summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/2geom/src/2geom/sbasis-math.cpp
blob: 547f9afd6cc65441c33a2b2917212f2a1898edfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 *  sbasis-math.cpp - some std functions to work with (pw)s-basis
 *
 *  Authors:
 *   Jean-Francois Barraud
 *
 * Copyright (C) 2006-2007 authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

//this a first try to define sqrt, cos, sin, etc...
//TODO: define a truncated compose(sb,sb, order) and extend it to pw<sb>.
//TODO: in all these functions, compute 'order' according to 'tol'.

#include <2geom/d2.h>
#include <2geom/sbasis-math.h>
#include <stdio.h>
#include <math.h>
//#define ZERO 1e-3


namespace Geom {


//-|x|-----------------------------------------------------------------------
/** Return the absolute value of a function pointwise.
 \param f function
*/
Piecewise<SBasis> abs(SBasis const &f){
    return abs(Piecewise<SBasis>(f));
}
/** Return the absolute value of a function pointwise.
 \param f function
*/
Piecewise<SBasis> abs(Piecewise<SBasis> const &f){
    Piecewise<SBasis> absf=partition(f,roots(f));
    for (unsigned i=0; i<absf.size(); i++){
        if (absf.segs[i](.5)<0) absf.segs[i]*=-1;
    }
    return absf;
}

//-max(x,y), min(x,y)--------------------------------------------------------
/** Return the greater of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> max(          SBasis  const &f,           SBasis  const &g){
    return max(Piecewise<SBasis>(f),Piecewise<SBasis>(g));
}
/** Return the greater of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> max(Piecewise<SBasis> const &f,           SBasis  const &g){
    return max(f,Piecewise<SBasis>(g));
}
/** Return the greater of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> max(          SBasis  const &f, Piecewise<SBasis> const &g){
    return max(Piecewise<SBasis>(f),g);
}
/** Return the greater of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> max(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){
    Piecewise<SBasis> max=partition(f,roots(f-g));
    Piecewise<SBasis> gg =partition(g,max.cuts);
    max = partition(max,gg.cuts);
    for (unsigned i=0; i<max.size(); i++){
        if (max.segs[i](.5)<gg.segs[i](.5)) max.segs[i]=gg.segs[i];
    }
    return max;
}

/** Return the more negative of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> 
min(          SBasis  const &f,           SBasis  const &g){ return -max(-f,-g); }
/** Return the more negative of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> 
min(Piecewise<SBasis> const &f,           SBasis  const &g){ return -max(-f,-g); }
/** Return the more negative of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> 
min(          SBasis  const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }
/** Return the more negative of the two functions pointwise.
 \param f, g two functions
*/
Piecewise<SBasis> 
min(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }


//-sign(x)---------------------------------------------------------------
/** Return the sign of the two functions pointwise.
 \param f function
*/
Piecewise<SBasis> signSb(SBasis const &f){
    return signSb(Piecewise<SBasis>(f));
}
/** Return the sign of the two functions pointwise.
 \param f function
*/
Piecewise<SBasis> signSb(Piecewise<SBasis> const &f){
    Piecewise<SBasis> sign=partition(f,roots(f));
    for (unsigned i=0; i<sign.size(); i++){
        sign.segs[i] = (sign.segs[i](.5)<0)? Linear(-1.):Linear(1.);
    }
    return sign;
}

//-Sqrt----------------------------------------------------------
static Piecewise<SBasis> sqrt_internal(SBasis const &f, 
                                    double tol, 
                                    int order){
    SBasis sqrtf;
    if(f.isZero() || order == 0){
        return Piecewise<SBasis>(sqrtf);
    }
    if (f.at0()<-tol*tol && f.at1()<-tol*tol){
        return sqrt_internal(-f,tol,order);
    }else if (f.at0()>tol*tol && f.at1()>tol*tol){
        sqrtf.resize(order+1, Linear(0,0));
        sqrtf[0] = Linear(std::sqrt(f[0][0]), std::sqrt(f[0][1]));
        SBasis r = f - multiply(sqrtf, sqrtf); // remainder    
        for(unsigned i = 1; int(i) <= order && i<r.size(); i++) {
            Linear ci(r[i][0]/(2*sqrtf[0][0]), r[i][1]/(2*sqrtf[0][1]));
            SBasis cisi = shift(ci, i);
            r -= multiply(shift((sqrtf*2 + cisi), i), SBasis(ci));
            r.truncate(order+1);
            sqrtf[i] = ci;
            if(r.tailError(i) == 0) // if exact
                break;
        }
    }else{
        sqrtf = Linear(std::sqrt(fabs(f.at0())), std::sqrt(fabs(f.at1())));
    }

