '\0';
		/* c points to the mask */
		if (!str2mask(c, mask))
			goto out_err;
	}
	else {
		mask->s_addr = ~0U;
	}
	if (!inet_pton(AF_INET, s, addr)) {
		struct hostent *he;

		if (!resolve)
			goto out_err;

		if ((he = gethostbyname(s)) == NULL) {
			goto out_err;
		}
		else
			*addr = *(struct in_addr *) *(he->h_addr_list);
	}

	ret_val = 1;
 out_free:
	free(s);
	return ret_val;
 out_err:
	ret_val = 0;
	goto out_free;
}


/*
 * converts <str> to two struct in6_addr* which must be pre-allocated.
 * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 * is an optional number of bits (128 being the default).
 * Returns 1 if OK, 0 if error.
 */
int str62net(const char *str, struct in6_addr *addr, unsigned char *mask)
{
	char *c, *s;
	int ret_val = 0;
	char *err;
	unsigned long len = 128;

	s = strdup(str);
	if (!s)
		return 0;

	memset(mask, 0, sizeof(*mask));
	memset(addr, 0, sizeof(*addr));

	if ((c = strrchr(s, '/')) != NULL) {
		*c++ = '\0'; /* c points to the mask */
		if (!*c)
			goto out_free;

		len = strtoul(c, &err, 10);
		if ((err && *err) || (unsigned)len > 128)
			goto out_free;
	}
	*mask = len; /* OK we have a valid mask in <len> */

	if (!inet_pton(AF_INET6, s, addr))
		goto out_free;

	ret_val = 1;
 out_free:
	free(s);
	return ret_val;
}


/*
 * Parse IPv4 address found in url. Return the number of bytes parsed. It
 * expects exactly 4 numbers between 0 and 255 delimited by dots, and returns
 * zero in case of mismatch.
 */
int url2ipv4(const char *addr, struct in_addr *dst)
{
	int saw_digit, octets, ch;
	u_char tmp[4], *tp;
	const char *cp = addr;

	saw_digit = 0;
	octets = 0;
	*(tp = tmp) = 0;

	while (*addr) {
		unsigned char digit = (ch = *addr) - '0';
		if (digit > 9 && ch != '.')
			break;
		addr++;
		if (digit <= 9) {
			u_int new = *tp * 10 + digit;
			if (new > 255)
				return 0;
			*tp = new;
			if (!saw_digit) {
				if (++octets > 4)
					return 0;
				saw_digit = 1;
			}
		} else if (ch == '.' && saw_digit) {
			if (octets == 4)
				return 0;
			*++tp = 0;
			saw_digit = 0;
		} else
			return 0;
	}

	if (octets < 4)
		return 0;

	memcpy(&dst->s_addr, tmp, 4);
	return addr - cp;
}

/*
 * Resolve destination server from URL. Convert <str> to a sockaddr_storage.
 * <out> contain the code of the detected scheme, the start and length of
 * the hostname. Actually only http and https are supported. <out> can be NULL.
 * This function returns the consumed length. It is useful if you parse complete
 * url like http://host:port/path, because the consumed length corresponds to
 * the first character of the path. If the conversion fails, it returns -1.
 *
 * This function tries to resolve the DNS name if haproxy is in starting mode.
 * So, this function may be used during the configuration parsing.
 */
int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out)
{
	const char *curr = url, *cp = url;
	const char *end;
	int ret, url_code = 0;
	unsigned long long int http_code = 0;
	int default_port;
	struct hostent *he;
	char *p;

	/* Firstly, try to find :// pattern */
	while (curr < url+ulen && url_code != 0x3a2f2f) {
		url_code = ((url_code & 0xffff) << 8);
		url_code += (unsigned char)*curr++;
	}

	/* Secondly, if :// pattern is found, verify parsed stuff
	 * before pattern is matching our http pattern.
	 * If so parse ip address and port in uri.
	 * 
	 * WARNING: Current code doesn't support dynamic async dns resolver.
	 */
	if (url_code != 0x3a2f2f)
		return -1;

	/* Copy scheme, and utrn to lower case. */
	while (cp < curr - 3)
		http_code = (http_code << 8) + *cp++;
	http_code |= 0x2020202020202020ULL;			/* Turn everything to lower case */
		
	/* HTTP or HTTPS url matching */
	if (http_code == 0x2020202068747470ULL) {
		default_port = 80;
		if (out)
			out->scheme = SCH_HTTP;
	}
	else if (http_code == 0x2020206874747073ULL) {
		default_port = 443;
		if (out)
			out->scheme = SCH_HTTPS;
	}
	else
		return -1;

	/* If the next char is '[', the host address is IPv6. */
	if (*curr == '[') {
		curr++;

		/* Check trash size */
		if (trash.size < ulen)
			return -1;

		/* Look for ']' and copy the address in a trash buffer. */
		p = trash.area;
		for (end = curr;
		     end < url + ulen && *end != ']';
		     end++, p++)
			*p = *end;
		if (*end != ']')
			return -1;
		*p = '\0';

		/* Update out. */
		if (out) {
			out->host = curr;
			out->host_len = end - curr;
		}

		/* Try IPv6 decoding. */
		if (!inet_pton(AF_INET6, trash.area, &((struct sockaddr_in6 *)addr)->sin6_addr))
			return -1;
		end++;

		/* Decode port. */
		if (end < url + ulen && *end == ':') {
			end++;
			default_port = read_uint(&end, url + ulen);
		}
		((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
		((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
		return end - url;
	}
	else {
		/* we need to copy the string into the trash because url2ipv4
		 * needs a \0 at the end of the string */
		if (trash.size < ulen)
			return -1;

		memcpy(trash.area, curr, ulen - (curr - url));
		trash.area[ulen - (curr - url)] = '\0';

		/* We are looking for IP address. If you want to parse and
		 * resolve hostname found in url, you can use str2sa_range(), but
		 * be warned this can slow down global daemon performances
		 * while handling lagging dns responses.
		 */
		ret = url2ipv4(trash.area, &((struct sockaddr_in *)addr)->sin_addr);
		if (ret) {
			/* Update out. */
			if (out) {
				out->host = curr;
				out->host_len = ret;
			}

			curr += ret;

			/* Decode port. */
			if (curr < url + ulen && *curr == ':') {
				curr++;
				default_port = read_uint(&curr, url + ulen);
			}
			((struct sockaddr_in *)addr)->sin_port = htons(default_port);

			/* Set family. */
			((struct sockaddr_in *)addr)->sin_family = AF_INET;
			return curr - url;
		}
		else if (global.mode & MODE_STARTING) {
			/* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute
			 * synchronous DNS request only if HAProxy is in the start state.
			 */

			/* look for : or / or end */
			for (end = curr;
			     end < url + ulen && *end != '/' && *end != ':';
			     end++);
			memcpy(trash.area, curr, end - curr);
			trash.area[end - curr] = '\0';

			/* try to resolve an IPv4/IPv6 hostname */
			he = gethostbyname(trash.area);
			if (!he)
				return -1;

			/* Update out. */
			if (out) {
				out->host = curr;
				out->host_len = end - curr;
			}

			/* Decode port. */
			if (end < url + ulen && *end == ':') {
				end++;
				default_port = read_uint(&end, url + ulen);
			}

			/* Copy IP address, set port and family. */
			switch (he->h_addrtype) {
			case AF_INET:
				((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
				((struct sockaddr_in *)addr)->sin_port = htons(default_port);
				((struct sockaddr_in *)addr)->sin_family = AF_INET;
				return end - url;

			case AF_INET6:
				((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
				((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
				((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
				return end - url;
			}
		}
	}
	return -1;
}

/* Tries to convert a sockaddr_storage address to text form. Upon success, the
 * address family is returned so that it's easy for the caller to adapt to the
 * output format. Zero is returned if the address family is not supported. -1
 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 * supported.
 */
int addr_to_str(const struct sockaddr_storage *addr, char *str, int size)
{

	const void *ptr;

	if (size < 5)
		return 0;
	*str = '\0';

	switch (addr->ss_family) {
	case AF_INET:
		ptr = &((struct sockaddr_in *)addr)->sin_addr;
		break;
	case AF_INET6:
		ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
		break;
	case AF_UNIX:
		memcpy(str, "unix", 5);
		return addr->ss_family;
	default:
		return 0;
	}

	if (inet_ntop(addr->ss_family, ptr, str, size))
		return addr->ss_family;

	/* failed */
	return -1;
}

/* Tries to convert a sockaddr_storage port to text form. Upon success, the
 * address family is returned so that it's easy for the caller to adapt to the
 * output format. Zero is returned if the address family is not supported. -1
 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 * supported.
 */
int port_to_str(const struct sockaddr_storage *addr, char *str, int size)
{

	uint16_t port;


	if (size < 6)
		return 0;
	*str = '\0';

	switch (addr->ss_family) {
	case AF_INET:
		port = ((struct sockaddr_in *)addr)->sin_port;
		break;
	case AF_INET6:
		port = ((struct sockaddr_in6 *)addr)->sin6_port;
		break;
	case AF_UNIX:
		memcpy(str, "unix", 5);
		return addr->ss_family;
	default:
		return 0;
	}

	snprintf(str, size, "%u", ntohs(port));
	return addr->ss_family;
}

/* check if the given address is local to the system or not. It will return
 * -1 when it's not possible to know, 0 when the address is not local, 1 when
 * it is. We don't want to iterate over all interfaces for this (and it is not
 * portable). So instead we try to bind in UDP to this address on a free non
 * privileged port and to connect to the same address, port 0 (connect doesn't
 * care). If it succeeds, we own the address. Note that non-inet addresses are
 * considered local since they're most likely AF_UNIX.
 */
int addr_is_local(const struct netns_entry *ns,
                  const struct sockaddr_storage *orig)
{
	struct sockaddr_storage addr;
	int result;
	int fd;

	if (!is_inet_addr(orig))
		return 1;

	memcpy(&addr, orig, sizeof(addr));
	set_host_port(&addr, 0);

	fd = my_socketat(ns, addr.ss_family, SOCK_DGRAM, IPPROTO_UDP);
	if (fd < 0)
		return -1;

	result = -1;
	if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) {
		if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1)
			result = 0; // fail, non-local address
		else
			result = 1; // success, local address
	}
	else {
		if (errno == EADDRNOTAVAIL)
			result = 0; // definitely not local :-)
	}
	close(fd);

	return result;
}

/* will try to encode the string <string> replacing all characters tagged in
 * <map> with the hexadecimal representation of their ASCII-code (2 digits)
 * prefixed by <escape>, and will store the result between <start> (included)
 * and <stop> (excluded), and will always terminate the string with a '\0'
 * before <stop>. The position of the '\0' is returned if the conversion
 * completes. If bytes are missing between <start> and <stop>, then the
 * conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
 * cannot even be stored so we return <start> without writing the 0.
 * The input string must also be zero-terminated.
 */
const char hextab[16] = "0123456789ABCDEF";
char *encode_string(char *start, char *stop,
		    const char escape, const long *map,
		    const char *string)
{
	if (start < stop) {
		stop--; /* reserve one byte for the final '\0' */
		while (start < stop && *string != '\0') {
			if (!ha_bit_test((unsigned char)(*string), map))
				*start++ = *string;
			else {
				if (start + 3 >= stop)
					break;
				*start++ = escape;
				*start++ = hextab[(*string >> 4) & 15];
				*start++ = hextab[*string & 15];
			}
			string++;
		}
		*start = '\0';
	}
	return start;
}

/*
 * Same behavior as encode_string() above, except that it encodes chunk
 * <chunk> instead of a string.
 */
char *encode_chunk(char *start, char *stop,
		    const char escape, const long *map,
		    const struct buffer *chunk)
{
	char *str = chunk->area;
	char *end = chunk->area + chunk->data;

	if (start < stop) {
		stop--; /* reserve one byte for the final '\0' */
		while (start < stop && str < end) {
			if (!ha_bit_test((unsigned char)(*str), map))
				*start++ = *str;
			else {
				if (start + 3 >= stop)
					break;
				*start++ = escape;
				*start++ = hextab[(*str >> 4) & 15];
				*start++ = hextab[*str & 15];
			}
			str++;
		}
		*start = '\0';
	}
	return start;
}

/*
 * Tries to prefix characters tagged in the <map> with the <escape>
 * character. The input <string> is processed until string_stop
 * is reached or NULL-byte is encountered. The result will
 * be stored between <start> (included) and <stop> (excluded). This
 * function will always try to terminate the resulting string with a '\0'
 * before <stop>, and will return its position if the conversion
 * completes.
 */
char *escape_string(char *start, char *stop,
		    const char escape, const long *map,
		    const char *string, const char *string_stop)
{
	if (start < stop) {
		stop--; /* reserve one byte for the final '\0' */
		while (start < stop && string < string_stop && *string != '\0') {
			if (!ha_bit_test((unsigned char)(*string), map))
				*start++ = *string;
			else {
				if (start + 2 >= stop)
					break;
				*start++ = escape;
				*start++ = *string;
			}
			string++;
		}
		*start = '\0';
	}
	return start;
}

/* Check a string for using it in a CSV output format. If the string contains
 * one of the following four char <">, <,>, CR or LF, the string is
 * encapsulated between <"> and the <"> are escaped by a <""> sequence.
 * <str> is the input string to be escaped. The function assumes that
 * the input string is null-terminated.
 *
 * If <quote> is 0, the result is returned escaped but without double quote.
 * It is useful if the escaped string is used between double quotes in the
 * format.
 *
 *    printf("..., \"%s\", ...\r\n", csv_enc(str, 0, 0, &trash));
 *
 * If <quote> is 1, the converter puts the quotes only if any reserved character
 * is present. If <quote> is 2, the converter always puts the quotes.
 *
 * If <oneline> is not 0, CRs are skipped and LFs are replaced by spaces.
 * This re-format multi-lines strings to only one line. The purpose is to
 * allow a line by line parsing but also to keep the output compliant with
 * the CLI witch uses LF to defines the end of the response.
 *
 * If <oneline> is 2, In addition to previous action, the trailing spaces are
 * removed.
 *
 * <output> is a struct buffer used for storing the output string.
 *
 * The function returns the converted string on its output. If an error
 * occurs, the function returns an empty string. This type of output is useful
 * for using the function directly as printf() argument.
 *
 * If the output buffer is too short to contain the input string, the result
 * is truncated.
 *
 * This function appends the encoding to the existing output chunk, and it
 * guarantees that it starts immediately at the first available character of
 * the chunk. Please use csv_enc() instead if you want to replace the output
 * chunk.
 */
const char *csv_enc_append(const char *str, int quote, int oneline, struct buffer *output)
{
	char *end = output->area + output->size;
	char *out = output->area + output->data;
	char *ptr = out;

	if (quote == 1) {
		/* automatic quoting: first verify if we'll have to quote the string */
		if (!strpbrk(str, "\n\r,\""))
			quote = 0;
	}

	if (quote)
		*ptr++ = '"';

	while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */
		if (oneline) {
			if (*str == '\n' ) {
				/* replace LF by a space */
				*ptr++ = ' ';
				str++;
				continue;
			}
			else if (*str == '\r' ) {
				/* skip CR */
				str++;
				continue;
			}
		}
		*ptr = *str;
		if (*str == '"') {
			ptr++;
			if (ptr >= end - 2) {
				ptr--;
				break;
			}
			*ptr = '"';
		}
		ptr++;
		str++;
	}

	if (oneline == 2) {
		/* remove trailing spaces */
		while (ptr > out && *(ptr - 1) == ' ')
			ptr--;
	}

	if (quote)
		*ptr++ = '"';

	*ptr = '\0';
	output->data = ptr - output->area;
	return out;
}

/* Decode an URL-encoded string in-place. The resulting string might
 * be shorter. If some forbidden characters are found, the conversion is
 * aborted, the string is truncated before the issue and a negative value is
 * returned, otherwise the operation returns the length of the decoded string.
 * If the 'in_form' argument is non-nul the string is assumed to be part of
 * an "application/x-www-form-urlencoded" encoded string, and the '+' will be
 * turned to a space. If it's zero, this will only be done after a question
 * mark ('?').
 */
int url_decode(char *string, int in_form)
{
	char *in, *out;
	int ret = -1;

	in = string;
	out = string;
	while (*in) {
		switch (*in) {
		case '+' :
			*out++ = in_form ? ' ' : *in;
			break;
		case '%' :
			if (!ishex(in[1]) || !ishex(in[2]))
				goto end;
			*out++ = (hex2i(in[1]) << 4) + hex2i(in[2]);
			in += 2;
			break;
		case '?':
			in_form = 1;
			__fallthrough;
		default:
			*out++ = *in;
			break;
		}
		in++;
	}
	ret = out - string; /* success */
 end:
	*out = 0;
	return ret;
}

unsigned int str2ui(const char *s)
{
	return __str2ui(s);
}

unsigned int str2uic(const char *s)
{
	return __str2uic(s);
}

unsigned int strl2ui(const char *s, int len)
{
	return __strl2ui(s, len);
}

unsigned int strl2uic(const char *s, int len)
{
	return __strl2uic(s, len);
}

unsigned int read_uint(const char **s, const char *end)
{
	return __read_uint(s, end);
}

