1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
// SPDX-License-Identifier: GPL-2.0-or-later
/** @file
* \brief NodeSatellite a per node holder of data.
*//*
* Authors:
* see git history
* 2015 Jabier Arraiza Cenoz<jabier.arraiza@marker.es>
*
* Copyright (C) 2018 Authors
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include <2geom/curve.h>
#include <2geom/nearest-time.h>
#include <2geom/path-intersection.h>
#include <2geom/ray.h>
#include <2geom/sbasis-to-bezier.h>
#include <helper/geom-nodesatellite.h>
#include <optional>
// log cache
#ifdef _WIN32
#include <Windows.h>
#else
#include <sys/time.h>
#include <ctime>
#endif
///@brief NodeSatellite a per node holder of data.
NodeSatellite::NodeSatellite() = default;
NodeSatellite::NodeSatellite(NodeSatelliteType nodesatellite_type)
: nodesatellite_type(nodesatellite_type)
, is_time(false)
, selected(false)
, has_mirror(false)
, hidden(true)
, amount(0.0)
, angle(0.0)
, steps(0)
{}
NodeSatellite::~NodeSatellite() = default;
///Calculate the time in curve_in with a size of A
//TODO: find a better place to it
double timeAtArcLength(double const A, Geom::Curve const &curve_in)
{
if ( A == 0 || curve_in.isDegenerate()) {
return 0;
}
Geom::D2<Geom::SBasis> d2_in = curve_in.toSBasis();
double t = 0;
double length_part = curve_in.length();
if (A >= length_part || curve_in.isLineSegment()) {
if (length_part != 0) {
t = A / length_part;
}
} else if (!curve_in.isLineSegment()) {
std::vector<double> t_roots = roots(Geom::arcLengthSb(d2_in) - A);
if (!t_roots.empty()) {
t = t_roots[0];
}
}
return t;
}
///Calculate the size in curve_in with a point at A
//TODO: find a better place to it
double arcLengthAt(double const A, Geom::Curve const &curve_in)
{
if ( A == 0 || curve_in.isDegenerate()) {
return 0;
}
double s = 0;
double length_part = curve_in.length();
if (A > length_part || curve_in.isLineSegment()) {
s = (A * length_part);
} else if (!curve_in.isLineSegment()) {
Geom::Curve *curve = curve_in.portion(0.0, A);
s = curve->length();
delete curve;
}
return s;
}
/// Convert a arc radius of a fillet/chamfer to his nodesatellite length -point position where fillet/chamfer knot be on
/// original curve
double NodeSatellite::radToLen(double const A, Geom::Curve const &curve_in, Geom::Curve const &curve_out) const
{
double len = 0;
Geom::D2<Geom::SBasis> d2_in = curve_in.toSBasis();
Geom::D2<Geom::SBasis> d2_out = curve_out.toSBasis();
Geom::Piecewise<Geom::D2<Geom::SBasis> > offset_curve0 =
Geom::Piecewise<Geom::D2<Geom::SBasis> >(d2_in) +
rot90(unitVector(derivative(d2_in))) * (A);
Geom::Piecewise<Geom::D2<Geom::SBasis> > offset_curve1 =
Geom::Piecewise<Geom::D2<Geom::SBasis> >(d2_out) +
rot90(unitVector(derivative(d2_out))) * (A);
offset_curve0[0][0].normalize();
offset_curve0[0][1].normalize();
Geom::Path p0 = path_from_piecewise(offset_curve0, 0.1)[0];
offset_curve1[0][0].normalize();
offset_curve1[0][1].normalize();
Geom::Path p1 = path_from_piecewise(offset_curve1, 0.1)[0];
Geom::Crossings cs = Geom::crossings(p0, p1);
if (cs.size() > 0) {
Geom::Point cp = p0(cs[0].ta);
double p0pt = nearest_time(cp, curve_out);
len = arcLengthAt(p0pt, curve_out);
} else {
if (A > 0) {
len = radToLen(A * -1, curve_in, curve_out);
}
}
return len;
}
/// Convert a nodesatellite length -point position where fillet/chamfer knot be on original curve- to a arc radius of
/// fillet/chamfer
double NodeSatellite::lenToRad(double const A, Geom::Curve const &curve_in, Geom::Curve const &curve_out,
NodeSatellite const previousNodeSatellite) const
{
double time_in = (previousNodeSatellite).time(A, true, curve_in);
double time_out = timeAtArcLength(A, curve_out);
Geom::Point start_arc_point = curve_in.pointAt(time_in);
Geom::Point end_arc_point = curve_out.pointAt(time_out);
Geom::Curve *knot_curve1 = curve_in.portion(0, time_in);
Geom::Curve *knot_curve2 = curve_out.portion(time_out, 1);
Geom::CubicBezier const *cubic1 = dynamic_cast<Geom::CubicBezier const *>(&*knot_curve1);
Geom::Ray ray1(start_arc_point, curve_in.pointAt(1));
if (cubic1) {
ray1.setPoints((*cubic1)[2], start_arc_point);
}
Geom::CubicBezier const *cubic2 = dynamic_cast<Geom::CubicBezier const *>(&*knot_curve2);
Geom::Ray ray2(curve_out.pointAt(0), end_arc_point);
if (cubic2) {
ray2.setPoints(end_arc_point, (*cubic2)[1]);
}
bool ccw_toggle = cross(curve_in.pointAt(1) - start_arc_point,
end_arc_point - start_arc_point) < 0;
double distance_arc =
Geom::distance(start_arc_point, middle_point(start_arc_point, end_arc_point));
double angle = angle_between(ray1, ray2, ccw_toggle);
double divisor = std::sin(angle / 2.0);
if (divisor > 0) {
return distance_arc / divisor;
}
return 0;
}
/// Get the time position of the nodesatellite in curve_in
double NodeSatellite::time(Geom::Curve const &curve_in, bool inverse) const
{
double t = amount;
if (!is_time) {
t = time(t, inverse, curve_in);
} else if (inverse) {
t = 1-t;
}
if (t > 1) {
t = 1;
}
return t;
}
///Get the time from a length A in other curve, a boolean inverse given to reverse time
double NodeSatellite::time(double A, bool inverse, Geom::Curve const &curve_in) const
{
if (A == 0 && inverse) {
return 1;
}
if (A == 0 && !inverse) {
return 0;
}
if (!inverse) {
return timeAtArcLength(A, curve_in);
}
double length_part = curve_in.length();
A = length_part - A;
return timeAtArcLength(A, curve_in);
}
/// Get the length of the nodesatellite in curve_in
double NodeSatellite::arcDistance(Geom::Curve const &curve_in) const
{
double s = amount;
if (is_time) {
s = arcLengthAt(s, curve_in);
}
return s;
}
/// Get the point position of the nodesatellite
Geom::Point NodeSatellite::getPosition(Geom::Curve const &curve_in, bool inverse) const
{
double t = time(curve_in, inverse);
return curve_in.pointAt(t);
}
/// Set the position of the nodesatellite from a given point P
void NodeSatellite::setPosition(Geom::Point const p, Geom::Curve const &curve_in, bool inverse)
{
Geom::Curve * curve = const_cast<Geom::Curve *>(&curve_in);
if (inverse) {
curve = curve->reverse();
}
double A = Geom::nearest_time(p, *curve);
if (!is_time) {
A = arcLengthAt(A, *curve);
}
amount = A;
}
/// Map a nodesatellite type with gchar
void NodeSatellite::setNodeSatellitesType(gchar const *A)
{
std::map<std::string, NodeSatelliteType> gchar_map_to_nodesatellite_type = boost::assign::map_list_of("F", FILLET)(
"IF", INVERSE_FILLET)("C", CHAMFER)("IC", INVERSE_CHAMFER)("KO", INVALID_SATELLITE);
std::map<std::string, NodeSatelliteType>::iterator it = gchar_map_to_nodesatellite_type.find(std::string(A));
if (it != gchar_map_to_nodesatellite_type.end()) {
nodesatellite_type = it->second;
}
}
/// Map a gchar with nodesatelliteType
gchar const *NodeSatellite::getNodeSatellitesTypeGchar() const
{
std::map<NodeSatelliteType, gchar const *> nodesatellite_type_to_gchar_map = boost::assign::map_list_of(
FILLET, "F")(INVERSE_FILLET, "IF")(CHAMFER, "C")(INVERSE_CHAMFER, "IC")(INVALID_SATELLITE, "KO");
return nodesatellite_type_to_gchar_map.at(nodesatellite_type);
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|