    double err = (f - multiply(sqrtf, sqrtf)).tailError(0);
    if (err<tol){
        return Piecewise<SBasis>(sqrtf);
    }

    Piecewise<SBasis> sqrtf0,sqrtf1;
    sqrtf0 = sqrt_internal(compose(f,Linear(0.,.5)),tol,order);
    sqrtf1 = sqrt_internal(compose(f,Linear(.5,1.)),tol,order);
    sqrtf0.setDomain(Interval(0.,.5));
    sqrtf1.setDomain(Interval(.5,1.));
    sqrtf0.concat(sqrtf1);
    return sqrtf0;
}

/** Compute the sqrt of a function.
 \param f function
*/
Piecewise<SBasis> sqrt(SBasis const &f, double tol, int order){
    return sqrt(max(f,Linear(tol*tol)),tol,order);
}

/** Compute the sqrt of a function.
 \param f function
*/
Piecewise<SBasis> sqrt(Piecewise<SBasis> const &f, double tol, int order){
    Piecewise<SBasis> result;
    Piecewise<SBasis> zero = Piecewise<SBasis>(Linear(tol*tol));
    zero.setDomain(f.domain());
    Piecewise<SBasis> ff=max(f,zero);

    for (unsigned i=0; i<ff.size(); i++){
        Piecewise<SBasis> sqrtfi = sqrt_internal(ff.segs[i],tol,order);
        sqrtfi.setDomain(Interval(ff.cuts[i],ff.cuts[i+1]));
        result.concat(sqrtfi);
    }
    return result;
}

//-Yet another sin/cos--------------------------------------------------------------

/** Compute the sine of a function.
 \param f function
 \param tol maximum error
 \param order maximum degree polynomial to use
*/
Piecewise<SBasis> sin(          SBasis  const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));}
/** Compute the sine of a function.
 \param f function
 \param tol maximum error
 \param order maximum degree polynomial to use
*/
Piecewise<SBasis> sin(Piecewise<SBasis> const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));}

/** Compute the cosine of a function.
 \param f function
 \param tol maximum error
 \param order maximum degree polynomial to use
*/
Piecewise<SBasis> cos(Piecewise<SBasis> const &f, double tol, int order){
    Piecewise<SBasis> result;
    for (unsigned i=0; i<f.size(); i++){
        Piecewise<SBasis> cosfi = cos(f.segs[i],tol,order);
        cosfi.setDomain(Interval(f.cuts[i],f.cuts[i+1]));
        result.concat(cosfi);
    }
    return result;
}

/** Compute the cosine of a function.
 \param f function
 \param tol maximum error
 \param order maximum degree polynomial to use
*/
Piecewise<SBasis> cos(          SBasis  const &f, double tol, int order){
    double alpha = (f.at0()+f.at1())/2.;
    SBasis x = f-alpha;
    double d = x.tailError(0),err=1;
    //estimate cos(x)-sum_0^order (-1)^k x^2k/2k! by the first neglicted term
    for (int i=1; i<=2*order; i++) err*=d/i;
    
    if (err<tol){
        SBasis xk=Linear(1), c=Linear(1), s=Linear(0);
        for (int k=1; k<=2*order; k+=2){
            xk*=x/k;
            //take also truncature errors into account...
            err+=xk.tailError(order);
            xk.truncate(order);
            s+=xk;
            xk*=-x/(k+1);
            //take also truncature errors into account...
            err+=xk.tailError(order);
            xk.truncate(order);
            c+=xk;
        }
        if (err<tol){
            return Piecewise<SBasis>(std::cos(alpha)*c-std::sin(alpha)*s);
        }
    }
    Piecewise<SBasis> c0,c1;
    c0 = cos(compose(f,Linear(0.,.5)),tol,order);
    c1 = cos(compose(f,Linear(.5,1.)),tol,order);
    c0.setDomain(Interval(0.,.5));
    c1.setDomain(Interval(.5,1.));
    c0.concat(c1);
    return c0;
}