/* This function reads an unsigned integer from the string pointed to by <s> and
 * returns it. The <s> pointer is adjusted to point to the first unread char. The
 * function automatically stops at <end>. If the number overflows, the 2^64-1
 * value is returned.
 */
unsigned long long int read_uint64(const char **s, const char *end)
{
	const char *ptr = *s;
	unsigned long long int i = 0, tmp;
	unsigned int j;

	while (ptr < end) {

		/* read next char */
		j = *ptr - '0';
		if (j > 9)
			goto read_uint64_end;

		/* add char to the number and check overflow. */
		tmp = i * 10;
		if (tmp / 10 != i) {
			i = ULLONG_MAX;
			goto read_uint64_eat;
		}
		if (ULLONG_MAX - tmp < j) {
			i = ULLONG_MAX;
			goto read_uint64_eat;
		}
		i = tmp + j;
		ptr++;
	}
read_uint64_eat:
	/* eat each numeric char */
	while (ptr < end) {
		if ((unsigned int)(*ptr - '0') > 9)
			break;
		ptr++;
	}
read_uint64_end:
	*s = ptr;
	return i;
}

/* This function reads an integer from the string pointed to by <s> and returns
 * it. The <s> pointer is adjusted to point to the first unread char. The function
 * automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1
 * value is returned. If the number is lowest than -2^63-1, the -2^63 value is
 * returned.
 */
long long int read_int64(const char **s, const char *end)
{
	unsigned long long int i = 0;
	int neg = 0;

	/* Look for minus char. */
	if (**s == '-') {
		neg = 1;
		(*s)++;
	}
	else if (**s == '+')
		(*s)++;

	/* convert as positive number. */
	i = read_uint64(s, end);

	if (neg) {
		if (i > 0x8000000000000000ULL)
			return LLONG_MIN;
		return -i;
	}
	if (i > 0x7fffffffffffffffULL)
		return LLONG_MAX;
	return i;
}

/* This one is 7 times faster than strtol() on athlon with checks.
 * It returns the value of the number composed of all valid digits read,
 * and can process negative numbers too.
 */
int strl2ic(const char *s, int len)
{
	int i = 0;
	int j, k;

	if (len > 0) {
		if (*s != '-') {
			/* positive number */
			while (len-- > 0) {
				j = (*s++) - '0';
				k = i * 10;
				if (j > 9)
					break;
				i = k + j;
			}
		} else {
			/* negative number */
			s++;
			while (--len > 0) {
				j = (*s++) - '0';
				k = i * 10;
				if (j > 9)
					break;
				i = k - j;
			}
		}
	}
	return i;
}


/* This function reads exactly <len> chars from <s> and converts them to a
 * signed integer which it stores into <ret>. It accurately detects any error
 * (truncated string, invalid chars, overflows). It is meant to be used in
 * applications designed for hostile environments. It returns zero when the
 * number has successfully been converted, non-zero otherwise. When an error
 * is returned, the <ret> value is left untouched. It is yet 5 to 40 times
 * faster than strtol().
 */
int strl2irc(const char *s, int len, int *ret)
{
	int i = 0;
	int j;

	if (!len)
		return 1;

	if (*s != '-') {
		/* positive number */
		while (len-- > 0) {
			j = (*s++) - '0';
			if (j > 9)            return 1; /* invalid char */
			if (i > INT_MAX / 10) return 1; /* check for multiply overflow */
			i = i * 10;
			if (i + j < i)        return 1; /* check for addition overflow */
			i = i + j;
		}
	} else {
		/* negative number */
		s++;
		while (--len > 0) {
			j = (*s++) - '0';
			if (j > 9)             return 1; /* invalid char */
			if (i < INT_MIN / 10)  return 1; /* check for multiply overflow */
			i = i * 10;
			if (i - j > i)         return 1; /* check for subtract overflow */
			i = i - j;
		}
	}
	*ret = i;
	return 0;
}


/* This function reads exactly <len> chars from <s> and converts them to a
 * signed integer which it stores into <ret>. It accurately detects any error
 * (truncated string, invalid chars, overflows). It is meant to be used in
 * applications designed for hostile environments. It returns zero when the
 * number has successfully been converted, non-zero otherwise. When an error
 * is returned, the <ret> value is left untouched. It is about 3 times slower
 * than strl2irc().
 */

int strl2llrc(const char *s, int len, long long *ret)
{
	long long i = 0;
	int j;

	if (!len)
		return 1;

	if (*s != '-') {
		/* positive number */
		while (len-- > 0) {
			j = (*s++) - '0';
			if (j > 9)              return 1; /* invalid char */
			if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */
			i = i * 10LL;
			if (i + j < i)          return 1; /* check for addition overflow */
			i = i + j;
		}
	} else {
		/* negative number */
		s++;
		while (--len > 0) {
			j = (*s++) - '0';
			if (j > 9)              return 1; /* invalid char */
			if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */
			i = i * 10LL;
			if (i - j > i)          return 1; /* check for subtract overflow */
			i = i - j;
		}
	}
	*ret = i;
	return 0;
}

/* This function is used with pat_parse_dotted_ver(). It converts a string
 * composed by two number separated by a dot. Each part must contain in 16 bits
 * because internally they will be represented as a 32-bit quantity stored in
 * a 64-bit integer. It returns zero when the number has successfully been
 * converted, non-zero otherwise. When an error is returned, the <ret> value
 * is left untouched.
 *
 *    "1.3"         -> 0x0000000000010003
 *    "65535.65535" -> 0x00000000ffffffff
 */
int strl2llrc_dotted(const char *text, int len, long long *ret)
{
	const char *end = &text[len];
	const char *p;
	long long major, minor;

	/* Look for dot. */
	for (p = text; p < end; p++)
		if (*p == '.')
			break;

	/* Convert major. */
	if (strl2llrc(text, p - text, &major) != 0)
		return 1;

	/* Check major. */
	if (major >= 65536)
		return 1;

	/* Convert minor. */
	minor = 0;
	if (p < end)
		if (strl2llrc(p + 1, end - (p + 1), &minor) != 0)
			return 1;

	/* Check minor. */
	if (minor >= 65536)
		return 1;

	/* Compose value. */
	*ret = (major << 16) | (minor & 0xffff);
	return 0;
}

/* This function parses a time value optionally followed by a unit suffix among
 * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
 * expected by the caller. The computation does its best to avoid overflows.
 * The value is returned in <ret> if everything is fine, and a NULL is returned
 * by the function. In case of error, a pointer to the error is returned and
 * <ret> is left untouched. Values are automatically rounded up when needed.
 * Values resulting in values larger than or equal to 2^31 after conversion are
 * reported as an overflow as value PARSE_TIME_OVER. Non-null values resulting
 * in an underflow are reported as an underflow as value PARSE_TIME_UNDER.
 */
const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags)
{
	unsigned long long imult, idiv;
	unsigned long long omult, odiv;
	unsigned long long value, result;
	const char *str = text;

	if (!isdigit((unsigned char)*text))
		return text;

	omult = odiv = 1;

	switch (unit_flags & TIME_UNIT_MASK) {
	case TIME_UNIT_US:   omult = 1000000; break;
	case TIME_UNIT_MS:   omult = 1000; break;
	case TIME_UNIT_S:    break;
	case TIME_UNIT_MIN:  odiv = 60; break;
	case TIME_UNIT_HOUR: odiv = 3600; break;
	case TIME_UNIT_DAY:  odiv = 86400; break;
	default: break;
	}

	value = 0;

	while (1) {
		unsigned int j;

		j = *text - '0';
		if (j > 9)
			break;
		text++;
		value *= 10;
		value += j;
	}

	imult = idiv = 1;
	switch (*text) {
	case '\0': /* no unit = default unit */
		imult = omult = idiv = odiv = 1;
		goto end;
	case 's': /* second = unscaled unit */
		break;
	case 'u': /* microsecond : "us" */
		if (text[1] == 's') {
			idiv = 1000000;
			text++;
			break;
		}
		return text;
	case 'm': /* millisecond : "ms" or minute: "m" */
		if (text[1] == 's') {
			idiv = 1000;
			text++;
		} else
			imult = 60;
		break;
	case 'h': /* hour : "h" */
		imult = 3600;
		break;
	case 'd': /* day : "d" */
		imult = 86400;
		break;
	default:
		return text;
	}
	if (*(++text) != '\0') {
		ha_warning("unexpected character '%c' after the timer value '%s', only "
			   "(us=microseconds,ms=milliseconds,s=seconds,m=minutes,h=hours,d=days) are supported."
			   " This will be reported as an error in next versions.\n", *text, str);
	}

  end:
	if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
	if (idiv % omult == 0) { idiv /= omult; omult = 1; }
	if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
	if (odiv % imult == 0) { odiv /= imult; imult = 1; }

	result = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv);
	if (result >= 0x80000000)
		return PARSE_TIME_OVER;
	if (!result && value)
		return PARSE_TIME_UNDER;
	*ret = result;
	return NULL;
}

/* this function converts the string starting at <text> to an unsigned int
 * stored in <ret>. If an error is detected, the pointer to the unexpected
 * character is returned. If the conversion is successful, NULL is returned.
 */
const char *parse_size_err(const char *text, unsigned *ret) {
	unsigned value = 0;

	if (!isdigit((unsigned char)*text))
		return text;

	while (1) {
		unsigned int j;

		j = *text - '0';
		if (j > 9)
			break;
		if (value > ~0U / 10)
			return text;
		value *= 10;
		if (value > (value + j))
			return text;
		value += j;
		text++;
	}

	switch (*text) {
	case '\0':
		break;
	case 'K':
	case 'k':
		if (value > ~0U >> 10)
			return text;
		value = value << 10;
		break;
	case 'M':
	case 'm':
		if (value > ~0U >> 20)
			return text;
		value = value << 20;
		break;
	case 'G':
	case 'g':
		if (value > ~0U >> 30)
			return text;
		value = value << 30;
		break;
	default:
		return text;
	}

	if (*text != '\0' && *++text != '\0')
		return text;

	*ret = value;
	return NULL;
}

/*
 * Parse binary string written in hexadecimal (source) and store the decoded
 * result into binstr and set binstrlen to the length of binstr. Memory for
 * binstr is allocated by the function. In case of error, returns 0 with an
 * error message in err. In success case, it returns the consumed length.
 */
int parse_binary(const char *source, char **binstr, int *binstrlen, char **err)
{
	int len;
	const char *p = source;
	int i,j;
	int alloc;

	len = strlen(source);
	if (len % 2) {
		memprintf(err, "an even number of hex digit is expected");
		return 0;
	}

	len = len >> 1;

	if (!*binstr) {
		*binstr = calloc(len, sizeof(**binstr));
		if (!*binstr) {
			memprintf(err, "out of memory while loading string pattern");
			return 0;
		}
		alloc = 1;
	}
	else {
		if (*binstrlen < len) {
			memprintf(err, "no space available in the buffer. expect %d, provides %d",
			          len, *binstrlen);
			return 0;
		}
		alloc = 0;
	}
	*binstrlen = len;

	i = j = 0;
	while (j < len) {
		if (!ishex(p[i++]))
			goto bad_input;
		if (!ishex(p[i++]))
			goto bad_input;
		(*binstr)[j++] =  (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
	}
	return len << 1;

bad_input:
	memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
	if (alloc)
		ha_free(binstr);
	return 0;
}

/* copies at most <n> characters from <src> and always terminates with '\0' */
char *my_strndup(const char *src, int n)
{
	int len = 0;
	char *ret;

	while (len < n && src[len])
		len++;

	ret = malloc(len + 1);
	if (!ret)
		return ret;
	memcpy(ret, src, len);
	ret[len] = '\0';
	return ret;
}

/*
 * search needle in haystack
 * returns the pointer if found, returns NULL otherwise
 */
const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen)
{
	const void *c = NULL;
	unsigned char f;

	if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen))
		return NULL;

	f = *(char *)needle;
	c = haystack;
	while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) {
		if ((haystacklen - (c - haystack)) < needlelen)
			return NULL;

		if (memcmp(c, needle, needlelen) == 0)
			return c;
		++c;
	}
	return NULL;
}

/* get length of the initial segment consisting entirely of bytes in <accept> */
size_t my_memspn(const void *str, size_t len, const void *accept, size_t acceptlen)
{
	size_t ret = 0;

	while (ret < len && memchr(accept, *((int *)str), acceptlen)) {
		str++;
		ret++;
	}
	return ret;
}

/* get length of the initial segment consisting entirely of bytes not in <rejcet> */
size_t my_memcspn(const void *str, size_t len, const void *reject, size_t rejectlen)
{
	size_t ret = 0;

	while (ret < len) {
		if(memchr(reject, *((int *)str), rejectlen))
			return ret;
		str++;
		ret++;
	}
	return ret;
}

/* This function returns the first unused key greater than or equal to <key> in
 * ID tree <root>. Zero is returned if no place is found.
 */
unsigned int get_next_id(struct eb_root *root, unsigned int key)
{
	struct eb32_node *used;

	do {
		used = eb32_lookup_ge(root, key);
		if (!used || used->key > key)
			return key; /* key is available */
		key++;
	} while (key);
	return key;
}

/* dump the full tree to <file> in DOT format for debugging purposes. Will
 * optionally highlight node <subj> if found, depending on operation <op> :
 *    0 : nothing
 *   >0 : insertion, node/leaf are surrounded in red
 *   <0 : removal, node/leaf are dashed with no background
 * Will optionally add "desc" as a label on the graph if set and non-null.
 */
void eb32sc_to_file(FILE *file, struct eb_root *root, const struct eb32sc_node *subj, int op, const char *desc)
{
	struct eb32sc_node *node;
	unsigned long scope = -1;

	fprintf(file, "digraph ebtree {\n");

	if (desc && *desc) {
		fprintf(file,
			"  fontname=\"fixed\";\n"
			"  fontsize=8;\n"
			"  label=\"%s\";\n", desc);
	}

	fprintf(file,
		"  node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
		"  edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
		"  \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
		);

	fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
		(long)eb_root_to_node(root),
		(long)eb_root_to_node(eb_clrtag(root->b[0])),
		eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');

	node = eb32sc_first(root, scope);
	while (node) {
		if (node->node.node_p) {
			/* node part is used */
			fprintf(file, "  \"%lx_n\" [label=\"%lx\\nkey=%u\\nscope=%lx\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
				(long)node, (long)node, node->key, node->node_s, node->node.bit,
				(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");

			fprintf(file, "  \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
				eb_gettag(node->node.node_p) ? 'R' : 'L');

			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
				eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');

			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
				eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
		}

		fprintf(file, "  \"%lx_l\" [label=\"%lx\\nkey=%u\\nscope=%lx\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
			(long)node, (long)node, node->key, node->leaf_s, node->node.pfx,
			(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");

		fprintf(file, "  \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
			(long)node,
			(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
			eb_gettag(node->node.leaf_p) ? 'R' : 'L');
		node = eb32sc_next(node, scope);
	}
	fprintf(file, "}\n");
}

/* dump the full tree to <file> in DOT format for debugging purposes. Will
 * optionally highlight node <subj> if found, depending on operation <op> :
 *    0 : nothing
 *   >0 : insertion, node/leaf are surrounded in red
 *   <0 : removal, node/leaf are dashed with no background
 * Will optionally add "desc" as a label on the graph if set and non-null. The
 * key is printed as a u32 hex value. A full-sized hex dump would be better but
 * is left to be implemented.
 */
void ebmb_to_file(FILE *file, struct eb_root *root, const struct ebmb_node *subj, int op, const char *desc)
{
	struct ebmb_node *node;

	fprintf(file, "digraph ebtree {\n");

	if (desc && *desc) {
		fprintf(file,
			"  fontname=\"fixed\";\n"
			"  fontsize=8;\n"
			"  label=\"%s\";\n", desc);
	}

	fprintf(file,
		"  node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
		"  edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
		"  \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
		);

	fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
		(long)eb_root_to_node(root),
		(long)eb_root_to_node(eb_clrtag(root->b[0])),
		eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');

	node = ebmb_first(root);
	while (node) {
		if (node->node.node_p) {
			/* node part is used */
			fprintf(file, "  \"%lx_n\" [label=\"%lx\\nkey=%#x\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
				(long)node, (long)node, read_u32(node->key), node->node.bit,
				(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");

			fprintf(file, "  \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
				eb_gettag(node->node.node_p) ? 'R' : 'L');

			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
				eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');

			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
				(long)node,
				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
				eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
		}

		fprintf(file, "  \"%lx_l\" [label=\"%lx\\nkey=%#x\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
			(long)node, (long)node, read_u32(node->key), node->node.pfx,
			(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");

		fprintf(file, "  \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
			(long)node,
			(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
			eb_gettag(node->node.leaf_p) ? 'R' : 'L');
		node = ebmb_next(node);
	}
	fprintf(file, "}\n");
}

/* This function compares a sample word possibly followed by blanks to another
 * clean word. The compare is case-insensitive. 1 is returned if both are equal,
 * otherwise zero. This intends to be used when checking HTTP headers for some
 * values. Note that it validates a word followed only by blanks but does not
 * validate a word followed by blanks then other chars.
 */
int word_match(const char *sample, int slen, const char *word, int wlen)
{
	if (slen < wlen)
		return 0;

	while (wlen) {
		char c = *sample ^ *word;
		if (c && c != ('A' ^ 'a'))
			return 0;
		sample++;
		word++;
		slen--;
		wlen--;
	}

	while (slen) {
		if (*sample != ' ' && *sample != '\t')
			return 0;
		sample++;
		slen--;
	}
	return 1;
}

