1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* feConvolveMatrix filter primitive renderer
*
* Authors:
* Felipe Corrêa da Silva Sanches <juca@members.fsf.org>
* Jasper van de Gronde <th.v.d.gronde@hccnet.nl>
*
* Copyright (C) 2007,2009 authors
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include <vector>
#include "display/cairo-templates.h"
#include "display/cairo-utils.h"
#include "display/nr-filter-convolve-matrix.h"
#include "display/nr-filter-slot.h"
#include "display/nr-filter-units.h"
#include "display/nr-filter-utils.h"
namespace Inkscape {
namespace Filters {
FilterConvolveMatrix::FilterConvolveMatrix() = default;
FilterConvolveMatrix::~FilterConvolveMatrix() = default;
enum PreserveAlphaMode
{
PRESERVE_ALPHA,
NO_PRESERVE_ALPHA
};
template <PreserveAlphaMode preserve_alpha>
struct ConvolveMatrix : public SurfaceSynth
{
ConvolveMatrix(cairo_surface_t *s, int targetX, int targetY, int orderX, int orderY,
double divisor, double bias, std::vector<double> const &kernel)
: SurfaceSynth(s)
, _kernel(kernel.size())
, _targetX(targetX)
, _targetY(targetY)
, _orderX(orderX)
, _orderY(orderY)
, _bias(bias)
{
for (unsigned i = 0; i < _kernel.size(); ++i) {
_kernel[i] = kernel[i] / divisor;
}
// the matrix is given rotated 180 degrees
// which corresponds to reverse element order
std::reverse(_kernel.begin(), _kernel.end());
}
guint32 operator()(int x, int y) const
{
int startx = std::max(0, x - _targetX);
int starty = std::max(0, y - _targetY);
int endx = std::min(_w, startx + _orderX);
int endy = std::min(_h, starty + _orderY);
int limitx = endx - startx;
int limity = endy - starty;
double suma = 0.0, sumr = 0.0, sumg = 0.0, sumb = 0.0;
for (int i = 0; i < limity; ++i) {
for (int j = 0; j < limitx; ++j) {
guint32 px = pixelAt(startx + j, starty + i);
double coeff = _kernel[i * _orderX + j];
EXTRACT_ARGB32(px, a,r,g,b)
sumr += r * coeff;
sumg += g * coeff;
sumb += b * coeff;
if (preserve_alpha == NO_PRESERVE_ALPHA) {
suma += a * coeff;
}
}
}
if (preserve_alpha == PRESERVE_ALPHA) {
suma = alphaAt(x, y);
} else {
suma += _bias * 255;
}
guint32 ao = pxclamp(round(suma), 0, 255);
guint32 ro = pxclamp(round(sumr + ao * _bias), 0, ao);
guint32 go = pxclamp(round(sumg + ao * _bias), 0, ao);
guint32 bo = pxclamp(round(sumb + ao * _bias), 0, ao);
ASSEMBLE_ARGB32(pxout, ao,ro,go,bo);
return pxout;
}
private:
std::vector<double> _kernel;
int _targetX, _targetY, _orderX, _orderY;
double _bias;
};
void FilterConvolveMatrix::render_cairo(FilterSlot &slot) const
{
static bool bias_warning = false;
static bool edge_warning = false;
if (orderX<=0 || orderY<=0) {
g_warning("Empty kernel!");
return;
}
if (targetX<0 || targetX>=orderX || targetY<0 || targetY>=orderY) {
g_warning("Invalid target!");
return;
}
if (kernelMatrix.size()!=(unsigned int)(orderX*orderY)) {
//g_warning("kernelMatrix does not have orderX*orderY elements!");
return;
}
cairo_surface_t *input = slot.getcairo(_input);
cairo_surface_t *out = ink_cairo_surface_create_identical(input);
// We may need to transform input surface to correct color interpolation space. The input surface
// might be used as input to another primitive but it is likely that all the primitives in a given
// filter use the same color interpolation space so we don't copy the input before converting.
set_cairo_surface_ci(out, color_interpolation);
set_cairo_surface_ci(input, color_interpolation);
if (bias != 0 && !bias_warning) {
g_warning("It is unknown whether Inkscape's implementation of bias in feConvolveMatrix is correct!");
bias_warning = true;
// The SVG specification implies that feConvolveMatrix is defined for premultiplied
// colors (which makes sense). It also says that bias should simply be added to the result
// for each color (without taking the alpha into account). However, it also says that one
// purpose of bias is "to have .5 gray value be the zero response of the filter".
