1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
|
/* fit.c: turn a bitmap representation of a curve into a list of splines.
Some of the ideas, but not the code, comes from the Phoenix thesis.
See README for the reference.
The code was partially derived from limn.
Copyright (C) 1992 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif /* Def: HAVE_CONFIG_H */
#include "autotrace.h"
#include "fit.h"
#include "logreport.h"
#include "spline.h"
#include "vector.h"
#include "curve.h"
#include "pxl-outline.h"
#include "epsilon-equal.h"
#include "xstd.h"
#include <math.h>
#ifndef FLT_MAX
#include <limits.h>
#include <float.h>
#endif
#ifndef FLT_MIN
#include <limits.h>
#include <float.h>
#endif
#include <string.h>
#include <assert.h>
#define SQUARE(x) ((x) * (x))
#define CUBE(x) ((x) * (x) * (x))
/* We need to manipulate lists of array indices. */
typedef struct index_list {
unsigned *data;
unsigned length;
} index_list_type;
/* The usual accessor macros. */
#define GET_INDEX(i_l, n) ((i_l).data[n])
#define INDEX_LIST_LENGTH(i_l) ((i_l).length)
#define GET_LAST_INDEX(i_l) ((i_l).data[INDEX_LIST_LENGTH (i_l) - 1])
static void append_index(index_list_type *, unsigned);
static void free_index_list(index_list_type *);
static index_list_type new_index_list(void);
static void remove_adjacent_corners(index_list_type *, unsigned, gboolean, at_exception_type * exception);
static void change_bad_lines(spline_list_type *, fitting_opts_type *);
static void filter(curve_type, fitting_opts_type *);
static void find_vectors(unsigned, pixel_outline_type, vector_type *, vector_type *, unsigned);
static index_list_type find_corners(pixel_outline_type, fitting_opts_type *, at_exception_type * exception);
static gfloat find_error(curve_type, spline_type, unsigned *, at_exception_type * exception);
static vector_type find_half_tangent(curve_type, gboolean start, unsigned *, unsigned);
static void find_tangent(curve_type, gboolean, gboolean, unsigned);
static spline_type fit_one_spline(curve_type, at_exception_type * exception);
static spline_list_type *fit_curve(curve_type, fitting_opts_type *, at_exception_type * exception);
static spline_list_type fit_curve_list(curve_list_type, fitting_opts_type *, at_distance_map *, at_exception_type * exception);
static spline_list_type *fit_with_least_squares(curve_type, fitting_opts_type *, at_exception_type * exception);
static spline_list_type *fit_with_line(curve_type);
static void remove_knee_points(curve_type, gboolean);
static void set_initial_parameter_values(curve_type);
static gboolean spline_linear_enough(spline_type *, curve_type, fitting_opts_type *);
static curve_list_array_type split_at_corners(pixel_outline_list_type, fitting_opts_type *, at_exception_type * exception);
static at_coord real_to_int_coord(at_real_coord);
static gfloat distance(at_real_coord, at_real_coord);
/* Get a new set of fitting options */
fitting_opts_type new_fitting_opts(void)
{
fitting_opts_type fitting_opts;
fitting_opts.background_color = NULL;
fitting_opts.charcode = 0;
fitting_opts.color_count = 0;
fitting_opts.corner_always_threshold = (gfloat) 60.0;
fitting_opts.corner_surround = 4;
fitting_opts.corner_threshold = (gfloat) 100.0;
fitting_opts.error_threshold = (gfloat) 2.0;
fitting_opts.filter_iterations = 4;
fitting_opts.line_reversion_threshold = (gfloat) .01;
fitting_opts.line_threshold = (gfloat) 1.0;
fitting_opts.remove_adjacent_corners = FALSE;
fitting_opts.tangent_surround = 3;
fitting_opts.despeckle_level = 0;
fitting_opts.despeckle_tightness = 2.0;
fitting_opts.noise_removal = (gfloat) 0.99;
fitting_opts.centerline = FALSE;
fitting_opts.preserve_width = FALSE;
fitting_opts.width_weight_factor = 6.0;
return (fitting_opts);
}
/* The top-level call that transforms the list of pixels in the outlines
of the original character to a list of spline lists fitted to those
pixels. */
spline_list_array_type fitted_splines(pixel_outline_list_type pixel_outline_list, fitting_opts_type * fitting_opts, at_distance_map * dist, unsigned short width, unsigned short height, at_exception_type * exception, at_progress_func notify_progress, gpointer progress_data, at_testcancel_func test_cancel, gpointer testcancel_data)
{
unsigned this_list;
spline_list_array_type char_splines = new_spline_list_array();
curve_list_array_type curve_array = split_at_corners(pixel_outline_list,
fitting_opts,
exception);
char_splines.centerline = fitting_opts->centerline;
char_splines.preserve_width = fitting_opts->preserve_width;
char_splines.width_weight_factor = fitting_opts->width_weight_factor;
if (fitting_opts->background_color)
char_splines.background_color = at_color_copy(fitting_opts->background_color);
else
char_splines.background_color = NULL;
/* Set dummy values. Real value is set in upper context. */
char_splines.width = width;
char_splines.height = height;
for (this_list = 0; this_list < CURVE_LIST_ARRAY_LENGTH(curve_array); this_list++) {
spline_list_type curve_list_splines;
curve_list_type curves = CURVE_LIST_ARRAY_ELT(curve_array, this_list);
if (notify_progress)
notify_progress((((gfloat) this_list) / ((gfloat) CURVE_LIST_ARRAY_LENGTH(curve_array) * (gfloat) 3.0) + (gfloat) 0.333), progress_data);
if (test_cancel && test_cancel(testcancel_data))
goto cleanup;
LOG("\nFitting curve list #%u:\n", this_list);
curve_list_splines = fit_curve_list(curves, fitting_opts, dist, exception);
if (at_exception_got_fatal(exception)) {
if (char_splines.background_color)
at_color_free(char_splines.background_color);
goto cleanup;
}
curve_list_splines.clockwise = curves.clockwise;
memcpy(&(curve_list_splines.color), &(O_LIST_OUTLINE(pixel_outline_list, this_list).color), sizeof(at_color));
append_spline_list(&char_splines, curve_list_splines);
}
cleanup:
free_curve_list_array(&curve_array, notify_progress, progress_data);
return char_splines;
}
/* Fit the list of curves CURVE_LIST to a list of splines, and return
it. CURVE_LIST represents a single closed paths, e.g., either the
inside or outside outline of an `o'. */