/* Converts any text-formatted IPv4 address to a host-order IPv4 address. It
 * is particularly fast because it avoids expensive operations such as
 * multiplies, which are optimized away at the end. It requires a properly
 * formatted address though (3 points).
 */
unsigned int inetaddr_host(const char *text)
{
	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
	register unsigned int dig100, dig10, dig1;
	int s;
	const char *p, *d;

	dig1 = dig10 = dig100 = ascii_zero;
	s = 24;

	p = text;
	while (1) {
		if (((unsigned)(*p - '0')) <= 9) {
			p++;
			continue;
		}

		/* here, we have a complete byte between <text> and <p> (exclusive) */
		if (p == text)
			goto end;

		d = p - 1;
		dig1   |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig10  |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig100 |= (unsigned int)(*d << s);
	end:
		if (!s || *p != '.')
			break;

		s -= 8;
		text = ++p;
	}

	dig100 -= ascii_zero;
	dig10  -= ascii_zero;
	dig1   -= ascii_zero;
	return ((dig100 * 10) + dig10) * 10 + dig1;
}

/*
 * Idem except the first unparsed character has to be passed in <stop>.
 */
unsigned int inetaddr_host_lim(const char *text, const char *stop)
{
	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
	register unsigned int dig100, dig10, dig1;
	int s;
	const char *p, *d;

	dig1 = dig10 = dig100 = ascii_zero;
	s = 24;

	p = text;
	while (1) {
		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
			p++;
			continue;
		}

		/* here, we have a complete byte between <text> and <p> (exclusive) */
		if (p == text)
			goto end;

		d = p - 1;
		dig1   |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig10  |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig100 |= (unsigned int)(*d << s);
	end:
		if (!s || p == stop || *p != '.')
			break;

		s -= 8;
		text = ++p;
	}

	dig100 -= ascii_zero;
	dig10  -= ascii_zero;
	dig1   -= ascii_zero;
	return ((dig100 * 10) + dig10) * 10 + dig1;
}

/*
 * Idem except the pointer to first unparsed byte is returned into <ret> which
 * must not be NULL.
 */
unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret)
{
	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
	register unsigned int dig100, dig10, dig1;
	int s;
	char *p, *d;

	dig1 = dig10 = dig100 = ascii_zero;
	s = 24;

	p = text;
	while (1) {
		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
			p++;
			continue;
		}

		/* here, we have a complete byte between <text> and <p> (exclusive) */
		if (p == text)
			goto end;

		d = p - 1;
		dig1   |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig10  |= (unsigned int)(*d << s);
		if (d == text)
			goto end;

		d--;
		dig100 |= (unsigned int)(*d << s);
	end:
		if (!s || p == stop || *p != '.')
			break;

		s -= 8;
		text = ++p;
	}

	*ret = p;
	dig100 -= ascii_zero;
	dig10  -= ascii_zero;
	dig1   -= ascii_zero;
	return ((dig100 * 10) + dig10) * 10 + dig1;
}

/* Convert a fixed-length string to an IP address. Returns 0 in case of error,
 * or the number of chars read in case of success. Maybe this could be replaced
 * by one of the functions above. Also, apparently this function does not support
 * hosts above 255 and requires exactly 4 octets.
 * The destination is only modified on success.
 */
int buf2ip(const char *buf, size_t len, struct in_addr *dst)
{
	const char *addr;
	int saw_digit, octets, ch;
	u_char tmp[4], *tp;
	const char *cp = buf;

	saw_digit = 0;
	octets = 0;
	*(tp = tmp) = 0;

	for (addr = buf; addr - buf < len; addr++) {
		unsigned char digit = (ch = *addr) - '0';

		if (digit > 9 && ch != '.')
			break;

		if (digit <= 9) {
			u_int new = *tp * 10 + digit;

			if (new > 255)
				return 0;

			*tp = new;

			if (!saw_digit) {
				if (++octets > 4)
					return 0;
				saw_digit = 1;
			}
		} else if (ch == '.' && saw_digit) {
			if (octets == 4)
				return 0;

			*++tp = 0;
			saw_digit = 0;
		} else
			return 0;
	}

	if (octets < 4)
		return 0;

	memcpy(&dst->s_addr, tmp, 4);
	return addr - cp;
}

/* This function converts the string in <buf> of the len <len> to
 * struct in6_addr <dst> which must be allocated by the caller.
 * This function returns 1 in success case, otherwise zero.
 * The destination is only modified on success.
 */
int buf2ip6(const char *buf, size_t len, struct in6_addr *dst)
{
	char null_term_ip6[INET6_ADDRSTRLEN + 1];
	struct in6_addr out;

	if (len > INET6_ADDRSTRLEN)
		return 0;

	memcpy(null_term_ip6, buf, len);
	null_term_ip6[len] = '\0';

	if (!inet_pton(AF_INET6, null_term_ip6, &out))
		return 0;

	*dst = out;
	return 1;
}

/* To be used to quote config arg positions. Returns the short string at <ptr>
 * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
 * if ptr is NULL or empty. The string is locally allocated.
 */
const char *quote_arg(const char *ptr)
{
	static THREAD_LOCAL char val[32];
	int i;

	if (!ptr || !*ptr)
		return "end of line";
	val[0] = '\'';
	for (i = 1; i < sizeof(val) - 2 && *ptr; i++)
		val[i] = *ptr++;
	val[i++] = '\'';
	val[i] = '\0';
	return val;
}

/* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
int get_std_op(const char *str)
{
	int ret = -1;

	if (*str == 'e' && str[1] == 'q')
		ret = STD_OP_EQ;
	else if (*str == 'n' && str[1] == 'e')
		ret = STD_OP_NE;
	else if (*str == 'l') {
		if (str[1] == 'e') ret = STD_OP_LE;
		else if (str[1] == 't') ret = STD_OP_LT;
	}
	else if (*str == 'g') {
		if (str[1] == 'e') ret = STD_OP_GE;
		else if (str[1] == 't') ret = STD_OP_GT;
	}

	if (ret == -1 || str[2] != '\0')
		return -1;
	return ret;
}

/* hash a 32-bit integer to another 32-bit integer */
unsigned int full_hash(unsigned int a)
{
	return __full_hash(a);
}

/* Return the bit position in mask <m> of the nth bit set of rank <r>, between
 * 0 and LONGBITS-1 included, starting from the left. For example ranks 0,1,2,3
 * for mask 0x55 will be 6, 4, 2 and 0 respectively. This algorithm is based on
 * a popcount variant and is described here :
 *   https://graphics.stanford.edu/~seander/bithacks.html
 */
unsigned int mask_find_rank_bit(unsigned int r, unsigned long m)
{
	unsigned long a, b, c, d;
	unsigned int s;
	unsigned int t;

	a =  m - ((m >> 1) & ~0UL/3);
	b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);
	c = (b + (b >> 4)) & ~0UL/0x11;
	d = (c + (c >> 8)) & ~0UL/0x101;

	r++; // make r be 1..64

	t = 0;
	s = LONGBITS;
	if (s > 32) {
		unsigned long d2 = (d >> 16) >> 16;
		t = d2 + (d2 >> 16);
		s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
	}

	t  = (d >> (s - 16)) & 0xff;
	s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
	t  = (c >> (s - 8)) & 0xf;
	s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
	t  = (b >> (s - 4)) & 0x7;
	s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
	t  = (a >> (s - 2)) & 0x3;
	s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
	t  = (m >> (s - 1)) & 0x1;
	s -= ((t - r) & 256) >> 8;

       return s - 1;
}

/* Same as mask_find_rank_bit() above but makes use of pre-computed bitmaps
 * based on <m>, in <a..d>. These ones must be updated whenever <m> changes
 * using mask_prep_rank_map() below.
 */
unsigned int mask_find_rank_bit_fast(unsigned int r, unsigned long m,
                                     unsigned long a, unsigned long b,
                                     unsigned long c, unsigned long d)
{
	unsigned int s;
	unsigned int t;

	r++; // make r be 1..64

	t = 0;
	s = LONGBITS;
	if (s > 32) {
		unsigned long d2 = (d >> 16) >> 16;
		t = d2 + (d2 >> 16);
		s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
	}

	t  = (d >> (s - 16)) & 0xff;
	s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
	t  = (c >> (s - 8)) & 0xf;
	s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
	t  = (b >> (s - 4)) & 0x7;
	s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
	t  = (a >> (s - 2)) & 0x3;
	s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
	t  = (m >> (s - 1)) & 0x1;
	s -= ((t - r) & 256) >> 8;

	return s - 1;
}

/* Prepare the bitmaps used by the fast implementation of the find_rank_bit()
 * above.
 */
void mask_prep_rank_map(unsigned long m,
                        unsigned long *a, unsigned long *b,
                        unsigned long *c, unsigned long *d)
{
	*a =  m - ((m >> 1) & ~0UL/3);
	*b = (*a & ~0UL/5) + ((*a >> 2) & ~0UL/5);
	*c = (*b + (*b >> 4)) & ~0UL/0x11;
	*d = (*c + (*c >> 8)) & ~0UL/0x101;
}

/* Returns the position of one bit set in <v>, starting at position <bit>, and
 * searching in other halves if not found. This is intended to be used to
 * report the position of one bit set among several based on a counter or a
 * random generator while preserving a relatively good distribution so that
 * values made of holes in the middle do not see one of the bits around the
 * hole being returned much more often than the other one. It can be seen as a
 * disturbed ffsl() where the initial search starts at bit <bit>. The look up
 * is performed in O(logN) time for N bit words, yielding a bit among 64 in
 * about 16 cycles. Its usage differs from the rank find function in that the
 * bit passed doesn't need to be limited to the value's popcount, making the
 * function easier to use for random picking, and twice as fast. Passing value
 * 0 for <v> makes no sense and -1 is returned in this case.
 */
int one_among_mask(unsigned long v, int bit)
{
	/* note, these masks may be produced by ~0UL/((1UL<<scale)+1) but
	 * that's more expensive.
	 */
	static const unsigned long halves[] = {
		(unsigned long)0x5555555555555555ULL,
		(unsigned long)0x3333333333333333ULL,
		(unsigned long)0x0F0F0F0F0F0F0F0FULL,
		(unsigned long)0x00FF00FF00FF00FFULL,
		(unsigned long)0x0000FFFF0000FFFFULL,
		(unsigned long)0x00000000FFFFFFFFULL
	};
	unsigned long halfword = ~0UL;
	int scope = 0;
	int mirror;
	int scale;

	if (!v)
		return -1;

	/* we check if the exact bit is set or if it's present in a mirror
	 * position based on the current scale we're checking, in which case
	 * it's returned with its current (or mirrored) value. Otherwise we'll
	 * make sure there's at least one bit in the half we're in, and will
	 * scale down to a smaller scope and try again, until we find the
	 * closest bit.
	 */
	for (scale = (sizeof(long) > 4) ? 5 : 4; scale >= 0; scale--) {
		halfword >>= (1UL << scale);
		scope |= (1UL << scale);
		mirror = bit ^ (1UL << scale);
		if (v & ((1UL << bit) | (1UL << mirror)))
			return (v & (1UL << bit)) ? bit : mirror;

		if (!((v >> (bit & scope)) & halves[scale] & halfword))
			bit = mirror;
	}
	return bit;
}

/* Return non-zero if IPv4 address is part of the network,
 * otherwise zero. Note that <addr> may not necessarily be aligned
 * while the two other ones must.
 */
int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net)
{
	struct in_addr addr_copy;

	memcpy(&addr_copy, addr, sizeof(addr_copy));
	return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr));
}

/* Return non-zero if IPv6 address is part of the network,
 * otherwise zero. Note that <addr> may not necessarily be aligned
 * while the two other ones must.
 */
int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net)
{
	int i;
	struct in6_addr addr_copy;

	memcpy(&addr_copy, addr, sizeof(addr_copy));
	for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
		if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) !=
		    (((int *)net)[i] & ((int *)mask)[i]))
			return 0;
	return 1;
}

/* Map IPv4 address on IPv6 address, as specified in RFC4291
 * "IPv4-Mapped IPv6 Address" (using the :ffff: prefix)
 *
 * Input and output may overlap.
 */
void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr)
{
	uint32_t ip4_addr;

	ip4_addr = sin_addr->s_addr;
	memset(&sin6_addr->s6_addr, 0, 10);
	write_u16(&sin6_addr->s6_addr[10], htons(0xFFFF));
	write_u32(&sin6_addr->s6_addr[12], ip4_addr);
}

/* Try to convert IPv6 address to IPv4 address thanks to the
 * following mapping methods:
 *  - RFC4291 IPv4-Mapped IPv6 Address (preferred method)
 *    -> ::ffff:ip:v4
 *  - RFC4291 IPv4-Compatible IPv6 Address (deprecated, RFC3513 legacy for
 *    "IPv6 Addresses with Embedded IPv4 Addresses)
 *    -> ::0000:ip:v4
 *  - 6to4 (defined in RFC3056 proposal, seems deprecated nowadays)
 *    -> 2002:ip:v4::
 * Return true if conversion is possible and false otherwise.
 */
int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr)
{
	if (read_u64(&sin6_addr->s6_addr[0]) == 0 &&
	    (read_u32(&sin6_addr->s6_addr[8]) == htonl(0xFFFF) ||
	     read_u32(&sin6_addr->s6_addr[8]) == 0)) {
		// RFC4291 ipv4 mapped or compatible ipv6 address
		sin_addr->s_addr = read_u32(&sin6_addr->s6_addr[12]);
	} else if (read_u16(&sin6_addr->s6_addr[0]) == htons(0x2002)) {
		// RFC3056 6to4 address
		sin_addr->s_addr = htonl((ntohs(read_u16(&sin6_addr->s6_addr[2])) << 16) +
		                         ntohs(read_u16(&sin6_addr->s6_addr[4])));
	}
	else
		return 0; /* unrecognized input */
	return 1; /* mapping completed */
}

/* compare two struct sockaddr_storage, including port if <check_port> is true,
 * and return:
 *  0 (true)  if the addr is the same in both
 *  1 (false) if the addr is not the same in both
 *  -1 (unable) if one of the addr is not AF_INET*
 */
int ipcmp(const struct sockaddr_storage *ss1, const struct sockaddr_storage *ss2, int check_port)
{
	if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6))
		return -1;

	if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6))
		return -1;

	if (ss1->ss_family != ss2->ss_family)
		return 1;

	switch (ss1->ss_family) {
		case AF_INET:
			return (memcmp(&((struct sockaddr_in *)ss1)->sin_addr,
				      &((struct sockaddr_in *)ss2)->sin_addr,
				      sizeof(struct in_addr)) != 0) ||
			       (check_port && get_net_port(ss1) != get_net_port(ss2));
		case AF_INET6:
			return (memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr,
				      &((struct sockaddr_in6 *)ss2)->sin6_addr,
				      sizeof(struct in6_addr)) != 0) ||
			       (check_port && get_net_port(ss1) != get_net_port(ss2));
	}

	return 1;
}

/* compare a struct sockaddr_storage to a struct net_addr and return :
 *  0 (true)  if <addr> is matching <net>
 *  1 (false) if <addr> is not matching <net>
 *  -1 (unable) if <addr> or <net> is not AF_INET*
 */
int ipcmp2net(const struct sockaddr_storage *addr, const struct net_addr *net)
{
	if ((addr->ss_family != AF_INET) && (addr->ss_family != AF_INET6))
		return -1;

	if ((net->family != AF_INET) && (net->family != AF_INET6))
		return -1;

	if (addr->ss_family != net->family)
		return 1;

	if (addr->ss_family == AF_INET &&
	    (((struct sockaddr_in *)addr)->sin_addr.s_addr & net->addr.v4.mask.s_addr) == net->addr.v4.ip.s_addr)
		return 0;
	else {
		const struct in6_addr *addr6  = &(((const struct sockaddr_in6*)addr)->sin6_addr);
		const struct in6_addr *nip6   = &net->addr.v6.ip;
		const struct in6_addr *nmask6 = &net->addr.v6.mask;

		if ((read_u32(&addr6->s6_addr[0]) & read_u32(&nmask6->s6_addr[0])) == read_u32(&nip6->s6_addr[0]) &&
		    (read_u32(&addr6->s6_addr[4]) & read_u32(&nmask6->s6_addr[4])) == read_u32(&nip6->s6_addr[4]) &&
		    (read_u32(&addr6->s6_addr[8]) & read_u32(&nmask6->s6_addr[8])) == read_u32(&nip6->s6_addr[8]) &&
		    (read_u32(&addr6->s6_addr[12]) & read_u32(&nmask6->s6_addr[12])) == read_u32(&nip6->s6_addr[12]))
			return 0;
	}

	return 1;
}

/* copy IP address from <source> into <dest>
 * The caller must allocate and clear <dest> before calling.
 * The source must be in either AF_INET or AF_INET6 family, or the destination
 * address will be undefined. If the destination address used to hold a port,
 * it is preserved, so that this function can be used to switch to another
 * address family with no risk. Returns a pointer to the destination.
 */
struct sockaddr_storage *ipcpy(const struct sockaddr_storage *source, struct sockaddr_storage *dest)
{
	int prev_port;

	prev_port = get_net_port(dest);
	memset(dest, 0, sizeof(*dest));
	dest->ss_family = source->ss_family;