// It seems sensible to indeed support the latter behaviour instead of the former,
// but this does appear to go against the standard.
// Note that Batik simply does not support bias!=0
}
if (edgeMode != CONVOLVEMATRIX_EDGEMODE_NONE && !edge_warning) {
g_warning("Inkscape only supports edgeMode=\"none\" (and a filter uses a different one)!");
edge_warning = true;
}
//guint32 *in_data = reinterpret_cast<guint32*>(cairo_image_surface_get_data(input));
//guint32 *out_data = reinterpret_cast<guint32*>(cairo_image_surface_get_data(out));
//int width = cairo_image_surface_get_width(input);
//int height = cairo_image_surface_get_height(input);
// Set up predivided kernel matrix
/*std::vector<double> kernel(kernelMatrix);
for(size_t i=0; i<kernel.size(); i++) {
kernel[i] /= divisor; // The code that creates this object makes sure that divisor != 0
}*/
if (preserveAlpha) {
//convolve2D<true>(out_data, in_data, width, height, &kernel.front(), orderX, orderY,
// targetX, targetY, bias);
ink_cairo_surface_synthesize(out, ConvolveMatrix<PRESERVE_ALPHA>(input,
targetX, targetY, orderX, orderY, divisor, bias, kernelMatrix));
} else {
//convolve2D<false>(out_data, in_data, width, height, &kernel.front(), orderX, orderY,
// targetX, targetY, bias);
ink_cairo_surface_synthesize(out, ConvolveMatrix<NO_PRESERVE_ALPHA>(input,
targetX, targetY, orderX, orderY, divisor, bias, kernelMatrix));
}
slot.set(_output, out);
cairo_surface_destroy(out);
}
void FilterConvolveMatrix::set_targetX(int coord)
{
targetX = coord;
}
void FilterConvolveMatrix::set_targetY(int coord)
{
targetY = coord;
}
void FilterConvolveMatrix::set_orderX(int coord)
{
orderX = coord;
}
void FilterConvolveMatrix::set_orderY(int coord)
{
orderY = coord;
}
void FilterConvolveMatrix::set_divisor(double d)
{
divisor = d;
}
void FilterConvolveMatrix::set_bias(double b)
{
bias = b;
}
void FilterConvolveMatrix::set_kernelMatrix(std::vector<gdouble> km)
{
kernelMatrix = std::move(km);
}
void FilterConvolveMatrix::set_edgeMode(FilterConvolveMatrixEdgeMode mode)
{
edgeMode = mode;
}
void FilterConvolveMatrix::set_preserveAlpha(bool pa)
{
preserveAlpha = pa;
}
void FilterConvolveMatrix::area_enlarge(Geom::IntRect &area, Geom::Affine const &/*trans*/) const
{
//Seems to me that since this filter's operation is resolution dependent,
// some spurious pixels may still appear at the borders when low zooming or rotating. Needs a better fix.
area.setMin(area.min() - Geom::IntPoint(targetX, targetY));
// This makes sure the last row/column in the original image corresponds
// to the last row/column in the new image that can be convolved without
// adjusting the boundary conditions).
area.setMax(area.max() + Geom::IntPoint(orderX - targetX - 1, orderY - targetY - 1));
}
double FilterConvolveMatrix::complexity(Geom::Affine const &) const
{
return kernelMatrix.size();
}
} // namespace Filters
} // namespace Inkscape
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|