//--1/x------------------------------------------------------------
//TODO: this implementation is just wrong. Remove or redo!

void truncateResult(Piecewise<SBasis> &f, int order){
    if (order>=0){
        for (auto & seg : f.segs){
            seg.truncate(order);
        }
    }
}

Piecewise<SBasis> reciprocalOnDomain(Interval range, double tol){
    Piecewise<SBasis> reciprocal_fn;
    //TODO: deduce R from tol...
    double R=2.;
    SBasis reciprocal1_R=reciprocal(Linear(1,R),3);
    double a=range.min(), b=range.max();
    if (a*b<0){
        b=std::max(fabs(a),fabs(b));
        a=0;
    }else if (b<0){
        a=-range.max();
        b=-range.min();
    }

    if (a<=tol){
        reciprocal_fn.push_cut(0);
        int i0=(int) floor(std::log(tol)/std::log(R));
        a = std::pow(R,i0);
        reciprocal_fn.push(Linear(1/a),a);
    }else{
        int i0=(int) floor(std::log(a)/std::log(R));
        a = std::pow(R,i0);
        reciprocal_fn.cuts.push_back(a);
    }  

    while (a<b){
        reciprocal_fn.push(reciprocal1_R/a,R*a);
        a*=R;
    }
    if (range.min()<0 || range.max()<0){
        Piecewise<SBasis>reciprocal_fn_neg;
        //TODO: define reverse(pw<sb>);
        reciprocal_fn_neg.cuts.push_back(-reciprocal_fn.cuts.back());
        for (unsigned i=0; i<reciprocal_fn.size(); i++){
            int idx=reciprocal_fn.segs.size()-1-i;
            reciprocal_fn_neg.push_seg(-reverse(reciprocal_fn.segs.at(idx)));
            reciprocal_fn_neg.push_cut(-reciprocal_fn.cuts.at(idx));
        }
        if (range.max()>0){
            reciprocal_fn_neg.concat(reciprocal_fn);
        }
        reciprocal_fn=reciprocal_fn_neg;
    }

    return(reciprocal_fn);
}

Piecewise<SBasis> reciprocal(SBasis const &f, double tol, int order){
    Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol);
    Piecewise<SBasis> result=compose(reciprocal_fn,f);
    truncateResult(result,order);
    return(result);
}
Piecewise<SBasis> reciprocal(Piecewise<SBasis> const &f, double tol, int order){
    Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol);
    Piecewise<SBasis> result=compose(reciprocal_fn,f);
    truncateResult(result,order);
    return(result);
}

/**
 * \brief Returns a Piecewise SBasis with prescribed values at prescribed times.
 * 
 * \param times: vector of times at which the values are given. Should be sorted in increasing order.
 * \param values: vector of prescribed values. Should have the same size as times and be sorted accordingly.
 * \param smoothness: (defaults to 1) regularity class of the result: 0=piecewise linear, 1=continuous derivative, etc...
 */
Piecewise<SBasis> interpolate(std::vector<double> times, std::vector<double> values, unsigned smoothness){
    assert ( values.size() == times.size() );
    if ( values.empty() ) return Piecewise<SBasis>();
    if ( values.size() == 1 ) return Piecewise<SBasis>(values[0]);//what about time??

    SBasis sk = shift(Linear(1.),smoothness);
    SBasis bump_in = integral(sk);
    bump_in -= bump_in.at0();
    bump_in /= bump_in.at1();
    SBasis bump_out = reverse( bump_in );
    
    Piecewise<SBasis> result;
    result.cuts.push_back(times[0]);
    for (unsigned i = 0; i<values.size()-1; i++){
        result.push(bump_out*values[i]+bump_in*values[i+1],times[i+1]);
    }
    return result;
}

}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :