1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include "drawing-paintserver.h"
#include "cairo-utils.h"
namespace Inkscape {
DrawingPaintServer::~DrawingPaintServer() = default;
cairo_pattern_t *DrawingSolidColor::create_pattern(cairo_t *, Geom::OptRect const &, double opacity) const
{
return cairo_pattern_create_rgba(c[0], c[1], c[2], alpha * opacity);
}
void DrawingGradient::common_setup(cairo_pattern_t *pat, Geom::OptRect const &bbox, double opacity) const
{
// set spread type
switch (spread) {
case SP_GRADIENT_SPREAD_REFLECT:
cairo_pattern_set_extend(pat, CAIRO_EXTEND_REFLECT);
break;
case SP_GRADIENT_SPREAD_REPEAT:
cairo_pattern_set_extend(pat, CAIRO_EXTEND_REPEAT);
break;
case SP_GRADIENT_SPREAD_PAD:
default:
cairo_pattern_set_extend(pat, CAIRO_EXTEND_PAD);
break;
}
// set pattern transform matrix
auto gs2user = transform;
if (units == SP_GRADIENT_UNITS_OBJECTBOUNDINGBOX && bbox) {
auto bbox2user = Geom::Affine(bbox->width(), 0, 0, bbox->height(), bbox->left(), bbox->top());
gs2user *= bbox2user;
}
ink_cairo_pattern_set_matrix(pat, gs2user.inverse());
}
cairo_pattern_t *DrawingLinearGradient::create_pattern(cairo_t *, Geom::OptRect const &bbox, double opacity) const
{
auto pat = cairo_pattern_create_linear(x1, y1, x2, y2);
common_setup(pat, bbox, opacity);
// add stops
for (auto &stop : stops) {
// multiply stop opacity by paint opacity
cairo_pattern_add_color_stop_rgba(pat, stop.offset, stop.color.v.c[0], stop.color.v.c[1], stop.color.v.c[2], stop.opacity * opacity);
}
return pat;
}
cairo_pattern_t *DrawingRadialGradient::create_pattern(cairo_t *ct, Geom::OptRect const &bbox, double opacity) const
{
Geom::Point focus(fx, fy);
Geom::Point center(cx, cy);
double radius = r;
double focusr = fr;
double scale = 1.0;
double tolerance = cairo_get_tolerance(ct);
Geom::Affine gs2user = transform;
if (units == SP_GRADIENT_UNITS_OBJECTBOUNDINGBOX && bbox) {
Geom::Affine bbox2user(bbox->width(), 0, 0, bbox->height(), bbox->left(), bbox->top());
gs2user *= bbox2user;
}
// we need to use vectors with the same direction to represent the transformed
// radius and the focus-center delta, because gs2user might contain non-uniform scaling
Geom::Point d(focus - center);
Geom::Point d_user(d.length(), 0);
Geom::Point r_user(radius, 0);
Geom::Point fr_user(focusr, 0);
d_user *= gs2user.withoutTranslation();
r_user *= gs2user.withoutTranslation();
fr_user *= gs2user.withoutTranslation();
double dx = d_user.x(), dy = d_user.y();
cairo_user_to_device_distance(ct, &dx, &dy);
// compute the tolerance distance in user space
// create a vector with the same direction as the transformed d,
// with the length equal to tolerance
double dl = hypot(dx, dy);
double tx = tolerance * dx / dl, ty = tolerance * dy / dl;
cairo_device_to_user_distance(ct, &tx, &ty);
double tolerance_user = hypot(tx, ty);
if (d_user.length() + tolerance_user > r_user.length()) {
scale = r_user.length() / d_user.length();
// nudge the focus slightly inside
scale *= 1.0 - 2.0 * tolerance / dl;
}
auto pat = cairo_pattern_create_radial(scale * d.x() + center.x(), scale * d.y() + center.y(), focusr, center.x(), center.y(), radius);
common_setup(pat, bbox, opacity);
// add stops
for (auto &stop : stops) {
// multiply stop opacity by paint opacity
cairo_pattern_add_color_stop_rgba(pat, stop.offset, stop.color.v.c[0], stop.color.v.c[1], stop.color.v.c[2], stop.opacity * opacity);
}
return pat;
}
cairo_pattern_t *DrawingMeshGradient::create_pattern(cairo_t *, Geom::OptRect const &bbox, double opacity) const
{
#ifdef MESH_DEBUG
std::cout << "sp_meshgradient_create_pattern: " << bbox << " " << opacity << std::endl;
#endif
auto pat = cairo_pattern_create_mesh();
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
auto &data = patchdata[i][j];
cairo_mesh_pattern_begin_patch(pat);
cairo_mesh_pattern_move_to(pat, data.points[0][0].x(), data.points[0][0].y());
for (int k = 0; k < 4; k++) {
switch (data.pathtype[k]) {
case 'l':
case 'L':
case 'z':
case 'Z':
cairo_mesh_pattern_line_to(pat, data.points[k][3].x(), data.points[k][3].y());
break;
case 'c':
case 'C':
cairo_mesh_pattern_curve_to(pat, data.points[k][1].x(), data.points[k][1].y(),
data.points[k][2].x(), data.points[k][2].y(),
data.points[k][3].x(), data.points[k][3].y());
break;
default:
// Shouldn't happen
std::cerr << "sp_mesh_create_pattern: path error" << std::endl;
}
if (data.tensorIsSet[k]) {
Geom::Point t = data.tensorpoints[k];
cairo_mesh_pattern_set_control_point(pat, k, t.x(), t.y());
}
cairo_mesh_pattern_set_corner_color_rgba(pat, k,
data.color[k][0],
data.color[k][1],
data.color[k][2],
data.opacity[k] * opacity);
}
cairo_mesh_pattern_end_patch(pat);
}
}
// set pattern transform matrix
Geom::Affine gs2user = transform;
if (units == SP_GRADIENT_UNITS_OBJECTBOUNDINGBOX && bbox) {
Geom::Affine bbox2user(bbox->width(), 0, 0, bbox->height(), bbox->left(), bbox->top());
gs2user *= bbox2user;
}
ink_cairo_pattern_set_matrix(pat, gs2user.inverse());
return pat;
}
} // namespace Inkscape
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|