	/* copy new addr and apply it */
	switch (source->ss_family) {
		case AF_INET:
			((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr;
			((struct sockaddr_in *)dest)->sin_port = prev_port;
			break;
		case AF_INET6:
			memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr));
			((struct sockaddr_in6 *)dest)->sin6_port = prev_port;
			break;
	}

	return dest;
}

char *human_time(int t, short hz_div) {
	static char rv[sizeof("24855d23h")+1];	// longest of "23h59m" and "59m59s"
	char *p = rv;
	char *end = rv + sizeof(rv);
	int cnt=2;				// print two numbers

	if (unlikely(t < 0 || hz_div <= 0)) {
		snprintf(p, end - p, "?");
		return rv;
	}

	if (unlikely(hz_div > 1))
		t /= hz_div;

	if (t >= DAY) {
		p += snprintf(p, end - p, "%dd", t / DAY);
		cnt--;
	}

	if (cnt && t % DAY / HOUR) {
		p += snprintf(p, end - p, "%dh", t % DAY / HOUR);
		cnt--;
	}

	if (cnt && t % HOUR / MINUTE) {
		p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE);
		cnt--;
	}

	if ((cnt && t % MINUTE) || !t)					// also display '0s'
		p += snprintf(p, end - p, "%ds", t % MINUTE / SEC);

	return rv;
}

const char *monthname[12] = {
	"Jan", "Feb", "Mar", "Apr", "May", "Jun",
	"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};

/* date2str_log: write a date in the format :
 * 	sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
 *		tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
 *		tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
 *
 * without using sprintf. return a pointer to the last char written (\0) or
 * NULL if there isn't enough space.
 */
char *date2str_log(char *dst, const struct tm *tm, const struct timeval *date, size_t size)
{

	if (size < 25) /* the size is fixed: 24 chars + \0 */
		return NULL;

	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
	if (!dst)
		return NULL;
	*dst++ = '/';

	memcpy(dst, monthname[tm->tm_mon], 3); // month
	dst += 3;
	*dst++ = '/';

	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
	if (!dst)
		return NULL;
	*dst++ = '.';

	dst = utoa_pad((unsigned int)(date->tv_usec/1000)%1000, dst, 4); // milliseconds
	if (!dst)
		return NULL;
	*dst = '\0';

	return dst;
}

/* Base year used to compute leap years */
#define TM_YEAR_BASE 1900

/* Return the difference in seconds between two times (leap seconds are ignored).
 * Retrieved from glibc 2.18 source code.
 */
static int my_tm_diff(const struct tm *a, const struct tm *b)
{
	/* Compute intervening leap days correctly even if year is negative.
	 * Take care to avoid int overflow in leap day calculations,
	 * but it's OK to assume that A and B are close to each other.
	 */
	int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
	int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
	int a100 = a4 / 25 - (a4 % 25 < 0);
	int b100 = b4 / 25 - (b4 % 25 < 0);
	int a400 = a100 >> 2;
	int b400 = b100 >> 2;
	int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
	int years = a->tm_year - b->tm_year;
	int days = (365 * years + intervening_leap_days
	         + (a->tm_yday - b->tm_yday));
	return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
	       + (a->tm_min - b->tm_min))
	       + (a->tm_sec - b->tm_sec));
}

/* Return the GMT offset for a specific local time.
 * Both t and tm must represent the same time.
 * The string returned has the same format as returned by strftime(... "%z", tm).
 * Offsets are kept in an internal cache for better performances.
 */
const char *get_gmt_offset(time_t t, struct tm *tm)
{
	/* Cache offsets from GMT (depending on whether DST is active or not) */
	static THREAD_LOCAL char gmt_offsets[2][5+1] = { "", "" };

	char *gmt_offset;
	struct tm tm_gmt;
	int diff;
	int isdst = tm->tm_isdst;

	/* Pretend DST not active if its status is unknown */
	if (isdst < 0)
		isdst = 0;

	/* Fetch the offset and initialize it if needed */
	gmt_offset = gmt_offsets[isdst & 0x01];
	if (unlikely(!*gmt_offset)) {
		get_gmtime(t, &tm_gmt);
		diff = my_tm_diff(tm, &tm_gmt);
		if (diff < 0) {
			diff = -diff;
			*gmt_offset = '-';
		} else {
			*gmt_offset = '+';
		}
		diff %= 86400U;
		diff /= 60; /* Convert to minutes */
		snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60);
	}

	return gmt_offset;
}

/* gmt2str_log: write a date in the format :
 * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
 * return a pointer to the last char written (\0) or
 * NULL if there isn't enough space.
 */
char *gmt2str_log(char *dst, struct tm *tm, size_t size)
{
	if (size < 27) /* the size is fixed: 26 chars + \0 */
		return NULL;

	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
	if (!dst)
		return NULL;
	*dst++ = '/';

	memcpy(dst, monthname[tm->tm_mon], 3); // month
	dst += 3;
	*dst++ = '/';

	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
	if (!dst)
		return NULL;
	*dst++ = ' ';
	*dst++ = '+';
	*dst++ = '0';
	*dst++ = '0';
	*dst++ = '0';
	*dst++ = '0';
	*dst = '\0';

	return dst;
}

/* localdate2str_log: write a date in the format :
 * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
 * Both t and tm must represent the same time.
 * return a pointer to the last char written (\0) or
 * NULL if there isn't enough space.
 */
char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size)
{
	const char *gmt_offset;
	if (size < 27) /* the size is fixed: 26 chars + \0 */
		return NULL;

	gmt_offset = get_gmt_offset(t, tm);

	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
	if (!dst)
		return NULL;
	*dst++ = '/';

	memcpy(dst, monthname[tm->tm_mon], 3); // month
	dst += 3;
	*dst++ = '/';

	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
	if (!dst)
		return NULL;
	*dst++ = ':';

	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
	if (!dst)
		return NULL;
	*dst++ = ' ';

	memcpy(dst, gmt_offset, 5); // Offset from local time to GMT
	dst += 5;
	*dst = '\0';

	return dst;
}

/* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date <tm>.
 * It is meant as a portable replacement for timegm() for use with valid inputs.
 * Returns undefined results for invalid dates (eg: months out of range 0..11).
 */
time_t my_timegm(const struct tm *tm)
{
	/* Each month has 28, 29, 30 or 31 days, or 28+N. The date in the year
	 * is thus (current month - 1)*28 + cumulated_N[month] to count the
	 * sum of the extra N days for elapsed months. The sum of all these N
	 * days doesn't exceed 30 for a complete year (366-12*28) so it fits
	 * in a 5-bit word. This means that with 60 bits we can represent a
	 * matrix of all these values at once, which is fast and efficient to
	 * access. The extra February day for leap years is not counted here.
	 *
	 * Jan : none      =  0 (0)
	 * Feb : Jan       =  3 (3)
	 * Mar : Jan..Feb  =  3 (3 + 0)
	 * Apr : Jan..Mar  =  6 (3 + 0 + 3)
	 * May : Jan..Apr  =  8 (3 + 0 + 3 + 2)
	 * Jun : Jan..May  = 11 (3 + 0 + 3 + 2 + 3)
	 * Jul : Jan..Jun  = 13 (3 + 0 + 3 + 2 + 3 + 2)
	 * Aug : Jan..Jul  = 16 (3 + 0 + 3 + 2 + 3 + 2 + 3)
	 * Sep : Jan..Aug  = 19 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3)
	 * Oct : Jan..Sep  = 21 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2)
	 * Nov : Jan..Oct  = 24 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3)
	 * Dec : Jan..Nov  = 26 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3 + 2)
	 */
	uint64_t extra =
		( 0ULL <<  0*5) + ( 3ULL <<  1*5) + ( 3ULL <<  2*5) + /* Jan, Feb, Mar, */
		( 6ULL <<  3*5) + ( 8ULL <<  4*5) + (11ULL <<  5*5) + /* Apr, May, Jun, */
		(13ULL <<  6*5) + (16ULL <<  7*5) + (19ULL <<  8*5) + /* Jul, Aug, Sep, */
		(21ULL <<  9*5) + (24ULL << 10*5) + (26ULL << 11*5);  /* Oct, Nov, Dec, */

	unsigned int y = tm->tm_year + 1900;
	unsigned int m = tm->tm_mon;
	unsigned long days = 0;

	/* days since 1/1/1970 for full years */
	days += days_since_zero(y) - days_since_zero(1970);

	/* days for full months in the current year */
	days += 28 * m + ((extra >> (m * 5)) & 0x1f);

	/* count + 1 after March for leap years. A leap year is a year multiple
	 * of 4, unless it's multiple of 100 without being multiple of 400. 2000
	 * is leap, 1900 isn't, 1904 is.
	 */
	if ((m > 1) && !(y & 3) && ((y % 100) || !(y % 400)))
		days++;

	days += tm->tm_mday - 1;
	return days * 86400ULL + tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
}

/* This function check a char. It returns true and updates
 * <date> and <len> pointer to the new position if the
 * character is found.
 */
static inline int parse_expect_char(const char **date, int *len, char c)
{
	if (*len < 1 || **date != c)
		return 0;
	(*len)--;
	(*date)++;
	return 1;
}

/* This function expects a string <str> of len <l>. It return true and updates.
 * <date> and <len> if the string matches, otherwise, it returns false.
 */
static inline int parse_strcmp(const char **date, int *len, char *str, int l)
{
	if (*len < l || strncmp(*date, str, l) != 0)
		return 0;
	(*len) -= l;
	(*date) += l;
	return 1;
}

/* This macro converts 3 chars name in integer. */
#define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c))

/* day-name     = %x4D.6F.6E ; "Mon", case-sensitive
 *              / %x54.75.65 ; "Tue", case-sensitive
 *              / %x57.65.64 ; "Wed", case-sensitive
 *              / %x54.68.75 ; "Thu", case-sensitive
 *              / %x46.72.69 ; "Fri", case-sensitive
 *              / %x53.61.74 ; "Sat", case-sensitive
 *              / %x53.75.6E ; "Sun", case-sensitive
 *
 * This array must be alphabetically sorted
 */
static inline int parse_http_dayname(const char **date, int *len, struct tm *tm)
{
	if (*len < 3)
		return 0;
	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
	case STR2I3('M','o','n'): tm->tm_wday = 1;  break;
	case STR2I3('T','u','e'): tm->tm_wday = 2;  break;
	case STR2I3('W','e','d'): tm->tm_wday = 3;  break;
	case STR2I3('T','h','u'): tm->tm_wday = 4;  break;
	case STR2I3('F','r','i'): tm->tm_wday = 5;  break;
	case STR2I3('S','a','t'): tm->tm_wday = 6;  break;
	case STR2I3('S','u','n'): tm->tm_wday = 7;  break;
	default: return 0;
	}
	*len -= 3;
	*date  += 3;
	return 1;
}

/* month        = %x4A.61.6E ; "Jan", case-sensitive
 *              / %x46.65.62 ; "Feb", case-sensitive
 *              / %x4D.61.72 ; "Mar", case-sensitive
 *              / %x41.70.72 ; "Apr", case-sensitive
 *              / %x4D.61.79 ; "May", case-sensitive
 *              / %x4A.75.6E ; "Jun", case-sensitive
 *              / %x4A.75.6C ; "Jul", case-sensitive
 *              / %x41.75.67 ; "Aug", case-sensitive
 *              / %x53.65.70 ; "Sep", case-sensitive
 *              / %x4F.63.74 ; "Oct", case-sensitive
 *              / %x4E.6F.76 ; "Nov", case-sensitive
 *              / %x44.65.63 ; "Dec", case-sensitive
 *
 * This array must be alphabetically sorted
 */
static inline int parse_http_monthname(const char **date, int *len, struct tm *tm)
{
	if (*len < 3)
		return 0;
	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
	case STR2I3('J','a','n'): tm->tm_mon = 0;  break;
	case STR2I3('F','e','b'): tm->tm_mon = 1;  break;
	case STR2I3('M','a','r'): tm->tm_mon = 2;  break;
	case STR2I3('A','p','r'): tm->tm_mon = 3;  break;
	case STR2I3('M','a','y'): tm->tm_mon = 4;  break;
	case STR2I3('J','u','n'): tm->tm_mon = 5;  break;
	case STR2I3('J','u','l'): tm->tm_mon = 6;  break;
	case STR2I3('A','u','g'): tm->tm_mon = 7;  break;
	case STR2I3('S','e','p'): tm->tm_mon = 8;  break;
	case STR2I3('O','c','t'): tm->tm_mon = 9;  break;
	case STR2I3('N','o','v'): tm->tm_mon = 10; break;
	case STR2I3('D','e','c'): tm->tm_mon = 11; break;
	default: return 0;
	}
	*len -= 3;
	*date  += 3;
	return 1;
}

/* day-name-l   = %x4D.6F.6E.64.61.79    ; "Monday", case-sensitive
 *        / %x54.75.65.73.64.61.79       ; "Tuesday", case-sensitive
 *        / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
 *        / %x54.68.75.72.73.64.61.79    ; "Thursday", case-sensitive
 *        / %x46.72.69.64.61.79          ; "Friday", case-sensitive
 *        / %x53.61.74.75.72.64.61.79    ; "Saturday", case-sensitive
 *        / %x53.75.6E.64.61.79          ; "Sunday", case-sensitive
 *
 * This array must be alphabetically sorted
 */
static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm)
{
	if (*len < 6) /* Minimum length. */
		return 0;
	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
	case STR2I3('M','o','n'):
		RET0_UNLESS(parse_strcmp(date, len, "Monday", 6));
		tm->tm_wday = 1;
		return 1;
	case STR2I3('T','u','e'):
		RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7));
		tm->tm_wday = 2;
		return 1;
	case STR2I3('W','e','d'):
		RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9));
		tm->tm_wday = 3;
		return 1;
	case STR2I3('T','h','u'):
		RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8));
		tm->tm_wday = 4;
		return 1;
	case STR2I3('F','r','i'):
		RET0_UNLESS(parse_strcmp(date, len, "Friday", 6));
		tm->tm_wday = 5;
		return 1;
	case STR2I3('S','a','t'):
		RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8));
		tm->tm_wday = 6;
		return 1;
	case STR2I3('S','u','n'):
		RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6));
		tm->tm_wday = 7;
		return 1;
	}
	return 0;
}

/* This function parses exactly 1 digit and returns the numeric value in "digit". */
static inline int parse_digit(const char **date, int *len, int *digit)
{
	if (*len < 1 || **date < '0' || **date > '9')
		return 0;
	*digit = (**date - '0');
	(*date)++;
	(*len)--;
	return 1;
}

/* This function parses exactly 2 digits and returns the numeric value in "digit". */
static inline int parse_2digit(const char **date, int *len, int *digit)
{
	int value;

	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) = value * 10;
	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) += value;

	return 1;
}

/* This function parses exactly 4 digits and returns the numeric value in "digit". */
static inline int parse_4digit(const char **date, int *len, int *digit)
{
	int value;

	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) = value * 1000;

	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) += value * 100;

	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) += value * 10;

	RET0_UNLESS(parse_digit(date, len, &value));
	(*digit) += value;

	return 1;
}

/* time-of-day  = hour ":" minute ":" second
 *              ; 00:00:00 - 23:59:60 (leap second)
 *
 * hour         = 2DIGIT
 * minute       = 2DIGIT
 * second       = 2DIGIT
 */
static inline int parse_http_time(const char **date, int *len, struct tm *tm)
{
	RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */
	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
	RET0_UNLESS(parse_2digit(date, len, &tm->tm_min));  /* min 2DIGIT  */
	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
	RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec));  /* sec 2DIGIT  */
	return 1;
}

/* From RFC7231
 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 *
 * IMF-fixdate  = day-name "," SP date1 SP time-of-day SP GMT
 * ; fixed length/zone/capitalization subset of the format
 * ; see Section 3.3 of [RFC5322]
 *
 *
 * date1        = day SP month SP year
 *              ; e.g., 02 Jun 1982
 *
 * day          = 2DIGIT
 * year         = 4DIGIT
 *
 * GMT          = %x47.4D.54 ; "GMT", case-sensitive
 *
 * time-of-day  = hour ":" minute ":" second
 *              ; 00:00:00 - 23:59:60 (leap second)
 *
 * hour         = 2DIGIT
 * minute       = 2DIGIT
 * second       = 2DIGIT
 *
 * DIGIT        = decimal 0-9
 */
int parse_imf_date(const char *date, int len, struct tm *tm)
{
	/* tm_gmtoff, if present, ought to be zero'ed */
	memset(tm, 0, sizeof(*tm));

	RET0_UNLESS(parse_http_dayname(&date, &len, tm));     /* day-name */
	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
	tm->tm_year -= 1900;
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3));     /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
	tm->tm_isdst = -1;
	return 1;
}

/* From RFC7231
 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 *
 * rfc850-date  = day-name-l "," SP date2 SP time-of-day SP GMT
 * date2        = day "-" month "-" 2DIGIT
 *              ; e.g., 02-Jun-82
 *
 * day          = 2DIGIT
 */
int parse_rfc850_date(const char *date, int len, struct tm *tm)
{
	int year;

	/* tm_gmtoff, if present, ought to be zero'ed */
	memset(tm, 0, sizeof(*tm));

	RET0_UNLESS(parse_http_ldayname(&date, &len, tm));    /* Read the day name */
	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */
	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */

	/* year = 2DIGIT
	 *
	 * Recipients of a timestamp value in rfc850-(*date) format, which uses a
	 * two-digit year, MUST interpret a timestamp that appears to be more
	 * than 50 years in the future as representing the most recent year in
	 * the past that had the same last two digits.
	 */
	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year));

	/* expect SP */
	if (!parse_expect_char(&date, &len, ' ')) {
		/* Maybe we have the date with 4 digits. */
		RET0_UNLESS(parse_2digit(&date, &len, &year));
		tm->tm_year = (tm->tm_year * 100 + year) - 1900;
		/* expect SP */
		RET0_UNLESS(parse_expect_char(&date, &len, ' '));
	} else {
		/* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the
		 * tm_year is the number of year since 1900, so for +1900, we
		 * do nothing, and for +2000, we add 100.
		 */
		if (tm->tm_year <= 60)
			tm->tm_year += 100;
	}

	RET0_UNLESS(parse_http_time(&date, &len, tm));    /* Parse time. */
	RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
	tm->tm_isdst = -1;

	return 1;
}

/* From RFC7231
 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 *
 * asctime-date = day-name SP date3 SP time-of-day SP year
 * date3        = month SP ( 2DIGIT / ( SP 1DIGIT ))
 *              ; e.g., Jun  2
 *
 * HTTP-date is case sensitive.  A sender MUST NOT generate additional
 * whitespace in an HTTP-date beyond that specifically included as SP in
 * the grammar.
 */
int parse_asctime_date(const char *date, int len, struct tm *tm)
{
	/* tm_gmtoff, if present, ought to be zero'ed */
	memset(tm, 0, sizeof(*tm));

	RET0_UNLESS(parse_http_dayname(&date, &len, tm));   /* day-name */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */
	RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */

	/* expect SP and 1DIGIT or 2DIGIT */
	if (parse_expect_char(&date, &len, ' '))
		RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday));
	else
		RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday));

	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
	tm->tm_year -= 1900;
	tm->tm_isdst = -1;
	return 1;
}

/* From RFC7231
 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 *
 * HTTP-date    = IMF-fixdate / obs-date
 * obs-date     = rfc850-date / asctime-date
 *
 * parses an HTTP date in the RFC format and is accepted
 * alternatives. <date> is the strinf containing the date,
 * len is the len of the string. <tm> is filled with the
 * parsed time. We must considers this time as GMT.
 */
int parse_http_date(const char *date, int len, struct tm *tm)
{
	if (parse_imf_date(date, len, tm))
		return 1;

	if (parse_rfc850_date(date, len, tm))
		return 1;

	if (parse_asctime_date(date, len, tm))
		return 1;

	return 0;
}

/* print the time <ns> in a short form (exactly 7 chars) at the end of buffer
 * <out>. "-" is printed if the value is zero, "inf" if larger than 1000 years.
 * It returns the new buffer length, or 0 if it doesn't fit. The value will be
 * surrounded by <pfx> and <sfx> respectively if not NULL.
 */
int print_time_short(struct buffer *out, const char *pfx, uint64_t ns, const char *sfx)
{
	double val = ns; // 52 bits of mantissa keep ns accuracy over 52 days
	const char *unit;

	if (!pfx)
		pfx = "";
	if (!sfx)
		sfx = "";

	do {
		unit = "   -   "; if (val <= 0.0) break;
		unit = "ns"; if (val < 1000.0) break;
		unit = "us"; val /= 1000.0; if (val < 1000.0) break;
		unit = "ms"; val /= 1000.0; if (val < 1000.0) break;
		unit = "s "; val /= 1000.0; if (val <   60.0) break;
		unit = "m "; val /=   60.0; if (val <   60.0) break;
		unit = "h "; val /=   60.0; if (val <   24.0) break;
		unit = "d "; val /=   24.0; if (val <  365.0) break;
		unit = "yr"; val /=  365.0; if (val < 1000.0) break;
		unit = "  inf  "; val = 0.0; break;
	} while (0);

	if (val <= 0.0)
		return chunk_appendf(out, "%s%7s%s", pfx, unit, sfx);
	else if (val < 10.0)
		return chunk_appendf(out, "%s%1.3f%s%s", pfx, val, unit, sfx);
	else if (val < 100.0)
		return chunk_appendf(out, "%s%2.2f%s%s", pfx, val, unit, sfx);
	else
		return chunk_appendf(out, "%s%3.1f%s%s", pfx, val, unit, sfx);
}

/* Dynamically allocates a string of the proper length to hold the formatted
 * output. NULL is returned on error. The caller is responsible for freeing the
 * memory area using free(). The resulting string is returned in <out> if the
 * pointer is not NULL. A previous version of <out> might be used to build the
 * new string, and it will be freed before returning if it is not NULL, which
 * makes it possible to build complex strings from iterative calls without
 * having to care about freeing intermediate values, as in the example below :
 *
 *     memprintf(&err, "invalid argument: '%s'", arg);
 *     ...
 *     memprintf(&err, "parser said : <%s>\n", *err);
 *     ...
 *     free(*err);
 *
 * This means that <err> must be initialized to NULL before first invocation.
 * The return value also holds the allocated string, which eases error checking
 * and immediate consumption. If the output pointer is not used, NULL must be
 * passed instead and it will be ignored. The returned message will then also
 * be NULL so that the caller does not have to bother with freeing anything.
 *
 * It is also convenient to use it without any free except the last one :
 *    err = NULL;
 *    if (!fct1(err)) report(*err);
 *    if (!fct2(err)) report(*err);
 *    if (!fct3(err)) report(*err);
 *    free(*err);
 *
 * memprintf relies on memvprintf. This last version can be called from any
 * function with variadic arguments.
 */
char *memvprintf(char **out, const char *format, va_list orig_args)
{
	va_list args;
	char *ret = NULL;
	int allocated = 0;
	int needed = 0;

	if (!out)
		return NULL;

	do {
		char buf1;

		/* vsnprintf() will return the required length even when the
		 * target buffer is NULL. We do this in a loop just in case
		 * intermediate evaluations get wrong.
		 */
		va_copy(args, orig_args);
		needed = vsnprintf(ret ? ret : &buf1, allocated, format, args);
		va_end(args);
		if (needed < allocated) {
			/* Note: on Solaris 8, the first iteration always
			 * returns -1 if allocated is zero, so we force a
			 * retry.
			 */
			if (!allocated)
				needed = 0;
			else
				break;
		}

		allocated = needed + 1;
		ret = my_realloc2(ret, allocated);
	} while (ret);

	if (needed < 0) {
		/* an error was encountered */
		ha_free(&ret);
	}

	if (out) {
		free(*out);
		*out = ret;
	}

	return ret;
}

char *memprintf(char **out, const char *format, ...)
{
	va_list args;
	char *ret = NULL;

	va_start(args, format);
	ret = memvprintf(out, format, args);
	va_end(args);

	return ret;
}

/* Used to add <level> spaces before each line of <out>, unless there is only one line.
 * The input argument is automatically freed and reassigned. The result will have to be
 * freed by the caller. It also supports being passed a NULL which results in the same
 * output.
 * Example of use :
 *   parse(cmd, &err); (callee: memprintf(&err, ...))
 *   fprintf(stderr, "Parser said: %s\n", indent_error(&err));
 *   free(err);
 */
char *indent_msg(char **out, int level)
{
	char *ret, *in, *p;
	int needed = 0;
	int lf = 0;
	int lastlf = 0;
	int len;

	if (!out || !*out)
		return NULL;

	in = *out - 1;
	while ((in = strchr(in + 1, '\n')) != NULL) {
		lastlf = in - *out;
		lf++;
	}

	if (!lf) /* single line, no LF, return it as-is */
		return *out;

	len = strlen(*out);

	if (lf == 1 && lastlf == len - 1) {
		/* single line, LF at end, strip it and return as-is */
		(*out)[lastlf] = 0;
		return *out;
	}

	/* OK now we have at least one LF, we need to process the whole string
	 * as a multi-line string. What we'll do :
	 *   - prefix with an LF if there is none
	 *   - add <level> spaces before each line
	 * This means at most ( 1 + level + (len-lf) + lf*<1+level) ) =
	 *   1 + level + len + lf * level = 1 + level * (lf + 1) + len.
	 */

	needed = 1 + level * (lf + 1) + len + 1;
	p = ret = malloc(needed);
	in = *out;

	/* skip initial LFs */
	while (*in == '\n')
		in++;

	/* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */
	while (*in) {
		*p++ = '\n';
		memset(p, ' ', level);
		p += level;
		do {
			*p++ = *in++;
		} while (*in && *in != '\n');
		if (*in)
			in++;
	}
	*p = 0;

	free(*out);
	*out = ret;

	return ret;
}

/* makes a copy of message <in> into <out>, with each line prefixed with <pfx>
 * and end of lines replaced with <eol> if not 0. The first line to indent has
 * to be indicated in <first> (starts at zero), so that it is possible to skip
 * indenting the first line if it has to be appended after an existing message.
 * Empty strings are never indented, and NULL strings are considered empty both
 * for <in> and <pfx>. It returns non-zero if an EOL was appended as the last
 * character, non-zero otherwise.
 */
int append_prefixed_str(struct buffer *out, const char *in, const char *pfx, char eol, int first)
{
	int bol, lf;
	int pfxlen = pfx ? strlen(pfx) : 0;

	if (!in)
		return 0;

	bol = 1;
	lf = 0;
	while (*in) {
		if (bol && pfxlen) {
			if (first > 0)
				first--;
			else
				b_putblk(out, pfx, pfxlen);
			bol = 0;
		}

		lf = (*in == '\n');
		bol |= lf;
		b_putchr(out, (lf && eol) ? eol : *in);
		in++;
	}
	return lf;
}

/* removes environment variable <name> from the environment as found in
 * environ. This is only provided as an alternative for systems without
 * unsetenv() (old Solaris and AIX versions). THIS IS NOT THREAD SAFE.
 * The principle is to scan environ for each occurrence of variable name
 * <name> and to replace the matching pointers with the last pointer of
 * the array (since variables are not ordered).
 * It always returns 0 (success).
 */
int my_unsetenv(const char *name)
{
	extern char **environ;
	char **p = environ;
	int vars;
	int next;
	int len;

	len = strlen(name);
	for (vars = 0; p[vars]; vars++)
		;
	next = 0;
	while (next < vars) {
		if (strncmp(p[next], name, len) != 0 || p[next][len] != '=') {
			next++;
			continue;
		}
		if (next < vars - 1)
			p[next] = p[vars - 1];
		p[--vars] = NULL;
	}
	return 0;
}

/* Convert occurrences of environment variables in the input string to their
 * corresponding value. A variable is identified as a series of alphanumeric
 * characters or underscores following a '$' sign. The <in> string must be
 * free()able. NULL returns NULL. The resulting string might be reallocated if
 * some expansion is made. Variable names may also be enclosed into braces if
 * needed (eg: to concatenate alphanum characters).
 */
char *env_expand(char *in)
{
	char *txt_beg;
	char *out;
	char *txt_end;
	char *var_beg;
	char *var_end;
	char *value;
	char *next;
	int out_len;
	int val_len;

	if (!in)
		return in;

	value = out = NULL;
	out_len = 0;

	txt_beg = in;
	do {
		/* look for next '$' sign in <in> */
		for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++);

		if (!*txt_end && !out) /* end and no expansion performed */
			return in;

		val_len = 0;
		next = txt_end;
		if (*txt_end == '$') {
			char save;

			var_beg = txt_end + 1;
			if (*var_beg == '{')
				var_beg++;

			var_end = var_beg;
			while (isalnum((unsigned char)*var_end) || *var_end == '_') {
				var_end++;
			}

			next = var_end;
			if (*var_end == '}' && (var_beg > txt_end + 1))
				next++;

			/* get value of the variable name at this location */
			save = *var_end;
			*var_end = '\0';
			value = getenv(var_beg);
			*var_end = save;
			val_len = value ? strlen(value) : 0;
		}

		out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1);
		if (txt_end > txt_beg) {
			memcpy(out + out_len, txt_beg, txt_end - txt_beg);
			out_len += txt_end - txt_beg;
		}
		if (val_len) {
			memcpy(out + out_len, value, val_len);
			out_len += val_len;
		}
		out[out_len] = 0;
		txt_beg = next;
	} while (*txt_beg);

	/* here we know that <out> was allocated and that we don't need <in> anymore */
	free(in);
	return out;
}


/* same as strstr() but case-insensitive and with limit length */
const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2)
{
	char *pptr, *sptr, *start;
	unsigned int slen, plen;
	unsigned int tmp1, tmp2;

	if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found
		return NULL;

	if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match
		return str1;

	if (len_str1 < len_str2) // pattern is longer than string => search is not found
		return NULL;

	for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) {
		while (toupper((unsigned char)*start) != toupper((unsigned char)*str2)) {
			start++;
			slen--;
			tmp1++;

			if (tmp1 >= len_str1)
				return NULL;

			/* if pattern longer than string */
			if (slen < plen)
				return NULL;
		}

		sptr = start;
		pptr = (char *)str2;

		tmp2 = 0;
		while (toupper((unsigned char)*sptr) == toupper((unsigned char)*pptr)) {
			sptr++;
			pptr++;
			tmp2++;

			if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */
				return start;
			if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */
				return NULL;
		}
	}
	return NULL;
}

/* Returns true if s1 < s2 < s3 otherwise zero. Both s1 and s3 may be NULL and
 * in this case only non-null strings are compared. This allows to pass initial
 * values in iterators and in sort functions.
 */
int strordered(const char *s1, const char *s2, const char *s3)
{
	return (!s1 || strcmp(s1, s2) < 0) && (!s3 || strcmp(s2, s3) < 0);
}

/* This function read the next valid utf8 char.
 * <s> is the byte srray to be decode, <len> is its length.
 * The function returns decoded char encoded like this:
 * The 4 msb are the return code (UTF8_CODE_*), the 4 lsb
 * are the length read. The decoded character is stored in <c>.
 */
unsigned char utf8_next(const char *s, int len, unsigned int *c)
{
	const unsigned char *p = (unsigned char *)s;
	int dec;
	unsigned char code = UTF8_CODE_OK;

	if (len < 1)
		return UTF8_CODE_OK;

	/* Check the type of UTF8 sequence
	 *
	 * 0... ....  0x00 <= x <= 0x7f : 1 byte: ascii char
	 * 10.. ....  0x80 <= x <= 0xbf : invalid sequence
	 * 110. ....  0xc0 <= x <= 0xdf : 2 bytes
	 * 1110 ....  0xe0 <= x <= 0xef : 3 bytes
	 * 1111 0...  0xf0 <= x <= 0xf7 : 4 bytes
	 * 1111 10..  0xf8 <= x <= 0xfb : 5 bytes
	 * 1111 110.  0xfc <= x <= 0xfd : 6 bytes
	 * 1111 111.  0xfe <= x <= 0xff : invalid sequence
	 */
	switch (*p) {
	case 0x00 ... 0x7f:
		*c = *p;
		return UTF8_CODE_OK | 1;

	case 0x80 ... 0xbf:
		*c = *p;
		return UTF8_CODE_BADSEQ | 1;

	case 0xc0 ... 0xdf:
		if (len < 2) {
			*c = *p;
			return UTF8_CODE_BADSEQ | 1;
		}
		*c = *p & 0x1f;
		dec = 1;
		break;

	case 0xe0 ... 0xef:
		if (len < 3) {
			*c = *p;
			return UTF8_CODE_BADSEQ | 1;
		}
		*c = *p & 0x0f;
		dec = 2;
		break;

	case 0xf0 ... 0xf7:
		if (len < 4) {
			*c = *p;
			return UTF8_CODE_BADSEQ | 1;
		}
		*c = *p & 0x07;
		dec = 3;
		break;

	case 0xf8 ... 0xfb:
		if (len < 5) {
			*c = *p;
			return UTF8_CODE_BADSEQ | 1;
		}
		*c = *p & 0x03;
		dec = 4;
		break;

	case 0xfc ... 0xfd:
		if (len < 6) {
			*c = *p;
			return UTF8_CODE_BADSEQ | 1;
		}
		*c = *p & 0x01;
		dec = 5;
		break;

	case 0xfe ... 0xff:
	default:
		*c = *p;
		return UTF8_CODE_BADSEQ | 1;
	}

	p++;

	while (dec > 0) {

		/* need 0x10 for the 2 first bits */
		if ( ( *p & 0xc0 ) != 0x80 )
			return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff);

		/* add data at char */
		*c = ( *c << 6 ) | ( *p & 0x3f );

		dec--;
		p++;
	}

	/* Check ovelong encoding.
	 * 1 byte  : 5 + 6         : 11 : 0x80    ... 0x7ff
	 * 2 bytes : 4 + 6 + 6     : 16 : 0x800   ... 0xffff
	 * 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff
	 */
	if ((                 *c <= 0x7f     && (p-(unsigned char *)s) > 1) ||
	    (*c >= 0x80    && *c <= 0x7ff    && (p-(unsigned char *)s) > 2) ||
	    (*c >= 0x800   && *c <= 0xffff   && (p-(unsigned char *)s) > 3) ||
	    (*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4))
		code |= UTF8_CODE_OVERLONG;

	/* Check invalid UTF8 range. */
	if ((*c >= 0xd800 && *c <= 0xdfff) ||
	    (*c >= 0xfffe && *c <= 0xffff))
		code |= UTF8_CODE_INVRANGE;

	return code | ((p-(unsigned char *)s)&0x0f);
}

/* append a copy of string <str> (in a wordlist) at the end of the list <li>
 * On failure : return 0 and <err> filled with an error message.
 * The caller is responsible for freeing the <err> and <str> copy
 * memory area using free()
 */
int list_append_word(struct list *li, const char *str, char **err)
{
	struct wordlist *wl;

	wl = calloc(1, sizeof(*wl));
	if (!wl) {
		memprintf(err, "out of memory");
		goto fail_wl;
	}

	wl->s = strdup(str);
	if (!wl->s) {
		memprintf(err, "out of memory");
		goto fail_wl_s;
	}

	LIST_APPEND(li, &wl->list);

	return 1;

fail_wl_s:
	free(wl->s);
fail_wl:
	free(wl);
	return 0;
}

/* indicates if a memory location may safely be read or not. The trick consists
 * in performing a harmless syscall using this location as an input and letting
 * the operating system report whether it's OK or not. For this we have the
 * stat() syscall, which will return EFAULT when the memory location supposed
 * to contain the file name is not readable. If it is readable it will then
 * either return 0 if the area contains an existing file name, or -1 with
 * another code. This must not be abused, and some audit systems might detect
 * this as abnormal activity. It's used only for unsafe dumps.
 */
int may_access(const void *ptr)
{
	struct stat buf;

	if (stat(ptr, &buf) == 0)
		return 1;
	if (errno == EFAULT)
		return 0;
	return 1;
}

/* print a string of text buffer to <out>. The format is :
 * Non-printable chars \t, \n, \r and \e are * encoded in C format.
 * Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped.
 * Print stopped if null char or <bsize> is reached, or if no more place in the chunk.
 */
int dump_text(struct buffer *out, const char *buf, int bsize)
{
	unsigned char c;
	size_t ptr = 0;

	while (ptr < bsize && buf[ptr]) {
		c = buf[ptr];
		if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\' && c != ' ' && c != '=') {
			if (out->data > out->size - 1)
				break;
			out->area[out->data++] = c;
		}
		else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') {
			if (out->data > out->size - 2)
				break;
			out->area[out->data++] = '\\';
			switch (c) {
			case ' ': c = ' '; break;
			case '\t': c = 't'; break;
			case '\n': c = 'n'; break;
			case '\r': c = 'r'; break;
			case '\e': c = 'e'; break;
			case '\\': c = '\\'; break;
			case '=': c = '='; break;
			}
			out->area[out->data++] = c;
		}
		else {
			if (out->data > out->size - 4)
				break;
			out->area[out->data++] = '\\';
			out->area[out->data++] = 'x';
			out->area[out->data++] = hextab[(c >> 4) & 0xF];
			out->area[out->data++] = hextab[c & 0xF];
		}
		ptr++;
	}

	return ptr;
}

/* print a buffer in hexa.
 * Print stopped if <bsize> is reached, or if no more place in the chunk.
 */
int dump_binary(struct buffer *out, const char *buf, int bsize)
{
	unsigned char c;
	int ptr = 0;

	while (ptr < bsize) {
		c = buf[ptr];

		if (out->data > out->size - 2)
			break;
		out->area[out->data++] = hextab[(c >> 4) & 0xF];
		out->area[out->data++] = hextab[c & 0xF];

		ptr++;
	}
	return ptr;
}

/* Appends into buffer <out> a hex dump of memory area <buf> for <len> bytes,
 * prepending each line with prefix <pfx>. The output is *not* initialized.
 * The output will not wrap pas the buffer's end so it is more optimal if the
 * caller makes sure the buffer is aligned first. A trailing zero will always
 * be appended (and not counted) if there is room for it. The caller must make
 * sure that the area is dumpable first. If <unsafe> is non-null, the memory
 * locations are checked first for being readable.
 */
void dump_hex(struct buffer *out, const char *pfx, const void *buf, int len, int unsafe)
{
	const unsigned char *d = buf;
	int i, j, start;

	d = (const unsigned char *)(((unsigned long)buf) & -16);
	start = ((unsigned long)buf) & 15;

	for (i = 0; i < start + len; i += 16) {
		chunk_appendf(out, (sizeof(void *) == 4) ? "%s%8p: " : "%s%16p: ", pfx, d + i);

		// 0: unchecked, 1: checked safe, 2: danger
		unsafe = !!unsafe;
		if (unsafe && !may_access(d + i))
			unsafe = 2;

		for (j = 0; j < 16; j++) {
			if ((i + j < start) || (i + j >= start + len))
				chunk_strcat(out, "'' ");
			else if (unsafe > 1)
				chunk_strcat(out, "** ");
			else
				chunk_appendf(out, "%02x ", d[i + j]);

			if (j == 7)
				chunk_strcat(out, "- ");
		}
		chunk_strcat(out, "  ");
		for (j = 0; j < 16; j++) {
			if ((i + j < start) || (i + j >= start + len))
				chunk_strcat(out, "'");
			else if (unsafe > 1)
				chunk_strcat(out, "*");
			else if (isprint((unsigned char)d[i + j]))
				chunk_appendf(out, "%c", d[i + j]);
			else
				chunk_strcat(out, ".");
		}
		chunk_strcat(out, "\n");
	}
}

/* dumps <pfx> followed by <n> bytes from <addr> in hex form into buffer <buf>
 * enclosed in brackets after the address itself, formatted on 14 chars
 * including the "0x" prefix. This is meant to be used as a prefix for code
 * areas. For example:
 *    "0x7f10b6557690 [48 c7 c0 0f 00 00 00 0f]"
 * It relies on may_access() to know if the bytes are dumpable, otherwise "--"
 * is emitted. A NULL <pfx> will be considered empty.
 */
void dump_addr_and_bytes(struct buffer *buf, const char *pfx, const void *addr, int n)
{
	int ok = 0;
	int i;

	chunk_appendf(buf, "%s%#14lx [", pfx ? pfx : "", (long)addr);

	for (i = 0; i < n; i++) {
		if (i == 0 || (((long)(addr + i) ^ (long)(addr)) & 4096))
			ok = may_access(addr + i);
		if (ok)
			chunk_appendf(buf, "%02x%s", ((uint8_t*)addr)[i], (i<n-1) ? " " : "]");
		else
			chunk_appendf(buf, "--%s", (i<n-1) ? " " : "]");
	}
}

/* print a line of text buffer (limited to 70 bytes) to <out>. The format is :
 * <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n>
 * which is 60 chars per line. Non-printable chars \t, \n, \r and \e are
 * encoded in C format. Other non-printable chars are encoded "\xHH". Original
 * lines are respected within the limit of 70 output chars. Lines that are
 * continuation of a previous truncated line begin with "+" instead of " "
 * after the offset. The new pointer is returned.
 */
int dump_text_line(struct buffer *out, const char *buf, int bsize, int len,
                   int *line, int ptr)
{
	int end;
	unsigned char c;

	end = out->data + 80;
	if (end > out->size)
		return ptr;

	chunk_appendf(out, "  %05d%c ", ptr, (ptr == *line) ? ' ' : '+');

	while (ptr < len && ptr < bsize) {
		c = buf[ptr];
		if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\') {
			if (out->data > end - 2)
				break;
			out->area[out->data++] = c;
		} else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') {
			if (out->data > end - 3)
				break;
			out->area[out->data++] = '\\';
			switch (c) {
			case '\t': c = 't'; break;
			case '\n': c = 'n'; break;
			case '\r': c = 'r'; break;
			case '\e': c = 'e'; break;
			case '\\': c = '\\'; break;
			}
			out->area[out->data++] = c;
		} else {
			if (out->data > end - 5)
				break;
			out->area[out->data++] = '\\';
			out->area[out->data++] = 'x';
			out->area[out->data++] = hextab[(c >> 4) & 0xF];
			out->area[out->data++] = hextab[c & 0xF];
		}
		if (buf[ptr++] == '\n') {
			/* we had a line break, let's return now */
			out->area[out->data++] = '\n';
			*line = ptr;
			return ptr;
		}
	}
	/* we have an incomplete line, we return it as-is */
	out->area[out->data++] = '\n';
	return ptr;
}

/* displays a <len> long memory block at <buf>, assuming first byte of <buf>
 * has address <baseaddr>. String <pfx> may be placed as a prefix in front of
 * each line. It may be NULL if unused. The output is emitted to file <out>.
 */
void debug_hexdump(FILE *out, const char *pfx, const char *buf,
                   unsigned int baseaddr, int len)
{
	unsigned int i;
	int b, j;

	for (i = 0; i < (len + (baseaddr & 15)); i += 16) {
		b = i - (baseaddr & 15);
		fprintf(out, "%s%08x: ", pfx ? pfx : "", i + (baseaddr & ~15));
		for (j = 0; j < 8; j++) {
			if (b + j >= 0 && b + j < len)
				fprintf(out, "%02x ", (unsigned char)buf[b + j]);
			else
				fprintf(out, "   ");
		}

		if (b + j >= 0 && b + j < len)
			fputc('-', out);
		else
			fputc(' ', out);

		for (j = 8; j < 16; j++) {
			if (b + j >= 0 && b + j < len)
				fprintf(out, " %02x", (unsigned char)buf[b + j]);
			else
				fprintf(out, "   ");
		}

		fprintf(out, "   ");
		for (j = 0; j < 16; j++) {
			if (b + j >= 0 && b + j < len) {
				if (isprint((unsigned char)buf[b + j]))
					fputc((unsigned char)buf[b + j], out);
				else
					fputc('.', out);
			}
			else
				fputc(' ', out);
		}
		fputc('\n', out);
	}
}

/* Tries to report the executable path name on platforms supporting this. If
 * not found or not possible, returns NULL.
 */
const char *get_exec_path()
{
	const char *ret = NULL;

#if defined(__linux__) && defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
	long execfn = getauxval(AT_EXECFN);

	if (execfn && execfn != ENOENT)
		ret = (const char *)execfn;
#elif defined(__FreeBSD__)
	Elf_Auxinfo *auxv;
	for (auxv = __elf_aux_vector; auxv->a_type != AT_NULL; ++auxv) {
		if (auxv->a_type == AT_EXECPATH) {
			ret = (const char *)auxv->a_un.a_ptr;
			break;
		}
	}
#elif defined(__NetBSD__)
	AuxInfo *auxv;
	for (auxv = _dlauxinfo(); auxv->a_type != AT_NULL; ++auxv) {
		if (auxv->a_type == AT_SUN_EXECNAME) {
			ret = (const char *)auxv->a_v;
			break;
		}
	}
#elif defined(__sun)
	ret = getexecname();
#endif
	return ret;
}

#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
/* calls dladdr() or dladdr1() on <addr> and <dli>. If dladdr1 is available,
 * also returns the symbol size in <size>, otherwise returns 0 there.
 */
static int dladdr_and_size(const void *addr, Dl_info *dli, size_t *size)
{
	int ret;
#if defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) // most detailed one
	const ElfW(Sym) *sym __attribute__((may_alias));

	ret = dladdr1(addr, dli, (void **)&sym, RTLD_DL_SYMENT);
	if (ret)
		*size = sym ? sym->st_size : 0;
#else
#if defined(__sun)
	ret = dladdr((void *)addr, dli);
#else
	ret = dladdr(addr, dli);
#endif
	*size = 0;
#endif
	return ret;
}

/* Sets build_is_static to true if we detect a static build. Some older glibcs
 * tend to crash inside dlsym() in static builds, but tests show that at least
 * dladdr() still works (and will fail to resolve anything of course). Thus we
 * try to determine if we're on a static build to avoid calling dlsym() in this
 * case.
 */
void check_if_static_build()
{
	Dl_info dli = { };
	size_t size = 0;

	/* Now let's try to be smarter */
	if (!dladdr_and_size(&main, &dli, &size))
		build_is_static = 1;
	else
		build_is_static = 0;
}

INITCALL0(STG_PREPARE, check_if_static_build);

/* Tries to retrieve the address of the first occurrence symbol <name>.
 * Note that NULL in return is not always an error as a symbol may have that
 * address in special situations.
 */
void *get_sym_curr_addr(const char *name)
{
	void *ptr = NULL;

#ifdef RTLD_DEFAULT
	if (!build_is_static)
		ptr = dlsym(RTLD_DEFAULT, name);
#endif
	return ptr;
}


/* Tries to retrieve the address of the next occurrence of symbol <name>
 * Note that NULL in return is not always an error as a symbol may have that
 * address in special situations.
 */
void *get_sym_next_addr(const char *name)
{
	void *ptr = NULL;

#ifdef RTLD_NEXT
	if (!build_is_static)
		ptr = dlsym(RTLD_NEXT, name);
#endif
	return ptr;
}

#else /* elf & linux & dl */

/* no possible resolving on other platforms at the moment */
void *get_sym_curr_addr(const char *name)
{
	return NULL;
}

void *get_sym_next_addr(const char *name)
{
	return NULL;
}

#endif /* elf & linux & dl */

/* Tries to append to buffer <buf> some indications about the symbol at address
 * <addr> using the following form:
 *   lib:+0xoffset              (unresolvable address from lib's base)
 *   main+0xoffset              (unresolvable address from main (+/-))
 *   lib:main+0xoffset          (unresolvable lib address from main (+/-))
 *   name                       (resolved exact exec address)
 *   lib:name                   (resolved exact lib address)
 *   name+0xoffset/0xsize       (resolved address within exec symbol)
 *   lib:name+0xoffset/0xsize   (resolved address within lib symbol)
 *
 * The file name (lib or executable) is limited to what lies between the last
 * '/' and the first following '.'. An optional prefix <pfx> is prepended before
 * the output if not null. The file is not dumped when it's the same as the one
 * that contains the "main" symbol, or when __ELF__ && USE_DL are not set.
 *
 * The symbol's base address is returned, or NULL when unresolved, in order to
 * allow the caller to match it against known ones.
 */
const void *resolve_sym_name(struct buffer *buf, const char *pfx, const void *addr)
{
	const struct {
		const void *func;
		const char *name;
	} fcts[] = {
		{ .func = process_stream, .name = "process_stream" },
		{ .func = task_run_applet, .name = "task_run_applet" },
		{ .func = sc_conn_io_cb, .name = "sc_conn_io_cb" },
		{ .func = sock_conn_iocb, .name = "sock_conn_iocb" },
		{ .func = dgram_fd_handler, .name = "dgram_fd_handler" },
		{ .func = listener_accept, .name = "listener_accept" },
		{ .func = manage_global_listener_queue, .name = "manage_global_listener_queue" },
		{ .func = poller_pipe_io_handler, .name = "poller_pipe_io_handler" },
		{ .func = mworker_accept_wrapper, .name = "mworker_accept_wrapper" },
		{ .func = session_expire_embryonic, .name = "session_expire_embryonic" },
#ifdef USE_THREAD
		{ .func = accept_queue_process, .name = "accept_queue_process" },
#endif
#ifdef USE_LUA
		{ .func = hlua_process_task, .name = "hlua_process_task" },
#endif
#ifdef SSL_MODE_ASYNC
		{ .func = ssl_async_fd_free, .name = "ssl_async_fd_free" },
		{ .func = ssl_async_fd_handler, .name = "ssl_async_fd_handler" },
#endif
#ifdef USE_QUIC
		{ .func = quic_conn_sock_fd_iocb, .name = "quic_conn_sock_fd_iocb" },
#endif
	};

#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
	Dl_info dli, dli_main;
	size_t size;
	const char *fname, *p;
#endif
	int i;

	if (pfx)
		chunk_appendf(buf, "%s", pfx);

	for (i = 0; i < sizeof(fcts) / sizeof(fcts[0]); i++) {
		if (addr == fcts[i].func) {
			chunk_appendf(buf, "%s", fcts[i].name);
			return addr;
		}
	}

#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
	/* Now let's try to be smarter */
	if (!dladdr_and_size(addr, &dli, &size))
		goto unknown;

	/* 1. prefix the library name if it's not the same object as the one
	 * that contains the main function. The name is picked between last '/'
	 * and first following '.'.
	 */
	if (!dladdr(main, &dli_main))
		dli_main.dli_fbase = NULL;

	if (dli_main.dli_fbase != dli.dli_fbase) {
		fname = dli.dli_fname;
		p = strrchr(fname, '/');
		if (p++)
			fname = p;
		p = strchr(fname, '.');
		if (!p)
			p = fname + strlen(fname);

		chunk_appendf(buf, "%.*s:", (int)(long)(p - fname), fname);
	}

	/* 2. symbol name */
	if (dli.dli_sname) {
		/* known, dump it and return symbol's address (exact or relative) */
		chunk_appendf(buf, "%s", dli.dli_sname);
		if (addr != dli.dli_saddr) {
			chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_saddr));
			if (size)
				chunk_appendf(buf, "/%#lx", (long)size);
		}
		return dli.dli_saddr;
	}
	else if (dli_main.dli_fbase != dli.dli_fbase) {
		/* unresolved symbol from a known library, report relative offset */
		chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_fbase));
		return NULL;
	}
#endif /* __ELF__ && !__linux__ || USE_DL */
 unknown:
	/* unresolved symbol from the main file, report relative offset to main */
	if ((void*)addr < (void*)main)
		chunk_appendf(buf, "main-%#lx", (long)((void*)main - addr));
	else
		chunk_appendf(buf, "main+%#lx", (long)(addr - (void*)main));
	return NULL;
}