static spline_list_type fit_curve_list(curve_list_type curve_list, fitting_opts_type * fitting_opts, at_distance_map * dist, at_exception_type * exception)
{
curve_type curve;
unsigned this_curve, this_spline;
unsigned curve_list_length = CURVE_LIST_LENGTH(curve_list);
spline_list_type curve_list_splines = empty_spline_list();
curve_list_splines.open = curve_list.open;
/* Remove the extraneous ``knee'' points before filtering. Since the
corners have already been found, we don't need to worry about
removing a point that should be a corner. */
LOG("\nRemoving knees:\n");
for (this_curve = 0; this_curve < curve_list_length; this_curve++) {
LOG("#%u:", this_curve);
remove_knee_points(CURVE_LIST_ELT(curve_list, this_curve), CURVE_LIST_CLOCKWISE(curve_list));
}
if (dist != NULL) {
unsigned this_point;
unsigned height = dist->height;
for (this_curve = 0; this_curve < curve_list_length; this_curve++) {
curve = CURVE_LIST_ELT(curve_list, this_curve);
for (this_point = 0; this_point < CURVE_LENGTH(curve); this_point++) {
unsigned x, y;
float width, w;
at_real_coord *coord = &CURVE_POINT(curve, this_point);
x = (unsigned)(coord->x);
y = height - (unsigned)(coord->y) - 1;
/* Each (x, y) is a point on the skeleton of the curve, which
might be offset from the TRUE centerline, where the width
is maximal. Therefore, use as the local line width the
maximum distance over the neighborhood of (x, y). */
width = dist->d[y][x];
if (y >= 1) {
if ((w = dist->d[y - 1][x]) > width)
width = w;
if (x >= 1) {
if ((w = dist->d[y][x - 1]) > width)
width = w;
if ((w = dist->d[y - 1][x - 1]) > width)
width = w;
}
if (x + 1 < dist->width) {
if ((w = dist->d[y][x + 1]) > width)
width = w;
if ((w = dist->d[y - 1][x + 1]) > width)
width = w;
}
}
if (y + 1 < height) {
if ((w = dist->d[y + 1][x]) > width)
width = w;
if (x >= 1 && (w = dist->d[y + 1][x - 1]) > width)
width = w;
if (x + 1 < dist->width && (w = dist->d[y + 1][x + 1]) > width)
width = w;
}
coord->z = width * (fitting_opts->width_weight_factor);
}
}
}
/* We filter all the curves in CURVE_LIST at once; otherwise, we would
look at an unfiltered curve when computing tangents. */
LOG("\nFiltering curves:\n");
for (this_curve = 0; this_curve < curve_list.length; this_curve++) {
LOG("#%u: ", this_curve);
filter(CURVE_LIST_ELT(curve_list, this_curve), fitting_opts);
}
/* Make the first point in the first curve also be the last point in
the last curve, so the fit to the whole curve list will begin and
end at the same point. This may cause slight errors in computing
the tangents and t values, but it's worth it for the continuity.
Of course we don't want to do this if the two points are already
the same, as they are if the curve is cyclic. (We don't append it
earlier, in `split_at_corners', because that confuses the
filtering.) Finally, we can't append the point if the curve is
exactly three points long, because we aren't adding any more data,
and three points isn't enough to determine a spline. Therefore,
the fitting will fail. */
curve = CURVE_LIST_ELT(curve_list, 0);
if (CURVE_CYCLIC(curve) == TRUE)
append_point(curve, CURVE_POINT(curve, 0));
/* Finally, fit each curve in the list to a list of splines. */
for (this_curve = 0; this_curve < curve_list_length; this_curve++) {
spline_list_type *curve_splines;
curve_type current_curve = CURVE_LIST_ELT(curve_list, this_curve);
LOG("\nFitting curve #%u:\n", this_curve);
curve_splines = fit_curve(current_curve, fitting_opts, exception);
if (at_exception_got_fatal(exception))
goto cleanup;
else if (curve_splines == NULL) {
LOG("Could not fit curve #%u", this_curve);
at_exception_warning(exception, "Could not fit curve");
} else {
LOG("Fitted splines for curve #%u:\n", this_curve);
for (this_spline = 0; this_spline < SPLINE_LIST_LENGTH(*curve_splines); this_spline++) {
LOG(" %u: ", this_spline);
if (logging)
print_spline(SPLINE_LIST_ELT(*curve_splines, this_spline));
}
/* After fitting, we may need to change some would-be lines
back to curves, because they are in a list with other
curves. */
change_bad_lines(curve_splines, fitting_opts);
concat_spline_lists(&curve_list_splines, *curve_splines);
free_spline_list(*curve_splines);
free(curve_splines);
}
}
if (logging) {
LOG("\nFitted splines are:\n");
for (this_spline = 0; this_spline < SPLINE_LIST_LENGTH(curve_list_splines); this_spline++) {
LOG(" %u: ", this_spline);
print_spline(SPLINE_LIST_ELT(curve_list_splines, this_spline));
}
}
cleanup:
return curve_list_splines;
}
/* Transform a set of locations to a list of splines (the fewer the
better). We are guaranteed that CURVE does not contain any corners.
We return NULL if we cannot fit the points at all. */
static spline_list_type *fit_curve(curve_type curve, fitting_opts_type * fitting_opts, at_exception_type * exception)
{
spline_list_type *fittedsplines;
if (CURVE_LENGTH(curve) < 2) {
LOG("Tried to fit curve with less than two points");
at_exception_warning(exception, "Tried to fit curve with less than two points");
return NULL;
}
/* Do we have enough points to fit with a spline? */
fittedsplines = CURVE_LENGTH(curve) < 4 ? fit_with_line(curve)
: fit_with_least_squares(curve, fitting_opts, exception);
return fittedsplines;
}
/* As mentioned above, the first step is to find the corners in
PIXEL_LIST, the list of points. (Presumably we can't fit a single
spline around a corner.) The general strategy is to look through all
the points, remembering which we want to consider corners. Then go
through that list, producing the curve_list. This is dictated by the
fact that PIXEL_LIST does not necessarily start on a corner---it just
starts at the character's first outline pixel, going left-to-right,
top-to-bottom. But we want all our splines to start and end on real
corners.
For example, consider the top of a capital `C' (this is in cmss20):
x
***********
******************
PIXEL_LIST will start at the pixel below the `x'. If we considered
this pixel a corner, we would wind up matching a very small segment
from there to the end of the line, probably as a straight line, which
is certainly not what we want.
PIXEL_LIST has one element for each closed outline on the character.
To preserve this information, we return an array of curve_lists, one
element (which in turn consists of several curves, one between each
pair of corners) for each element in PIXEL_LIST. */
static curve_list_array_type split_at_corners(pixel_outline_list_type pixel_list, fitting_opts_type * fitting_opts, at_exception_type * exception)
{
unsigned this_pixel_o;
curve_list_array_type curve_array = new_curve_list_array();
LOG("\nFinding corners:\n");
for (this_pixel_o = 0; this_pixel_o < O_LIST_LENGTH(pixel_list); this_pixel_o++) {
curve_type curve, first_curve;
index_list_type corner_list;
unsigned p, this_corner;
curve_list_type curve_list = new_curve_list();
pixel_outline_type pixel_o = O_LIST_OUTLINE(pixel_list, this_pixel_o);
CURVE_LIST_CLOCKWISE(curve_list) = O_CLOCKWISE(pixel_o);
curve_list.open = pixel_o.open;
LOG("#%u:", this_pixel_o);
/* If the outline does not have enough points, we can't do
anything. The endpoints of the outlines are automatically
corners. We need at least `corner_surround' more pixels on
either side of a point before it is conceivable that we might
want another corner. */
if (O_LENGTH(pixel_o) > fitting_opts->corner_surround * 2 + 2)
corner_list = find_corners(pixel_o, fitting_opts, exception);
else {
int surround;
if ((surround = (int)(O_LENGTH(pixel_o) - 3) / 2) >= 2) {
unsigned save_corner_surround = fitting_opts->corner_surround;
fitting_opts->corner_surround = surround;
corner_list = find_corners(pixel_o, fitting_opts, exception);
fitting_opts->corner_surround = save_corner_surround;
} else {
corner_list.length = 0;
corner_list.data = NULL;
}
}
/* Remember the first curve so we can make it be the `next' of the
last one. (And vice versa.) */
first_curve = new_curve();
curve = first_curve;
if (corner_list.length == 0) { /* No corners. Use all of the pixel outline as the curve. */
for (p = 0; p < O_LENGTH(pixel_o); p++)
append_pixel(curve, O_COORDINATE(pixel_o, p));
if (curve_list.open == TRUE)
CURVE_CYCLIC(curve) = FALSE;
else
CURVE_CYCLIC(curve) = TRUE;
} else { /* Each curve consists of the points between (inclusive) each pair
of corners. */
for (this_corner = 0; this_corner < corner_list.length - 1; this_corner++) {
curve_type previous_curve = curve;
unsigned corner = GET_INDEX(corner_list, this_corner);
unsigned next_corner = GET_INDEX(corner_list, this_corner + 1);
for (p = corner; p <= next_corner; p++)
append_pixel(curve, O_COORDINATE(pixel_o, p));
append_curve(&curve_list, curve);
curve = new_curve();
NEXT_CURVE(previous_curve) = curve;
PREVIOUS_CURVE(curve) = previous_curve;
}
/* The last curve is different. It consists of the points
(inclusive) between the last corner and the end of the list,
and the beginning of the list and the first corner. */
for (p = GET_LAST_INDEX(corner_list); p < O_LENGTH(pixel_o); p++)
append_pixel(curve, O_COORDINATE(pixel_o, p));
if (!pixel_o.open) {
for (p = 0; p <= GET_INDEX(corner_list, 0); p++)
append_pixel(curve, O_COORDINATE(pixel_o, p));
} else {
curve_type last_curve = PREVIOUS_CURVE(curve);
PREVIOUS_CURVE(first_curve) = NULL;
if (last_curve)
NEXT_CURVE(last_curve) = NULL;
}
}
LOG(" [%u].\n", corner_list.length);
free_index_list(&corner_list);
/* Add `curve' to the end of the list, updating the pointers in
the chain. */
append_curve(&curve_list, curve);
NEXT_CURVE(curve) = first_curve;
PREVIOUS_CURVE(first_curve) = curve;
/* And now add the just-completed curve list to the array. */
append_curve_list(&curve_array, curve_list);
} /* End of considering each pixel outline. */
return curve_array;
}
/* We consider a point to be a corner if (1) the angle defined by the
`corner_surround' points coming into it and going out from it is less
than `corner_threshold' degrees, and no point within
`corner_surround' points has a smaller angle; or (2) the angle is less
than `corner_always_threshold' degrees.
Because of the different cases, it is convenient to have the
following macro to append a corner on to the list we return. The
character argument C is simply so that the different cases can be
distinguished in the log file. */
#define APPEND_CORNER(index, angle, c) \
do \
{ \
append_index (&corner_list, index); \
LOG (" (%d,%d)%c%.3f", \
O_COORDINATE (pixel_outline, index).x, \
O_COORDINATE (pixel_outline, index).y, \
c, angle); \
} \
while (0)
static index_list_type find_corners(pixel_outline_type pixel_outline, fitting_opts_type * fitting_opts, at_exception_type * exception)
{
unsigned p, start_p, end_p;
index_list_type corner_list = new_index_list();
start_p = 0;
end_p = O_LENGTH(pixel_outline) - 1;
if (pixel_outline.open) {
if (end_p <= fitting_opts->corner_surround * 2)
return corner_list;
APPEND_CORNER(0, 0.0, '@');
start_p += fitting_opts->corner_surround;
end_p -= fitting_opts->corner_surround;
}
/* Consider each pixel on the outline in turn. */
for (p = start_p; p <= end_p; p++) {
gfloat corner_angle;
vector_type in_vector, out_vector;
/* Check if the angle is small enough. */
find_vectors(p, pixel_outline, &in_vector, &out_vector, fitting_opts->corner_surround);
corner_angle = Vangle(in_vector, out_vector, exception);
if (at_exception_got_fatal(exception))
goto cleanup;
if (fabs(corner_angle) <= fitting_opts->corner_threshold) {
/* We want to keep looking, instead of just appending the
first pixel we find with a small enough angle, since there
might be another corner within `corner_surround' pixels, with
a smaller angle. If that is the case, we want that one. */
gfloat best_corner_angle = corner_angle;
unsigned best_corner_index = p;
index_list_type equally_good_list = new_index_list();
/* As we come into the loop, `p' is the index of the point
that has an angle less than `corner_angle'. We use `i' to
move through the pixels next to that, and `q' for moving
through the adjacent pixels to each `p'. */
unsigned q = p;
unsigned i = p + 1;
while (TRUE) {
/* Perhaps the angle is sufficiently small that we want to
consider this a corner, even if it's not the best
(unless we've already wrapped around in the search,
i.e., `q<i', in which case we have already added the
corner, and we don't want to add it again). We want to
do this check on the first candidate we find, as well
as the others in the loop, hence this comes before the
stopping condition. */
if (corner_angle <= fitting_opts->corner_always_threshold && q >= p)
APPEND_CORNER(q, corner_angle, '\\');
/* Exit the loop if we've looked at `corner_surround'
pixels past the best one we found, or if we've looked
at all the pixels. */
if (i >= best_corner_index + fitting_opts->corner_surround || i >= O_LENGTH(pixel_outline))
break;
/* Check the angle. */
q = i % O_LENGTH(pixel_outline);
find_vectors(q, pixel_outline, &in_vector, &out_vector, fitting_opts->corner_surround);
corner_angle = Vangle(in_vector, out_vector, exception);
if (at_exception_got_fatal(exception))
goto cleanup;
/* If we come across a corner that is just as good as the
best one, we should make it a corner, too. This
happens, for example, at the points on the `W' in some
typefaces, where the ``points'' are flat. */
if (epsilon_equal(corner_angle, best_corner_angle))
append_index(&equally_good_list, q);
else if (corner_angle < best_corner_angle) {
best_corner_angle = corner_angle;
/* We want to check `corner_surround' pixels beyond the
new best corner. */
i = best_corner_index = q;
free_index_list(&equally_good_list);
equally_good_list = new_index_list();
}
i++;
}
/* After we exit the loop, `q' is the index of the last point
we checked. We have already added the corner if
`best_corner_angle' is less than `corner_always_threshold'.
Again, if we've already wrapped around, we don't want to
add the corner again. */
if (best_corner_angle > fitting_opts->corner_always_threshold && best_corner_index >= p) {
unsigned j;
APPEND_CORNER(best_corner_index, best_corner_angle, '/');
for (j = 0; j < INDEX_LIST_LENGTH(equally_good_list); j++)
APPEND_CORNER(GET_INDEX(equally_good_list, j), best_corner_angle, '@');
}
free_index_list(&equally_good_list);
/* If we wrapped around in our search, we're done; otherwise,
we don't want the outer loop to look at the pixels that we
already looked at in searching for the best corner. */
p = (q < p) ? O_LENGTH(pixel_outline) : q;
} /* End of searching for the best corner. */
} /* End of considering each pixel. */
if (INDEX_LIST_LENGTH(corner_list) > 0)
/* We never want two corners next to each other, since the
only way to fit such a ``curve'' would be with a straight
line, which usually interrupts the continuity dreadfully. */
remove_adjacent_corners(&corner_list, O_LENGTH(pixel_outline) - (pixel_outline.open ? 2 : 1), fitting_opts->remove_adjacent_corners, exception);
cleanup:
return corner_list;
}
/* Return the difference vectors coming in and going out of the outline
OUTLINE at the point whose index is TEST_INDEX. In Phoenix,
Schneider looks at a single point on either side of the point we're
considering. That works for him because his points are not touching.
But our points *are* touching, and so we have to look at
`corner_surround' points on either side, to get a better picture of
the outline's shape. */
static void find_vectors(unsigned test_index, pixel_outline_type outline, vector_type * in, vector_type * out, unsigned corner_surround)
{
int i;
unsigned n_done;
at_coord candidate = O_COORDINATE(outline, test_index);
in->dx = in->dy = in->dz = 0.0;
out->dx = out->dy = out->dz = 0.0;
/* Add up the differences from p of the `corner_surround' points
before p. */
for (i = O_PREV(outline, test_index), n_done = 0; n_done < corner_surround; i = O_PREV(outline, i), n_done++)
*in = Vadd(*in, IPsubtract(O_COORDINATE(outline, i), candidate));
/* And the points after p. */
for (i = O_NEXT(outline, test_index), n_done = 0; n_done < corner_surround; i = O_NEXT(outline, i), n_done++)
*out = Vadd(*out, IPsubtract(O_COORDINATE(outline, i), candidate));
}
/* Remove adjacent points from the index list LIST. We do this by first
sorting the list and then running through it. Since these lists are
quite short, a straight selection sort (e.g., p.139 of the Art of
Computer Programming, vol.3) is good enough. LAST_INDEX is the index
of the last pixel on the outline, i.e., the next one is the first
pixel. We need this for checking the adjacency of the last corner.
We need to do this because the adjacent corners turn into
two-pixel-long curves, which can only be fit by straight lines. */
static void remove_adjacent_corners(index_list_type * list, unsigned last_index, gboolean remove_adj_corners, at_exception_type * exception)
{
unsigned j;
unsigned last;
index_list_type new_list = new_index_list();
for (j = INDEX_LIST_LENGTH(*list) - 1; j > 0; j--) {
unsigned search;
unsigned temp;
/* Find maximal element below `j'. */
unsigned max_index = j;
for (search = 0; search < j; search++)
if (GET_INDEX(*list, search) > GET_INDEX(*list, max_index))
max_index = search;
if (max_index != j) {
temp = GET_INDEX(*list, j);
GET_INDEX(*list, j) = GET_INDEX(*list, max_index);
GET_INDEX(*list, max_index) = temp;
/* xx -- really have to sort? */
LOG("needed exchange");
at_exception_warning(exception, "needed exchange");
}
}
/* The list is sorted. Now look for adjacent entries. Each time
through the loop we insert the current entry and, if appropriate,
the next entry. */
for (j = 0; j < INDEX_LIST_LENGTH(*list) - 1; j++) {
unsigned current = GET_INDEX(*list, j);
unsigned next = GET_INDEX(*list, j + 1);
/* We should never have inserted the same element twice. */
/* assert (current != next); */
if ((remove_adj_corners) && ((next == current + 1) || (next == current)))
j++;
append_index(&new_list, current);
}
/* Don't append the last element if it is 1) adjacent to the previous
one; or 2) adjacent to the very first one. */
last = GET_LAST_INDEX(*list);
if (INDEX_LIST_LENGTH(new_list) == 0 || !(last == GET_LAST_INDEX(new_list) + 1 || (last == last_index && GET_INDEX(*list, 0) == 0)))
append_index(&new_list, last);
free_index_list(list);
*list = new_list;
}
/* A ``knee'' is a point which forms a ``right angle'' with its
predecessor and successor. See the documentation (the `Removing
knees' section) for an example and more details.
The argument CLOCKWISE tells us which direction we're moving. (We
can't figure that information out from just the single segment with
which we are given to work.)
We should never find two consecutive knees.
Since the first and last points are corners (unless the curve is
cyclic), it doesn't make sense to remove those. */
/* This evaluates to TRUE if the vector V is zero in one direction and
nonzero in the other. */
#define ONLY_ONE_ZERO(v) \
(((v).dx == 0.0 && (v).dy != 0.0) || ((v).dy == 0.0 && (v).dx != 0.0))
/* There are four possible cases for knees, one for each of the four
corners of a rectangle; and then the cases differ depending on which
direction we are going around the curve. The tests are listed here
in the order of upper left, upper right, lower right, lower left.
Perhaps there is some simple pattern to the
clockwise/counterclockwise differences, but I don't see one. */
#define CLOCKWISE_KNEE(prev_delta, next_delta) \
((prev_delta.dx == -1.0 && next_delta.dy == 1.0) \
|| (prev_delta.dy == 1.0 && next_delta.dx == 1.0) \
|| (prev_delta.dx == 1.0 && next_delta.dy == -1.0) \
|| (prev_delta.dy == -1.0 && next_delta.dx == -1.0))
#define COUNTERCLOCKWISE_KNEE(prev_delta, next_delta) \
((prev_delta.dy == 1.0 && next_delta.dx == -1.0) \
|| (prev_delta.dx == 1.0 && next_delta.dy == 1.0) \
|| (prev_delta.dy == -1.0 && next_delta.dx == 1.0) \
|| (prev_delta.dx == -1.0 && next_delta.dy == -1.0))
static void remove_knee_points(curve_type curve, gboolean clockwise)
{
unsigned i;
unsigned offset = (CURVE_CYCLIC(curve) == TRUE) ? 0 : 1;
at_coord previous = real_to_int_coord(CURVE_POINT(curve, CURVE_PREV(curve, offset)));
curve_type trimmed_curve = copy_most_of_curve(curve);
if (CURVE_CYCLIC(curve) == FALSE)
append_pixel(trimmed_curve, real_to_int_coord(CURVE_POINT(curve, 0)));
for (i = offset; i < CURVE_LENGTH(curve) - offset; i++) {
at_coord current = real_to_int_coord(CURVE_POINT(curve, i));
at_coord next = real_to_int_coord(CURVE_POINT(curve, CURVE_NEXT(curve, i)));
vector_type prev_delta = IPsubtract(previous, current);
vector_type next_delta = IPsubtract(next, current);
if (ONLY_ONE_ZERO(prev_delta) && ONLY_ONE_ZERO(next_delta)
&& ((clockwise && CLOCKWISE_KNEE(prev_delta, next_delta))
|| (!clockwise && COUNTERCLOCKWISE_KNEE(prev_delta, next_delta))))
LOG(" (%d,%d)", current.x, current.y);
else {
previous = current;
append_pixel(trimmed_curve, current);
}
}
if (CURVE_CYCLIC(curve) == FALSE)
append_pixel(trimmed_curve, real_to_int_coord(LAST_CURVE_POINT(curve)));
if (CURVE_LENGTH(trimmed_curve) == CURVE_LENGTH(curve))
LOG(" (none)");
LOG(".\n");
free_curve(curve);
*curve = *trimmed_curve;
free(trimmed_curve); /* free_curve? --- Masatake */
}
/* Smooth the curve by adding in neighboring points. Do this
`filter_iterations' times. But don't change the corners. */
static void filter(curve_type curve, fitting_opts_type * fitting_opts)
{
unsigned iteration, this_point;
unsigned offset = (CURVE_CYCLIC(curve) == TRUE) ? 0 : 1;
at_real_coord prev_new_point;
/* We must have at least three points---the previous one, the current
one, and the next one. But if we don't have at least five, we will
probably collapse the curve down onto a single point, which means
we won't be able to fit it with a spline. */
if (CURVE_LENGTH(curve) < 5) {
LOG("Length is %u, not enough to filter.\n", CURVE_LENGTH(curve));
return;
}
prev_new_point.x = FLT_MAX;
prev_new_point.y = FLT_MAX;
prev_new_point.z = FLT_MAX;
for (iteration = 0; iteration < fitting_opts->filter_iterations; iteration++) {
curve_type newcurve = copy_most_of_curve(curve);
gboolean collapsed = FALSE;
/* Keep the first point on the curve. */
if (offset)
append_point(newcurve, CURVE_POINT(curve, 0));
for (this_point = offset; this_point < CURVE_LENGTH(curve) - offset; this_point++) {
vector_type in, out, sum;
at_real_coord new_point;
/* Calculate the vectors in and out, computed by looking at n points
on either side of this_point. Experimental it was found that 2 is
optimal. */
signed int prev, prevprev; /* have to be signed */
unsigned int next, nextnext;
at_real_coord candidate = CURVE_POINT(curve, this_point);
prev = CURVE_PREV(curve, this_point);
prevprev = CURVE_PREV(curve, prev);
next = CURVE_NEXT(curve, this_point);
nextnext = CURVE_NEXT(curve, next);
/* Add up the differences from p of the `surround' points
before p. */
in.dx = in.dy = in.dz = 0.0;
in = Vadd(in, Psubtract(CURVE_POINT(curve, prev), candidate));
if (prevprev >= 0)
in = Vadd(in, Psubtract(CURVE_POINT(curve, prevprev), candidate));
/* And the points after p. Don't use more points after p than we
ended up with before it. */
out.dx = out.dy = out.dz = 0.0;
out = Vadd(out, Psubtract(CURVE_POINT(curve, next), candidate));
if (nextnext < CURVE_LENGTH(curve))
out = Vadd(out, Psubtract(CURVE_POINT(curve, nextnext), candidate));
/* Start with the old point. */
new_point = candidate;
sum = Vadd(in, out);
/* We added 2*n+2 points, so we have to divide the sum by 2*n+2 */
new_point.x += sum.dx / 6;
new_point.y += sum.dy / 6;
new_point.z += sum.dz / 6;
if (fabs(prev_new_point.x - new_point.x) < 0.3 && fabs(prev_new_point.y - new_point.y) < 0.3 && fabs(prev_new_point.z - new_point.z) < 0.3) {
collapsed = TRUE;
break;
}
/* Put the newly computed point into a separate curve, so it
doesn't affect future computation (on this iteration). */
append_point(newcurve, prev_new_point = new_point);
}
if (collapsed)
free_curve(newcurve);
else {
/* Just as with the first point, we have to keep the last point. */
if (offset)
append_point(newcurve, LAST_CURVE_POINT(curve));
/* Set the original curve to the newly filtered one, and go again. */
free_curve(curve);
*curve = *newcurve;
}
free(newcurve);
}
if (logging)
log_curve(curve, FALSE);
}
/* This routine returns the curve fitted to a straight line in a very
simple way: make the first and last points on the curve be the
endpoints of the line. This simplicity is justified because we are
called only on very short curves. */
static spline_list_type *fit_with_line(curve_type curve)
{
spline_type line;
LOG("Fitting with straight line:\n");
SPLINE_DEGREE(line) = LINEARTYPE;
START_POINT(line) = CONTROL1(line) = CURVE_POINT(curve, 0);
END_POINT(line) = CONTROL2(line) = LAST_CURVE_POINT(curve);
/* Make sure that this line is never changed to a cubic. */
SPLINE_LINEARITY(line) = 0;
if (logging) {
LOG(" ");
print_spline(line);
}
return new_spline_list_with_spline(line);
}
/* The least squares method is well described in Schneider's thesis.
Briefly, we try to fit the entire curve with one spline. If that
fails, we subdivide the curve. */
static spline_list_type *fit_with_least_squares(curve_type curve, fitting_opts_type * fitting_opts, at_exception_type * exception)
{
gfloat error = 0, best_error = FLT_MAX;
spline_type spline, best_spline;
spline_list_type *spline_list = NULL;
unsigned worst_point = 0;
gfloat previous_error = FLT_MAX;
LOG("\nFitting with least squares:\n");
/* Phoenix reduces the number of points with a ``linear spline
technique''. But for fitting letterforms, that is
inappropriate. We want all the points we can get. */
/* It makes no difference whether we first set the `t' values or
find the tangents. This order makes the documentation a little
more coherent. */
LOG("Finding tangents:\n");
find_tangent(curve, /* to_start */ TRUE, /* cross_curve */ FALSE,
fitting_opts->tangent_surround);
find_tangent(curve, /* to_start */ FALSE, /* cross_curve */ FALSE,
fitting_opts->tangent_surround);
set_initial_parameter_values(curve);
/* Now we loop, subdividing, until CURVE has
been fit. */
while (TRUE) {
spline = best_spline = fit_one_spline(curve, exception);
if (at_exception_got_fatal(exception))
goto cleanup;
if (SPLINE_DEGREE(spline) == LINEARTYPE)
LOG(" fitted to line:\n");
else
LOG(" fitted to spline:\n");
if (logging) {
LOG(" ");
print_spline(spline);
}
if (SPLINE_DEGREE(spline) == LINEARTYPE)
break;
error = find_error(curve, spline, &worst_point, exception);
if (error <= previous_error) {
best_error = error;
best_spline = spline;
}
break;
}
if (SPLINE_DEGREE(spline) == LINEARTYPE) {
spline_list = new_spline_list_with_spline(spline);
LOG("Accepted error of %.3f.\n", error);
return (spline_list);
}
/* Go back to the best fit. */
spline = best_spline;
error = best_error;
if (error < fitting_opts->error_threshold && CURVE_CYCLIC(curve) == FALSE) {
/* The points were fitted with a
spline. We end up here whenever a fit is accepted. We have
one more job: see if the ``curve'' that was fit should really
be a straight line. */
if (spline_linear_enough(&spline, curve, fitting_opts)) {
SPLINE_DEGREE(spline) = LINEARTYPE;
LOG("Changed to line.\n");
}
spline_list = new_spline_list_with_spline(spline);
LOG("Accepted error of %.3f.\n", error);
} else {
/* We couldn't fit the curve acceptably, so subdivide. */
unsigned subdivision_index;
spline_list_type *left_spline_list;
spline_list_type *right_spline_list;
curve_type left_curve = new_curve();
curve_type right_curve = new_curve();
/* Keep the linked list of curves intact. */
NEXT_CURVE(right_curve) = NEXT_CURVE(curve);
PREVIOUS_CURVE(right_curve) = left_curve;
NEXT_CURVE(left_curve) = right_curve;
PREVIOUS_CURVE(left_curve) = curve;
NEXT_CURVE(curve) = left_curve;
LOG("\nSubdividing (error %.3f):\n", error);
LOG(" Original point: (%.3f,%.3f), #%u.\n", CURVE_POINT(curve, worst_point).x, CURVE_POINT(curve, worst_point).y, worst_point);
subdivision_index = worst_point;
LOG(" Final point: (%.3f,%.3f), #%u.\n", CURVE_POINT(curve, subdivision_index).x, CURVE_POINT(curve, subdivision_index).y, subdivision_index);
/* The last point of the left-hand curve will also be the first
point of the right-hand curve. */
CURVE_LENGTH(left_curve) = subdivision_index + 1;
CURVE_LENGTH(right_curve) = CURVE_LENGTH(curve) - subdivision_index;
left_curve->point_list = curve->point_list;
right_curve->point_list = curve->point_list + subdivision_index;
/* We want to use the tangents of the curve which we are
subdividing for the start tangent for left_curve and the
end tangent for right_curve. */
CURVE_START_TANGENT(left_curve) = CURVE_START_TANGENT(curve);
CURVE_END_TANGENT(right_curve) = CURVE_END_TANGENT(curve);
/* We have to set up the two curves before finding the tangent at
the subdivision point. The tangent at that point must be the
same for both curves, or noticeable bumps will occur in the
character. But we want to use information on both sides of the
point to compute the tangent, hence cross_curve = true. */
find_tangent(left_curve, /* to_start_point: */ FALSE,
/* cross_curve: */ TRUE, fitting_opts->tangent_surround);
CURVE_START_TANGENT(right_curve) = CURVE_END_TANGENT(left_curve);
/* Now that we've set up the curves, we can fit them. */
left_spline_list = fit_curve(left_curve, fitting_opts, exception);
if (at_exception_got_fatal(exception))
/* TODO: Memory allocated for left_curve and right_curve
will leak. */
goto cleanup;
right_spline_list = fit_curve(right_curve, fitting_opts, exception);
/* TODO: Memory allocated for left_curve and right_curve
will leak. */
if (at_exception_got_fatal(exception))
goto cleanup;
/* Neither of the subdivided curves could be fit, so fail. */
if (left_spline_list == NULL && right_spline_list == NULL)
return NULL;
/* Put the two together (or whichever of them exist). */
spline_list = new_spline_list();
if (left_spline_list == NULL) {
LOG("Could not fit spline to left curve (%lx).\n", (unsigned long)(uintptr_t)left_curve);
at_exception_warning(exception, "Could not fit left spline list");
} else {
concat_spline_lists(spline_list, *left_spline_list);
free_spline_list(*left_spline_list);
free(left_spline_list);
}
if (right_spline_list == NULL) {
LOG("Could not fit spline to right curve (%lx).\n", (unsigned long)(uintptr_t)right_curve);
at_exception_warning(exception, "Could not fit right spline list");
} else {
concat_spline_lists(spline_list, *right_spline_list);
free_spline_list(*right_spline_list);
free(right_spline_list);
}
if (CURVE_END_TANGENT(left_curve))
free(CURVE_END_TANGENT(left_curve));
free(left_curve);
free(right_curve);
}
cleanup:
return spline_list;
}
/* Our job here is to find alpha1 (and alpha2), where t1_hat (t2_hat) is
the tangent to CURVE at the starting (ending) point, such that:
control1 = alpha1*t1_hat + starting point
control2 = alpha2*t2_hat + ending_point
and the resulting spline (starting_point .. control1 and control2 ..
ending_point) minimizes the least-square error from CURVE.
See pp.57--59 of the Phoenix thesis.
The B?(t) here corresponds to B_i^3(U_i) there.
The Bernshte\u in polynomials of degree n are defined by
B_i^n(t) = { n \choose i } t^i (1-t)^{n-i}, i = 0..n */
#define B0(t) CUBE ((gfloat) 1.0 - (t))
#define B1(t) ((gfloat) 3.0 * (t) * SQUARE ((gfloat) 1.0 - (t)))
#define B2(t) ((gfloat) 3.0 * SQUARE (t) * ((gfloat) 1.0 - (t)))
#define B3(t) CUBE (t)
static spline_type fit_one_spline(curve_type curve, at_exception_type * exception)
{
/* Since our arrays are zero-based, the `C0' and `C1' here correspond
to `C1' and `C2' in the paper. */
gfloat X_C1_det, C0_X_det, C0_C1_det;
gfloat alpha1, alpha2;
spline_type spline;
vector_type start_vector, end_vector;
unsigned i;
vector_type *A;
vector_type t1_hat = *CURVE_START_TANGENT(curve);
vector_type t2_hat = *CURVE_END_TANGENT(curve);
gfloat C[2][2] = { {0.0, 0.0}, {0.0, 0.0} };
gfloat X[2] = { 0.0, 0.0 };
XMALLOC(A, CURVE_LENGTH(curve) * 2 * sizeof(vector_type)); /* A dynamically allocated array. */
START_POINT(spline) = CURVE_POINT(curve, 0);
END_POINT(spline) = LAST_CURVE_POINT(curve);
start_vector = make_vector(START_POINT(spline));
end_vector = make_vector(END_POINT(spline));
for (i = 0; i < CURVE_LENGTH(curve); i++) {
A[(i << 1) + 0] = Vmult_scalar(t1_hat, B1(CURVE_T(curve, i)));
A[(i << 1) + 1] = Vmult_scalar(t2_hat, B2(CURVE_T(curve, i)));
}
for (i = 0; i < CURVE_LENGTH(curve); i++) {
vector_type temp, temp0, temp1, temp2, temp3;
vector_type *Ai = A + (i << 1);
C[0][0] += Vdot(Ai[0], Ai[0]);
C[0][1] += Vdot(Ai[0], Ai[1]);
/* C[1][0] = C[0][1] (this is assigned outside the loop) */
C[1][1] += Vdot(Ai[1], Ai[1]);
/* Now the right-hand side of the equation in the paper. */
temp0 = Vmult_scalar(start_vector, B0(CURVE_T(curve, i)));
temp1 = Vmult_scalar(start_vector, B1(CURVE_T(curve, i)));
temp2 = Vmult_scalar(end_vector, B2(CURVE_T(curve, i)));
temp3 = Vmult_scalar(end_vector, B3(CURVE_T(curve, i)));
temp = make_vector(Vsubtract_point(CURVE_POINT(curve, i), Vadd(temp0, Vadd(temp1, Vadd(temp2, temp3)))));
X[0] += Vdot(temp, Ai[0]);
X[1] += Vdot(temp, Ai[1]);
}
free(A);
C[1][0] = C[0][1];
X_C1_det = X[0] * C[1][1] - X[1] * C[0][1];
C0_X_det = C[0][0] * X[1] - C[0][1] * X[0];
C0_C1_det = C[0][0] * C[1][1] - C[1][0] * C[0][1];
if (C0_C1_det == 0.0) {
/* Zero determinant */
alpha1 = 0;
alpha2 = 0;
} else {
alpha1 = X_C1_det / C0_C1_det;
alpha2 = C0_X_det / C0_C1_det;
}
CONTROL1(spline) = Vadd_point(START_POINT(spline), Vmult_scalar(t1_hat, alpha1));
CONTROL2(spline) = Vadd_point(END_POINT(spline), Vmult_scalar(t2_hat, alpha2));
SPLINE_DEGREE(spline) = CUBICTYPE;
return spline;
}
/* Find reasonable values for t for each point on CURVE. The method is
called chord-length parameterization, which is described in Plass &
Stone. The basic idea is just to use the distance from one point to
the next as the t value, normalized to produce values that increase
from zero for the first point to one for the last point. */
static void set_initial_parameter_values(curve_type curve)
{
unsigned p;
LOG("\nAssigning initial t values:\n ");
CURVE_T(curve, 0) = 0.0;
for (p = 1; p < CURVE_LENGTH(curve); p++) {
at_real_coord point = CURVE_POINT(curve, p), previous_p = CURVE_POINT(curve, p - 1);
gfloat d = distance(point, previous_p);
CURVE_T(curve, p) = CURVE_T(curve, p - 1) + d;
}
if (LAST_CURVE_T(curve) == 0.0)
LAST_CURVE_T(curve) = 1.0;
for (p = 1; p < CURVE_LENGTH(curve); p++)
CURVE_T(curve, p) = CURVE_T(curve, p) / LAST_CURVE_T(curve);
if (logging)
log_entire_curve(curve);
}
/* Find an approximation to the tangent to an endpoint of CURVE (to the
first point if TO_START_POINT is TRUE, else the last). If
CROSS_CURVE is TRUE, consider points on the adjacent curve to CURVE.
It is important to compute an accurate approximation, because the
control points that we eventually decide upon to fit the curve will
be placed on the half-lines defined by the tangents and
endpoints...and we never recompute the tangent after this. */
static void find_tangent(curve_type curve, gboolean to_start_point, gboolean cross_curve, unsigned tangent_surround)
{
vector_type tangent;
vector_type **curve_tangent = (to_start_point == TRUE) ? &(CURVE_START_TANGENT(curve))
: &(CURVE_END_TANGENT(curve));
unsigned n_points = 0;
LOG(" tangent to %s: ", (to_start_point == TRUE) ? "start" : "end");
if (*curve_tangent == NULL) {
XMALLOC(*curve_tangent, sizeof(vector_type));
do {
tangent = find_half_tangent(curve, to_start_point, &n_points, tangent_surround);
if ((cross_curve == TRUE) || (CURVE_CYCLIC(curve) == TRUE)) {
curve_type adjacent_curve = (to_start_point == TRUE) ? PREVIOUS_CURVE(curve) : NEXT_CURVE(curve);
vector_type tangent2 = (to_start_point == FALSE) ? find_half_tangent(adjacent_curve, TRUE, &n_points,
tangent_surround) : find_half_tangent(adjacent_curve, TRUE, &n_points,
tangent_surround);
LOG("(adjacent curve half tangent (%.3f,%.3f,%.3f)) ", tangent2.dx, tangent2.dy, tangent2.dz);
tangent = Vadd(tangent, tangent2);
}
tangent_surround--;
}
while (tangent.dx == 0.0 && tangent.dy == 0.0);
assert(n_points > 0);
**curve_tangent = Vmult_scalar(tangent, (gfloat) (1.0 / n_points));
if ((CURVE_CYCLIC(curve) == TRUE) && CURVE_START_TANGENT(curve))
*CURVE_START_TANGENT(curve) = **curve_tangent;
if ((CURVE_CYCLIC(curve) == TRUE) && CURVE_END_TANGENT(curve))
*CURVE_END_TANGENT(curve) = **curve_tangent;
} else
LOG("(already computed) ");
LOG("(%.3f,%.3f,%.3f).\n", (*curve_tangent)->dx, (*curve_tangent)->dy, (*curve_tangent)->dz);
}
/* Find the change in y and change in x for `tangent_surround' (a global)
points along CURVE. Increment N_POINTS by the number of points we
actually look at. */
static vector_type find_half_tangent(curve_type c, gboolean to_start_point, unsigned *n_points, unsigned tangent_surround)
{
unsigned p;
int factor = to_start_point ? 1 : -1;
unsigned tangent_index = to_start_point ? 0 : c->length - 1;
at_real_coord tangent_point = CURVE_POINT(c, tangent_index);
vector_type tangent = { 0.0, 0.0 };
unsigned int surround;
if ((surround = CURVE_LENGTH(c) / 2) > tangent_surround)
surround = tangent_surround;
for (p = 1; p <= surround; p++) {
int this_index = p * factor + tangent_index;
at_real_coord this_point;
if (this_index < 0 || this_index >= (int)c->length)
break;
this_point = CURVE_POINT(c, p * factor + tangent_index);
/* Perhaps we should weight the tangent from `this_point' by some
factor dependent on the distance from the tangent point. */
tangent = Vadd(tangent, Vmult_scalar(Psubtract(this_point, tangent_point), (gfloat) factor));
(*n_points)++;
}
return tangent;
}
/* When this routine is called, we have computed a spline representation
for the digitized curve. The question is, how good is it? If the
fit is very good indeed, we might have an error of zero on each
point, and then WORST_POINT becomes irrelevant. But normally, we
return the error at the worst point, and the index of that point in
WORST_POINT. The error computation itself is the Euclidean distance
from the original curve CURVE to the fitted spline SPLINE. */
static gfloat find_error(curve_type curve, spline_type spline, unsigned *worst_point, at_exception_type * exception)
{
unsigned this_point;
gfloat total_error = 0.0;
gfloat worst_error = FLT_MIN;
*worst_point = CURVE_LENGTH(curve) + 1; /* A sentinel value. */
for (this_point = 0; this_point < CURVE_LENGTH(curve); this_point++) {
at_real_coord curve_point = CURVE_POINT(curve, this_point);
gfloat t = CURVE_T(curve, this_point);
at_real_coord spline_point = evaluate_spline(spline, t);
gfloat this_error = distance(curve_point, spline_point);
if (this_error >= worst_error) {
*worst_point = this_point;
worst_error = this_error;
}
total_error += this_error;
}
if (*worst_point == CURVE_LENGTH(curve) + 1) { /* Didn't have any ``worst point''; the error should be zero. */
if (epsilon_equal(total_error, 0.0))
LOG(" Every point fit perfectly.\n");
else {
LOG("No worst point found; something is wrong");
at_exception_warning(exception, "No worst point found; something is wrong");
}
} else {
if (epsilon_equal(total_error, 0.0))
LOG(" Every point fit perfectly.\n");
else {
LOG(" Worst error (at (%.3f,%.3f,%.3f), point #%u) was %.3f.\n", CURVE_POINT(curve, *worst_point).x, CURVE_POINT(curve, *worst_point).y, CURVE_POINT(curve, *worst_point).z, *worst_point, worst_error);
LOG(" Total error was %.3f.\n", total_error);
LOG(" Average error (over %u points) was %.3f.\n", CURVE_LENGTH(curve), total_error / CURVE_LENGTH(curve));
}
}
return worst_error;
}
/* Supposing that we have accepted the error, another question arises:
would we be better off just using a straight line? */
static gboolean spline_linear_enough(spline_type * spline, curve_type curve, fitting_opts_type * fitting_opts)
{
gfloat A, B, C;
unsigned this_point;
gfloat dist = 0.0, start_end_dist, threshold;
LOG("Checking linearity:\n");
A = END_POINT(*spline).x - START_POINT(*spline).x;
B = END_POINT(*spline).y - START_POINT(*spline).y;
C = END_POINT(*spline).z - START_POINT(*spline).z;
start_end_dist = (gfloat) (SQUARE(A) + SQUARE(B) + SQUARE(C));
LOG("start_end_distance is %.3f.\n", sqrt(start_end_dist));
LOG(" Line endpoints are (%.3f, %.3f, %.3f) and ", START_POINT(*spline).x, START_POINT(*spline).y, START_POINT(*spline).z);
LOG("(%.3f, %.3f, %.3f)\n", END_POINT(*spline).x, END_POINT(*spline).y, END_POINT(*spline).z);
/* LOG (" Line is %.3fx + %.3fy + %.3f = 0.\n", A, B, C); */
for (this_point = 0; this_point < CURVE_LENGTH(curve); this_point++) {
gfloat a, b, c, w;
gfloat t = CURVE_T(curve, this_point);
at_real_coord spline_point = evaluate_spline(*spline, t);
a = spline_point.x - START_POINT(*spline).x;
b = spline_point.y - START_POINT(*spline).y;
c = spline_point.z - START_POINT(*spline).z;
w = (A * a + B * b + C * c) / start_end_dist;
dist += (gfloat) sqrt(SQUARE(a - A * w) + SQUARE(b - B * w) + SQUARE(c - C * w));
}
LOG(" Total distance is %.3f, ", dist);
dist /= (CURVE_LENGTH(curve) - 1);
LOG("which is %.3f normalized.\n", dist);
/* We want reversion of short curves to splines to be more likely than
reversion of long curves, hence the second division by the curve
length, for use in `change_bad_lines'. */
SPLINE_LINEARITY(*spline) = dist;
LOG(" Final linearity: %.3f.\n", SPLINE_LINEARITY(*spline));
if (start_end_dist * (gfloat) 0.5 > fitting_opts->line_threshold)
threshold = fitting_opts->line_threshold;
else
threshold = start_end_dist * (gfloat) 0.5;
LOG("threshold is %.3f .\n", threshold);
if (dist < threshold)
return TRUE;
else
return FALSE;
}
/* Unfortunately, we cannot tell in isolation whether a given spline
should be changed to a line or not. That can only be known after the
entire curve has been fit to a list of splines. (The curve is the
pixel outline between two corners.) After subdividing the curve, a
line may very well fit a portion of the curve just as well as the
spline---but unless a spline is truly close to being a line, it
should not be combined with other lines. */
static void change_bad_lines(spline_list_type * spline_list, fitting_opts_type * fitting_opts)
{
unsigned this_spline;
gboolean found_cubic = FALSE;
unsigned length = SPLINE_LIST_LENGTH(*spline_list);
LOG("\nChecking for bad lines (length %u):\n", length);
/* First see if there are any splines in the fitted shape. */
for (this_spline = 0; this_spline < length; this_spline++) {
if (SPLINE_DEGREE(SPLINE_LIST_ELT(*spline_list, this_spline)) == CUBICTYPE) {
found_cubic = TRUE;
break;
}
}
/* If so, change lines back to splines (we haven't done anything to
their control points, so we only have to change the degree) unless
the spline is close enough to being a line. */
if (found_cubic)
for (this_spline = 0; this_spline < length; this_spline++) {
spline_type s = SPLINE_LIST_ELT(*spline_list, this_spline);
if (SPLINE_DEGREE(s) == LINEARTYPE) {
LOG(" #%u: ", this_spline);
if (SPLINE_LINEARITY(s) > fitting_opts->line_reversion_threshold) {
LOG("reverted, ");
SPLINE_DEGREE(SPLINE_LIST_ELT(*spline_list, this_spline))
= CUBICTYPE;
}
LOG("linearity %.3f.\n", SPLINE_LINEARITY(s));
}
} else
LOG(" No lines.\n");
}
/* Lists of array indices (well, that is what we use it for). */
static index_list_type new_index_list(void)
{
index_list_type index_list;
index_list.data = NULL;
INDEX_LIST_LENGTH(index_list) = 0;
return index_list;
}
static void free_index_list(index_list_type * index_list)
{
if (INDEX_LIST_LENGTH(*index_list) > 0) {
free(index_list->data);
index_list->data = NULL;
INDEX_LIST_LENGTH(*index_list) = 0;
}
}
static void append_index(index_list_type * list, unsigned new_index)
{
INDEX_LIST_LENGTH(*list)++;
XREALLOC(list->data, INDEX_LIST_LENGTH(*list) * sizeof(unsigned));
list->data[INDEX_LIST_LENGTH(*list) - 1] = new_index;
}
/* Turn an real point into a integer one. */
static at_coord real_to_int_coord(at_real_coord real_coord)
{
at_coord int_coord;
int_coord.x = lround(real_coord.x);
int_coord.y = lround(real_coord.y);
return int_coord;
}
/* Return the Euclidean distance between P1 and P2. */
static gfloat distance(at_real_coord p1, at_real_coord p2)
{
gfloat x = p1.x - p2.x, y = p1.y - p2.y, z = p1.z - p2.z;
return (gfloat) sqrt(SQUARE(x)
+ SQUARE(y) + SQUARE(z));
}
|