/* On systems where this is supported, let's provide a possibility to enumerate
 * the list of object files. The output is appended to a buffer initialized by
 * the caller, with one name per line. A trailing zero is always emitted if data
 * are written. Only real objects are dumped (executable and .so libs). The
 * function returns non-zero if it dumps anything. These functions do not make
 * use of the trash so that it is possible for the caller to call them with the
 * trash on input. The output format may be platform-specific but at least one
 * version must emit raw object file names when argument is zero.
 */
#if defined(HA_HAVE_DUMP_LIBS)
# if defined(HA_HAVE_DL_ITERATE_PHDR)
/* the private <data> we pass below is a dump context initialized like this */
struct dl_dump_ctx {
	struct buffer *buf;
	int with_addr;
};

static int dl_dump_libs_cb(struct dl_phdr_info *info, size_t size, void *data)
{
	struct dl_dump_ctx *ctx = data;
	const char *fname;
	size_t p1, p2, beg, end;
	int idx;

	if (!info || !info->dlpi_name)
		goto leave;

	if (!*info->dlpi_name)
		fname = get_exec_path();
	else if (strchr(info->dlpi_name, '/'))
		fname = info->dlpi_name;
	else
		/* else it's a VDSO or similar and we're not interested */
		goto leave;

	if (!ctx->with_addr)
		goto dump_name;

	/* virtual addresses are relative to the load address and are per
	 * pseudo-header, so we have to scan them all to find the furthest
	 * one from the beginning. In this case we only dump entries if
	 * they have at least one section.
	 */
	beg = ~0; end = 0;
	for (idx = 0; idx < info->dlpi_phnum; idx++) {
		if (!info->dlpi_phdr[idx].p_memsz)
			continue;
		p1 = info->dlpi_phdr[idx].p_vaddr;
		if (p1 < beg)
			beg = p1;
		p2 = p1 + info->dlpi_phdr[idx].p_memsz - 1;
		if (p2 > end)
			end = p2;
	}

	if (!idx)
		goto leave;

	chunk_appendf(ctx->buf, "0x%012llx-0x%012llx (0x%07llx) ",
		      (ullong)info->dlpi_addr + beg,
		      (ullong)info->dlpi_addr + end,
		      (ullong)(end - beg + 1));
 dump_name:
	chunk_appendf(ctx->buf, "%s\n", fname);
 leave:
	return 0;
}

/* dumps lib names and optionally address ranges */
int dump_libs(struct buffer *output, int with_addr)
{
	struct dl_dump_ctx ctx = { .buf = output, .with_addr = with_addr };
	size_t old_data = output->data;

	dl_iterate_phdr(dl_dump_libs_cb, &ctx);
	return output->data != old_data;
}
# else // no DL_ITERATE_PHDR
#  error "No dump_libs() function for this platform"
# endif
#else // no HA_HAVE_DUMP_LIBS

/* unsupported platform: do not dump anything */
int dump_libs(struct buffer *output, int with_addr)
{
	return 0;
}

#endif // HA_HAVE_DUMP_LIBS

/*
 * Allocate an array of unsigned int with <nums> as address from <str> string
 * made of integer separated by dot characters.
 *
 * First, initializes the value with <sz> as address to 0 and initializes the
 * array with <nums> as address to NULL. Then allocates the array with <nums> as
 * address updating <sz> pointed value to the size of this array.
 *
 * Returns 1 if succeeded, 0 if not.
 */
int parse_dotted_uints(const char *str, unsigned int **nums, size_t *sz)
{
	unsigned int *n;
	const char *s, *end;

	s = str;
	*sz = 0;
	end = str + strlen(str);
	*nums = n = NULL;

	while (1) {
		unsigned int r;

		if (s >= end)
			break;

		r = read_uint(&s, end);
		/* Expected characters after having read an uint: '\0' or '.',
		 * if '.', must not be terminal.
		 */
		if (*s != '\0'&& (*s++ != '.' || s == end)) {
			free(n);
			return 0;
		}

		n = my_realloc2(n, (*sz + 1) * sizeof *n);
		if (!n)
			return 0;

		n[(*sz)++] = r;
	}
	*nums = n;

	return 1;
}


/* returns the number of bytes needed to encode <v> as a varint. An inline
 * version exists for use with constants (__varint_bytes()).
 */
int varint_bytes(uint64_t v)
{
	int len = 1;

	if (v >= 240) {
		v = (v - 240) >> 4;
		while (1) {
			len++;
			if (v < 128)
				break;
			v = (v - 128) >> 7;
		}
	}
	return len;
}


/* Random number generator state, see below */
static uint64_t ha_random_state[2] ALIGNED(2*sizeof(uint64_t));

/* This is a thread-safe implementation of xoroshiro128** described below:
 *     http://prng.di.unimi.it/
 * It features a 2^128 long sequence, returns 64 high-quality bits on each call,
 * supports fast jumps and passes all common quality tests. It is thread-safe,
 * uses a double-cas on 64-bit architectures supporting it, and falls back to a
 * local lock on other ones.
 */
uint64_t ha_random64()
{
	uint64_t old[2] ALIGNED(2*sizeof(uint64_t));
	uint64_t new[2] ALIGNED(2*sizeof(uint64_t));

#if defined(USE_THREAD) && (!defined(HA_CAS_IS_8B) || !defined(HA_HAVE_CAS_DW))
	static HA_SPINLOCK_T rand_lock;

	HA_SPIN_LOCK(OTHER_LOCK, &rand_lock);
#endif

	old[0] = ha_random_state[0];
	old[1] = ha_random_state[1];

#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
	do {
#endif
		new[1] = old[0] ^ old[1];
		new[0] = rotl64(old[0], 24) ^ new[1] ^ (new[1] << 16); // a, b
		new[1] = rotl64(new[1], 37); // c

#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
	} while (unlikely(!_HA_ATOMIC_DWCAS(ha_random_state, old, new)));
#else
	ha_random_state[0] = new[0];
	ha_random_state[1] = new[1];
#if defined(USE_THREAD)
	HA_SPIN_UNLOCK(OTHER_LOCK, &rand_lock);
#endif
#endif
	return rotl64(old[0] * 5, 7) * 9;
}

/* seeds the random state using up to <len> bytes from <seed>, starting with
 * the first non-zero byte.
 */
void ha_random_seed(const unsigned char *seed, size_t len)
{
	size_t pos;

	/* the seed must not be all zeroes, so we pre-fill it with alternating
	 * bits and overwrite part of them with the block starting at the first
	 * non-zero byte from the seed.
	 */
	memset(ha_random_state, 0x55, sizeof(ha_random_state));

	for (pos = 0; pos < len; pos++)
		if (seed[pos] != 0)
			break;

	if (pos == len)
		return;

	seed += pos;
	len -= pos;

	if (len > sizeof(ha_random_state))
		len = sizeof(ha_random_state);

	memcpy(ha_random_state, seed, len);
}

/* This causes a jump to (dist * 2^96) places in the pseudo-random sequence,
 * and is equivalent to calling ha_random64() as many times. It is used to
 * provide non-overlapping sequences of 2^96 numbers (~7*10^28) to up to 2^32
 * different generators (i.e. different processes after a fork). The <dist>
 * argument is the distance to jump to and is used in a loop so it rather not
 * be too large if the processing time is a concern.
 *
 * BEWARE: this function is NOT thread-safe and must not be called during
 * concurrent accesses to ha_random64().
 */
void ha_random_jump96(uint32_t dist)
{
	while (dist--) {
		uint64_t s0 = 0;
		uint64_t s1 = 0;
		int b;

		for (b = 0; b < 64; b++) {
			if ((0xd2a98b26625eee7bULL >> b) & 1) {
				s0 ^= ha_random_state[0];
				s1 ^= ha_random_state[1];
			}
			ha_random64();
		}

		for (b = 0; b < 64; b++) {
			if ((0xdddf9b1090aa7ac1ULL >> b) & 1) {
				s0 ^= ha_random_state[0];
				s1 ^= ha_random_state[1];
			}
			ha_random64();
		}
		ha_random_state[0] = s0;
		ha_random_state[1] = s1;
	}
}

/* Generates an RFC4122 UUID into chunk <output> which must be at least 37
 * bytes large.
 */
void ha_generate_uuid(struct buffer *output)
{
	uint32_t rnd[4];
	uint64_t last;

	last = ha_random64();
	rnd[0] = last;
	rnd[1] = last >> 32;

	last = ha_random64();
	rnd[2] = last;
	rnd[3] = last >> 32;

	chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx",
	             rnd[0],
	             rnd[1] & 0xFFFF,
	             ((rnd[1] >> 16u) & 0xFFF) | 0x4000,  // highest 4 bits indicate the uuid version
	             (rnd[2] & 0x3FFF) | 0x8000,  // the highest 2 bits indicate the UUID variant (10),
	             (long long)((rnd[2] >> 14u) | ((uint64_t) rnd[3] << 18u)) & 0xFFFFFFFFFFFFull);
}


/* only used by parse_line() below. It supports writing in place provided that
 * <in> is updated to the next location before calling it. In that case, the
 * char at <in> may be overwritten.
 */
#define EMIT_CHAR(x)						       \
	do {							       \
		char __c = (char)(x);				       \
		if ((opts & PARSE_OPT_INPLACE) && out+outpos > in)     \
			err |= PARSE_ERR_OVERLAP;		       \
		if (outpos >= outmax)				       \
			err |= PARSE_ERR_TOOLARGE;		       \
		if (!err)					       \
			out[outpos] = __c;			       \
		outpos++;					       \
	} while (0)

/* Parse <in>, copy it into <out> split into isolated words whose pointers
 * are put in <args>. If more than <outlen> bytes have to be emitted, the
 * extraneous ones are not emitted but <outlen> is updated so that the caller
 * knows how much to realloc. Similarly, <args> are not updated beyond <nbargs>
 * but the returned <nbargs> indicates how many were found. All trailing args
 * up to <nbargs> point to the trailing zero, and as long as <nbargs> is > 0,
 * it is guaranteed that at least one arg will point to the zero. It is safe
 * to call it with a NULL <args> if <nbargs> is 0.
 *
 * <out> may overlap with <in> provided that it never goes further, in which
 * case the parser will accept to perform in-place parsing and unquoting/
 * unescaping but only if environment variables do not lead to expansion that
 * causes overlapping, otherwise the input string being destroyed, the error
 * will not be recoverable. Note that even during out-of-place <in> will
 * experience temporary modifications in-place for variable resolution and must
 * be writable, and will also receive zeroes to delimit words when using
 * in-place copy. Parsing options <opts> taken from PARSE_OPT_*. Return value
 * is zero on success otherwise a bitwise-or of PARSE_ERR_*. Upon error, the
 * starting point of the first invalid character sequence or unmatched
 * quote/brace is reported in <errptr> if not NULL. When using in-place parsing
 * error reporting might be difficult since zeroes will have been inserted into
 * the string. One solution for the caller may consist in replacing all args
 * delimiters with spaces in this case.
 */
uint32_t parse_line(char *in, char *out, size_t *outlen, char **args, int *nbargs, uint32_t opts, const char **errptr)
{
	char *quote = NULL;
	char *brace = NULL;
	char *word_expand = NULL;
	unsigned char hex1, hex2;
	size_t outmax = *outlen;
	int argsmax = *nbargs - 1;
	size_t outpos = 0;
	int squote = 0;
	int dquote = 0;
	int arg = 0;
	uint32_t err = 0;

	*nbargs = 0;
	*outlen = 0;

	/* argsmax may be -1 here, protecting args[] from any write */
	if (arg < argsmax)
		args[arg] = out;

	while (1) {
		if (*in >= '-' && *in != '\\') {
			/* speedup: directly send all regular chars starting
			 * with '-', '.', '/', alnum etc...
			 */
			EMIT_CHAR(*in++);
			continue;
		}
		else if (*in == '\0' || *in == '\n' || *in == '\r') {
			/* end of line */
			break;
		}
		else if (*in == '#' && (opts & PARSE_OPT_SHARP) && !squote && !dquote) {
			/* comment */
			break;
		}
		else if (*in == '"' && !squote && (opts & PARSE_OPT_DQUOTE)) {  /* double quote outside single quotes */
			if (dquote) {
				dquote = 0;
				quote = NULL;
			}
			else {
				dquote = 1;
				quote = in;
			}
			in++;
			continue;
		}
		else if (*in == '\'' && !dquote && (opts & PARSE_OPT_SQUOTE)) { /* single quote outside double quotes */
			if (squote) {
				squote = 0;
				quote = NULL;
			}
			else {
				squote = 1;
				quote = in;
			}
			in++;
			continue;
		}
		else if (*in == '\\' && !squote && (opts & PARSE_OPT_BKSLASH)) {
			/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
			 * C equivalent value but only when they have a special meaning and within
			 * double quotes for some of them. Other combinations left unchanged (eg: \1).
			 */
			char tosend = *in;

			switch (in[1]) {
			case ' ':
			case '\\':
				tosend = in[1];
				in++;
				break;

			case 't':
				tosend = '\t';
				in++;
				break;

			case 'n':
				tosend = '\n';
				in++;
				break;

			case 'r':
				tosend = '\r';
				in++;
				break;

			case '#':
				/* escaping of "#" only if comments are supported */
				if (opts & PARSE_OPT_SHARP)
					in++;
				tosend = *in;
				break;

			case '\'':
				/* escaping of "'" only outside single quotes and only if single quotes are supported */
				if (opts & PARSE_OPT_SQUOTE && !squote)
					in++;
				tosend = *in;
				break;

			case '"':
				/* escaping of '"' only outside single quotes and only if double quotes are supported */
				if (opts & PARSE_OPT_DQUOTE && !squote)
					in++;
				tosend = *in;
				break;

			case '$':
				/* escaping of '$' only inside double quotes and only if env supported */
				if (opts & PARSE_OPT_ENV && dquote)
					in++;
				tosend = *in;
				break;

			case 'x':
				if (!ishex(in[2]) || !ishex(in[3])) {
					/* invalid or incomplete hex sequence */
					err |= PARSE_ERR_HEX;
					if (errptr)
						*errptr = in;
					goto leave;
				}
				hex1 = toupper((unsigned char)in[2]) - '0';
				hex2 = toupper((unsigned char)in[3]) - '0';
				if (hex1 > 9) hex1 -= 'A' - '9' - 1;
				if (hex2 > 9) hex2 -= 'A' - '9' - 1;
				tosend = (hex1 << 4) + hex2;
				in += 3;
				break;

			default:
				/* other combinations are not escape sequences */
				break;
			}

			in++;
			EMIT_CHAR(tosend);
		}
		else if (isspace((unsigned char)*in) && !squote && !dquote) {
			/* a non-escaped space is an argument separator */
			while (isspace((unsigned char)*in))
				in++;
			EMIT_CHAR(0);
			arg++;
			if (arg < argsmax)
				args[arg] = out + outpos;
			else
				err |= PARSE_ERR_TOOMANY;
		}
		else if (*in == '$' && (opts & PARSE_OPT_ENV) && (dquote || !(opts & PARSE_OPT_DQUOTE))) {
			/* environment variables are evaluated anywhere, or only
			 * inside double quotes if they are supported.
			 */
			char *var_name;
			char save_char;
			const char *value;

			in++;

			if (*in == '{')
				brace = in++;

			if (!isalpha((unsigned char)*in) && *in != '_' && *in != '.') {
				/* unacceptable character in variable name */
				err |= PARSE_ERR_VARNAME;
				if (errptr)
					*errptr = in;
				goto leave;
			}

			var_name = in;
			if (*in == '.')
				in++;
			while (isalnum((unsigned char)*in) || *in == '_')
				in++;

			save_char = *in;
			*in = '\0';
			if (unlikely(*var_name == '.')) {
				/* internal pseudo-variables */
				if (strcmp(var_name, ".LINE") == 0)
					value = ultoa(global.cfg_curr_line);
				else if (strcmp(var_name, ".FILE") == 0)
					value = global.cfg_curr_file;
				else if (strcmp(var_name, ".SECTION") == 0)
					value = global.cfg_curr_section;
				else {
					/* unsupported internal variable name */
					err |= PARSE_ERR_VARNAME;
					if (errptr)
						*errptr = var_name;
					goto leave;
				}
			} else {
				value = getenv(var_name);
			}
			*in = save_char;

			/* support for '[*]' sequence to force word expansion,
			 * only available inside braces */
			if (*in == '[' && brace && (opts & PARSE_OPT_WORD_EXPAND)) {
				word_expand = in++;

				if (*in++ != '*' || *in++ != ']') {
					err |= PARSE_ERR_WRONG_EXPAND;
					if (errptr)
						*errptr = word_expand;
					goto leave;
				}
			}

			if (brace) {
				if (*in == '-') {
					/* default value starts just after the '-' */
					if (!value)
						value = in + 1;

					while (*in && *in != '}')
						in++;
					if (!*in)
						goto no_brace;
					*in = 0; // terminate the default value
				}
				else if (*in != '}') {
				no_brace:
					/* unmatched brace */
					err |= PARSE_ERR_BRACE;
					if (errptr)
						*errptr = brace;
					goto leave;
				}

				/* brace found, skip it */
				in++;
				brace = NULL;
			}

			if (value) {
				while (*value) {
					/* expand as individual parameters on a space character */
					if (word_expand && isspace((unsigned char)*value)) {
						EMIT_CHAR(0);
						++arg;
						if (arg < argsmax)
							args[arg] = out + outpos;
						else
							err |= PARSE_ERR_TOOMANY;

						/* skip consecutive spaces */
						while (isspace((unsigned char)*++value))
							;
					} else {
						EMIT_CHAR(*value++);
					}
				}
			}
			else {
				/* An unmatched environment variable was parsed.
				 * Let's skip the trailing double-quote character
				 * and spaces.
				 */
				if (likely(*var_name != '.') && *in == '"') {
					in++;
					while (isspace((unsigned char)*in))
						in++;
					if (dquote) {
						dquote = 0;
						quote = NULL;
					}
				}
			}
			word_expand = NULL;
		}
		else {
			/* any other regular char */
			EMIT_CHAR(*in++);
		}
	}

	/* end of output string */
	EMIT_CHAR(0);

	/* Don't add an empty arg after trailing spaces. Note that args[arg]
	 * may contain some distances relative to NULL if <out> was NULL, or
	 * pointers beyond the end of <out> in case <outlen> is too short, thus
	 * we must not dereference it.
	 */
	if (arg < argsmax && args[arg] != out + outpos - 1)
		arg++;

	if (quote) {
		/* unmatched quote */
		err |= PARSE_ERR_QUOTE;
		if (errptr)
			*errptr = quote;
		goto leave;
	}
 leave:
	*nbargs = arg;
	*outlen = outpos;

	/* empty all trailing args by making them point to the trailing zero,
	 * at least the last one in any case.
	 */
	if (arg > argsmax)
		arg = argsmax;

	while (arg >= 0 && arg <= argsmax)
		args[arg++] = out + outpos - 1;

	return err;
}
#undef EMIT_CHAR

/* Use <path_fmt> and following arguments as a printf format to build up the
 * name of a file, whose first line will be read into the trash buffer. The
 * trailing CR and LF if any are stripped. On success, it sets trash.data to
 * the number of resulting bytes in the trash and returns this value. Otherwise
 * on failure it returns -1 if it could not build the path, -2 on file access
 * access error (e.g. permissions), or -3 on file read error. The trash is
 * always reset before proceeding. Too large lines are truncated to the size
 * of the trash.
 */
ssize_t read_line_to_trash(const char *path_fmt, ...)
{
	va_list args;
	FILE *file;
	ssize_t ret;

	chunk_reset(&trash);

	va_start(args, path_fmt);
	ret = vsnprintf(trash.area, trash.size, path_fmt, args);
	va_end(args);

	if (ret >= trash.size)
		return -1;

	file = fopen(trash.area, "r");
	if (!file)
		return -2;

	ret = -3;
	chunk_reset(&trash);
	if (fgets(trash.area, trash.size, file)) {
		trash.data = strlen(trash.area);
		while (trash.data &&
		       (trash.area[trash.data - 1] == '\r' ||
			trash.area[trash.data - 1] == '\n'))
			trash.data--;
		trash.area[trash.data] = 0;
		ret = trash.data; // success
	}

	fclose(file);
	return ret;
}

/* This is used to sanitize an input line that's about to be used for error reporting.
 * It will adjust <line> to print approximately <width> chars around <pos>, trying to
 * preserve the beginning, with leading or trailing "..." when the line is truncated.
 * If non-printable chars are present in the output. It returns the new offset <pos>
 * in the modified line. Non-printable characters are replaced with '?'. <width> must
 * be at least 6 to support two "..." otherwise the result is undefined. The line
 * itself must have at least 7 chars allocated for the same reason.
 */
size_t sanitize_for_printing(char *line, size_t pos, size_t width)
{
	size_t shift = 0;
	char *out = line;
	char *in = line;
	char *end = line + width;

	if (pos >= width) {
		/* if we have to shift, we'll be out of context, so let's
		 * try to put <pos> at the center of width.
		 */
		shift = pos - width / 2;
		in += shift + 3;
		end = out + width - 3;
		out[0] = out[1] = out[2] = '.';
		out += 3;
	}

	while (out < end && *in) {
		if (isspace((unsigned char)*in))
			*out++ = ' ';
		else if (isprint((unsigned char)*in))
			*out++ = *in;
		else
			*out++ = '?';
		in++;
	}

	if (end < line + width) {
		out[0] = out[1] = out[2] = '.';
		out += 3;
	}

	*out++ = 0;
	return pos - shift;
}

/* Update array <fp> with the fingerprint of word <word> by counting the
 * transitions between characters. <fp> is a 1024-entries array indexed as
 * 32*from+to. Positions for 'from' and 'to' are:
 *   1..26=letter, 27=digit, 28=other/begin/end.
 * Row "from=0" is used to mark the character's presence. Others unused.
 */
void update_word_fingerprint(uint8_t *fp, const char *word)
{
	const char *p;
	int from, to;
	int c;

	from = 28; // begin
	for (p = word; *p; p++) {
		c = tolower(*p);
		switch(c) {
		case 'a'...'z': to = c - 'a' + 1; break;
		case 'A'...'Z': to = tolower(c) - 'a' + 1; break;
		case '0'...'9': to = 27; break;
		default:        to = 28; break;
		}
		fp[to] = 1;
		fp[32 * from + to]++;
		from = to;
	}
	to = 28; // end
	fp[32 * from + to]++;
}

/* This function hashes a word, scramble is the anonymizing key, returns
 * the hashed word when the key (scramble) != 0, else returns the word.
 * This function can be called NB_L_HASH_WORD times in a row, don't call
 * it if you called it more than NB_L_HASH_WORD.
 */
const char *hash_anon(uint32_t scramble, const char *string2hash, const char *prefix, const char *suffix)
{
	index_hash++;
	if (index_hash == NB_L_HASH_WORD)
		index_hash = 0;

	/* don't hash empty strings */
	if (!string2hash[0] || (string2hash[0] == ' ' && string2hash[1] == 0))
		return string2hash;

	if (scramble != 0) {
		snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "%s%06x%s",
			 prefix, HA_ANON(scramble, string2hash, strlen(string2hash)), suffix);
		return hash_word[index_hash];
	}
	else
		return string2hash;
}

/* This function hashes or not an ip address ipstring, scramble is the anonymizing
 * key, returns the hashed ip with his port or ipstring when there is nothing to hash.
 * Put hasport equal 0 to point out ipstring has no port, else put an other int.
 * Without port, return a simple hash or ipstring.
 */
const char *hash_ipanon(uint32_t scramble, char *ipstring, int hasport)
{
	char *errmsg = NULL;
	struct sockaddr_storage *sa;
	struct sockaddr_storage ss;
	char addr[46];
	int port;

	index_hash++;
        if (index_hash == NB_L_HASH_WORD) {
                index_hash = 0;
	}

	if (scramble == 0) {
		return ipstring;
	}
	if (strcmp(ipstring, "localhost") == 0 ||
	    strcmp(ipstring, "stdout") == 0 ||
	    strcmp(ipstring, "stderr") == 0 ||
	    strncmp(ipstring, "fd@", 3) == 0 ||
	    strncmp(ipstring, "sockpair@", 9) == 0) {
		return ipstring;
	}
	else {
		if (hasport == 0) {
			memset(&ss, 0, sizeof(ss));
			if (str2ip2(ipstring, &ss, 1) == NULL) {
				return HA_ANON_STR(scramble, ipstring);
			}
			sa = &ss;
		}
		else {
			sa = str2sa_range(ipstring, NULL, NULL, NULL, NULL, NULL, NULL, &errmsg, NULL, NULL,
					  PA_O_PORT_OK | PA_O_STREAM | PA_O_DGRAM | PA_O_XPRT | PA_O_CONNECT |
					  PA_O_PORT_RANGE | PA_O_PORT_OFS | PA_O_RESOLVE);
			if (sa == NULL) {
				return HA_ANON_STR(scramble, ipstring);
			}
		}
		addr_to_str(sa, addr, sizeof(addr));
		port = get_host_port(sa);

		switch(sa->ss_family) {
			case AF_INET:
				if (strncmp(addr, "127", 3) == 0 || strncmp(addr, "255", 3) == 0 || strncmp(addr, "0", 1) == 0) {
					return ipstring;
				}
				else {
					if (port != 0) {
						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV4(%06x):%d", HA_ANON(scramble, addr, strlen(addr)), port);
						return hash_word[index_hash];
					}
					else {
						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV4(%06x)", HA_ANON(scramble, addr, strlen(addr)));
						return hash_word[index_hash];
					}
				}
				break;

			case AF_INET6:
				if (strcmp(addr, "::1") == 0) {
					return ipstring;
				}
				else {
					if (port != 0) {
						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV6(%06x):%d", HA_ANON(scramble, addr, strlen(addr)), port);
						return hash_word[index_hash];
					}
					else {
						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV6(%06x)", HA_ANON(scramble, addr, strlen(addr)));
						return hash_word[index_hash];
					}
				}
				break;

			case AF_UNIX:
				return HA_ANON_STR(scramble, ipstring);
				break;

			default:
				return ipstring;
				break;
		};
	}
	return ipstring;
}

/* Initialize array <fp> with the fingerprint of word <word> by counting the
 * transitions between characters. <fp> is a 1024-entries array indexed as
 * 32*from+to. Positions for 'from' and 'to' are:
 *   0..25=letter, 26=digit, 27=other, 28=begin, 29=end, others unused.
 */
void make_word_fingerprint(uint8_t *fp, const char *word)
{
	memset(fp, 0, 1024);
	update_word_fingerprint(fp, word);
}

/* Return the distance between two word fingerprints created by function
 * make_word_fingerprint(). It's a positive integer calculated as the sum of
 * the differences between each location.
 */
int word_fingerprint_distance(const uint8_t *fp1, const uint8_t *fp2)
{
	int i, k, dist = 0;

	for (i = 0; i < 1024; i++) {
		k = (int)fp1[i] - (int)fp2[i];
		dist += abs(k);
	}
	return dist;
}

/*
 * This function compares the loaded openssl version with a string <version>
 * This function use the same return code as compare_current_version:
 *
 *  -1 : the version in argument is older than the current openssl version
 *   0 : the version in argument is the same as the current openssl version
 *   1 : the version in argument is newer than the current openssl version
 *
 * Or some errors:
 *  -2 : openssl is not available on this process
 *  -3 : the version in argument is not parsable
 */
int openssl_compare_current_version(const char *version)
{
#ifdef USE_OPENSSL
	int numversion;

	numversion = openssl_version_parser(version);
	if (numversion == 0)
		return -3;

	if (numversion < OPENSSL_VERSION_NUMBER)
		return -1;
	else if (numversion > OPENSSL_VERSION_NUMBER)
		return 1;
	else
		return 0;
#else
	return -2;
#endif
}

/*
 * This function compares the loaded openssl name with a string <name>
 * This function returns 0 if the OpenSSL name starts like the passed parameter,
 * 1 otherwise.
 */
int openssl_compare_current_name(const char *name)
{
#ifdef USE_OPENSSL
	int name_len = 0;
	const char *openssl_version = OpenSSL_version(OPENSSL_VERSION);

	if (name) {
		name_len = strlen(name);
		if (strlen(name) <= strlen(openssl_version))
			return strncmp(openssl_version, name, name_len);
	}
#endif
	return 1;
}

#if defined(RTLD_DEFAULT) || defined(RTLD_NEXT)
/* redefine dlopen() so that we can detect unexpected replacement of some
 * critical symbols, typically init/alloc/free functions coming from alternate
 * libraries. When called, a tainted flag is set (TAINTED_SHARED_LIBS).
 * It's important to understand that the dynamic linker will present the
 * first loaded of each symbol to all libs, so that if haproxy is linked
 * with a new lib that uses a static inline or a #define to replace an old
 * function, and a dependency was linked against an older version of that
 * lib that had a function there, that lib would use all of the newer
 * versions of the functions that are already loaded in haproxy, except
 * for that unique function which would continue to be the old one. This
 * creates all sort of problems when init code allocates smaller structs
 * than required for example but uses new functions on them, etc. Thus what
 * we do here is to try to detect API consistency: we take a fingerprint of
 * a number of known functions, and verify that if they change in a loaded
 * library, either there all appeared or all disappeared, but not partially.
 * We can check up to 64 symbols that belong to individual groups that are
 * checked together.
 */
void *dlopen(const char *filename, int flags)
{
	static void *(*_dlopen)(const char *filename, int flags);
	struct {
		const char *name;
		uint64_t bit, grp;
		void *curr, *next;
	} check_syms[] = {
		/* openssl's libcrypto checks: group bits 0x1f */
		{ .name="OPENSSL_init",                  .bit = 0x0000000000000001, .grp = 0x000000000000001f, }, // openssl 1.0 / 1.1 / 3.0
		{ .name="OPENSSL_init_crypto",           .bit = 0x0000000000000002, .grp = 0x000000000000001f, }, // openssl 1.1 / 3.0
		{ .name="ENGINE_init",                   .bit = 0x0000000000000004, .grp = 0x000000000000001f, }, // openssl 1.x / 3.x with engine
		{ .name="EVP_CIPHER_CTX_init",           .bit = 0x0000000000000008, .grp = 0x000000000000001f, }, // openssl 1.0
		{ .name="HMAC_Init",                     .bit = 0x0000000000000010, .grp = 0x000000000000001f, }, // openssl 1.x

		/* openssl's libssl checks: group bits 0x3e0 */
		{ .name="OPENSSL_init_ssl",              .bit = 0x0000000000000020, .grp = 0x00000000000003e0, }, // openssl 1.1 / 3.0
		{ .name="SSL_library_init",              .bit = 0x0000000000000040, .grp = 0x00000000000003e0, }, // openssl 1.x
		{ .name="SSL_is_quic",                   .bit = 0x0000000000000080, .grp = 0x00000000000003e0, }, // quictls
		{ .name="SSL_CTX_new_ex",                .bit = 0x0000000000000100, .grp = 0x00000000000003e0, }, // openssl 3.x
		{ .name="SSL_CTX_get0_security_ex_data", .bit = 0x0000000000000200, .grp = 0x00000000000003e0, }, // openssl 1.x / 3.x

		/* insert only above, 0 must be the last one */
		{ 0 },
	};
	const char *trace;
	uint64_t own_fp, lib_fp; // symbols fingerprints
	void *addr;
	void *ret;
	int sym = 0;

	if (!_dlopen) {
		_dlopen = get_sym_next_addr("dlopen");
		if (!_dlopen || _dlopen == dlopen) {
			_dlopen = NULL;
			return NULL;
		}
	}

	/* save a few pointers to critical symbols. We keep a copy of both the
	 * current and the next value, because we might already have replaced
	 * some of them in an inconsistent way (i.e. not all), and we're only
	 * interested in verifying that a loaded library doesn't come with a
	 * completely different definition that would be incompatible. We'll
	 * keep a fingerprint of our own symbols.
	 */
	own_fp = 0;
	for (sym = 0; check_syms[sym].name; sym++) {
		check_syms[sym].curr = get_sym_curr_addr(check_syms[sym].name);
		check_syms[sym].next = get_sym_next_addr(check_syms[sym].name);
		if (check_syms[sym].curr || check_syms[sym].next)
			own_fp |= check_syms[sym].bit;
	}

	/* now open the requested lib */
	ret = _dlopen(filename, flags);
	if (!ret)
		return ret;

	mark_tainted(TAINTED_SHARED_LIBS);

	/* and check that critical symbols didn't change */
	lib_fp = 0;
	for (sym = 0; check_syms[sym].name; sym++) {
		addr = dlsym(ret, check_syms[sym].name);
		if (addr)
			lib_fp |= check_syms[sym].bit;
	}

	if (lib_fp != own_fp) {
		/* let's check what changed:  */
		uint64_t mask = 0;

		for (sym = 0; check_syms[sym].name; sym++) {
			mask = check_syms[sym].grp;

			/* new group of symbols. If they all appeared together
			 * their use will be consistent. If none appears, it's
			 * just that the lib doesn't use them. If some appear
			 * or disappear, it means the lib relies on a different
			 * dependency and will end up with a mix.
			 */
			if (!(own_fp & mask) || !(lib_fp & mask) ||
			    (own_fp & mask) == (lib_fp & mask))
				continue;

			/* let's report a symbol that really changes */
			if (!((own_fp ^ lib_fp) & check_syms[sym].bit))
				continue;

			/* OK it's clear that this symbol was redefined */
			mark_tainted(TAINTED_REDEFINITION);

			trace = hlua_show_current_location("\n    ");
			ha_warning("dlopen(): shared library '%s' brings a different and inconsistent definition of symbol '%s'. The process cannot be trusted anymore!%s%s\n",
				   filename, check_syms[sym].name,
				   trace ? " Suspected call location: \n    " : "",
				   trace ? trace : "");
		}
	}

	return ret;
}
#endif

static int init_tools_per_thread()
{
	/* Let's make each thread start from a different position */
	statistical_prng_state += ha_random32();
	if (!statistical_prng_state)
		statistical_prng_state++;
	return 1;
}
REGISTER_PER_THREAD_INIT(init_tools_per_thread);

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */