1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Specific geometry functions for Inkscape, not provided my lib2geom.
*
* Author:
* Johan Engelen <goejendaagh@zonnet.nl>
*
* Copyright (C) 2008 Johan Engelen
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include <algorithm>
#include <array>
#include <cmath>
#include "helper/geom.h"
#include "helper/geom-curves.h"
#include <glib.h>
#include <2geom/curves.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/path-intersection.h>
#include <2geom/convex-hull.h>
using Geom::X;
using Geom::Y;
//#################################################################################
// BOUNDING BOX CALCULATIONS
/* Fast bbox calculation */
/* Thanks to Nathan Hurst for suggesting it */
static void
cubic_bbox (Geom::Coord x000, Geom::Coord y000, Geom::Coord x001, Geom::Coord y001, Geom::Coord x011, Geom::Coord y011, Geom::Coord x111, Geom::Coord y111, Geom::Rect &bbox)
{
Geom::Coord a, b, c, D;
bbox[0].expandTo(x111);
bbox[1].expandTo(y111);
// It already contains (x000,y000) and (x111,y111)
// All points of the Bezier lie in the convex hull of (x000,y000), (x001,y001), (x011,y011) and (x111,y111)
// So, if it also contains (x001,y001) and (x011,y011) we don't have to compute anything else!
// Note that we compute it for the X and Y range separately to make it easier to use them below
bool containsXrange = bbox[0].contains(x001) && bbox[0].contains(x011);
bool containsYrange = bbox[1].contains(y001) && bbox[1].contains(y011);
/*
* xttt = s * (s * (s * x000 + t * x001) + t * (s * x001 + t * x011)) + t * (s * (s * x001 + t * x011) + t * (s * x011 + t * x111))
* xttt = s * (s2 * x000 + s * t * x001 + t * s * x001 + t2 * x011) + t * (s2 * x001 + s * t * x011 + t * s * x011 + t2 * x111)
* xttt = s * (s2 * x000 + 2 * st * x001 + t2 * x011) + t * (s2 * x001 + 2 * st * x011 + t2 * x111)
* xttt = s3 * x000 + 2 * s2t * x001 + st2 * x011 + s2t * x001 + 2st2 * x011 + t3 * x111
* xttt = s3 * x000 + 3s2t * x001 + 3st2 * x011 + t3 * x111
* xttt = s3 * x000 + (1 - s) 3s2 * x001 + (1 - s) * (1 - s) * 3s * x011 + (1 - s) * (1 - s) * (1 - s) * x111
* xttt = s3 * x000 + (3s2 - 3s3) * x001 + (3s - 6s2 + 3s3) * x011 + (1 - 2s + s2 - s + 2s2 - s3) * x111
* xttt = (x000 - 3 * x001 + 3 * x011 - x111) * s3 +
* ( 3 * x001 - 6 * x011 + 3 * x111) * s2 +
* ( 3 * x011 - 3 * x111) * s +
* ( x111)
* xttt' = (3 * x000 - 9 * x001 + 9 * x011 - 3 * x111) * s2 +
* ( 6 * x001 - 12 * x011 + 6 * x111) * s +
* ( 3 * x011 - 3 * x111)
*/
if (!containsXrange) {
a = 3 * x000 - 9 * x001 + 9 * x011 - 3 * x111;
b = 6 * x001 - 12 * x011 + 6 * x111;
c = 3 * x011 - 3 * x111;
/*
* s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a;
*/
if (fabs (a) < Geom::EPSILON) {
/* s = -c / b */
if (fabs (b) > Geom::EPSILON) {
double s;
s = -c / b;
if ((s > 0.0) && (s < 1.0)) {
double t = 1.0 - s;
double xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111;
bbox[0].expandTo(xttt);
}
}
} else {
/* s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a; */
D = b * b - 4 * a * c;
if (D >= 0.0) {
Geom::Coord d, s, t, xttt;
/* Have solution */
d = sqrt (D);
s = (-b + d) / (2 * a);
if ((s > 0.0) && (s < 1.0)) {
t = 1.0 - s;
xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111;
bbox[0].expandTo(xttt);
}
s = (-b - d) / (2 * a);
if ((s > 0.0) && (s < 1.0)) {
t = 1.0 - s;
xttt = s * s * s * x000 + 3 * s * s * t * x001 + 3 * s * t * t * x011 + t * t * t * x111;
bbox[0].expandTo(xttt);
}
}
}
}
if (!containsYrange) {
a = 3 * y000 - 9 * y001 + 9 * y011 - 3 * y111;
b = 6 * y001 - 12 * y011 + 6 * y111;
c = 3 * y011 - 3 * y111;
if (fabs (a) < Geom::EPSILON) {
/* s = -c / b */
if (fabs (b) > Geom::EPSILON) {
double s;
s = -c / b;
if ((s > 0.0) && (s < 1.0)) {
double t = 1.0 - s;
double yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111;
bbox[1].expandTo(yttt);
}
}
} else {
/* s = (-b +/- sqrt (b * b - 4 * a * c)) / 2 * a; */
D = b * b - 4 * a * c;
if (D >= 0.0) {
Geom::Coord d, s, t, yttt;
/* Have solution */
d = sqrt (D);
s = (-b + d) / (2 * a);
if ((s > 0.0) && (s < 1.0)) {
t = 1.0 - s;
yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111;
bbox[1].expandTo(yttt);
}
s = (-b - d) / (2 * a);
if ((s > 0.0) && (s < 1.0)) {
t = 1.0 - s;
yttt = s * s * s * y000 + 3 * s * s * t * y001 + 3 * s * t * t * y011 + t * t * t * y111;
bbox[1].expandTo(yttt);
}
}
}
}
}
Geom::OptRect
bounds_fast_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
return bounds_exact_transformed(pv, t); //use this as it is faster for now! :)
// return Geom::bounds_fast(pv * t);
}
Geom::OptRect bounds_exact_transformed(Geom::PathVector const &pv, Geom::Affine const &t)
{
if (pv.empty()) {
return {};
}
auto const initial = pv.front().initialPoint() * t;
// Obtain non-empty initial bbox to avoid having to deal with OptRect.
auto bbox = Geom::Rect(initial, initial);
for (auto const &path : pv) {
bbox.expandTo(path.initialPoint() * t);
// Don't loop including closing segment, since that segment can never increase the bbox.
for (auto curve = path.begin(); curve != path.end_open(); ++curve) {
curve->expandToTransformed(bbox, t);
}
}
return bbox;
}
bool pathv_similar(Geom::PathVector const &apv, Geom::PathVector const &bpv, double precision)
{
if (apv == bpv) {
return true;
}
size_t totala = apv.curveCount();
if (totala != bpv.curveCount()) {
return false;
}
for (size_t i = 0; i < totala; i++) {
for (auto f : { 0.2, 0.4, 0.0 }) {
if (!Geom::are_near(apv.pointAt(i + f), bpv.pointAt(i + f), precision)) {
return false;
}
}
}
return true;
}
size_t
pathv_real_size(Geom::Path path)
{
size_t psize = path.size_default();
if (path.closed()) {
const Geom::Curve &closingline = path.back_closed();
if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
psize = path.size_open();
}
}
return psize;
}
static void
geom_line_wind_distance (Geom::Coord x0, Geom::Coord y0, Geom::Coord x1, Geom::Coord y1, Geom::Point const &pt, int *wind, Geom::Coord *best)
{
Geom::Coord Ax, Ay, Bx, By, Dx, Dy, s;
Geom::Coord dist2;
/* Find distance */
Ax = x0;
Ay = y0;
Bx = x1;
By = y1;
Dx = x1 - x0;
Dy = y1 - y0;
const Geom::Coord Px = pt[X];
const Geom::Coord Py = pt[Y];
if (best) {
s = ((Px - Ax) * Dx + (Py - Ay) * Dy) / (Dx * Dx + Dy * Dy);
if (s <= 0.0) {
dist2 = (Px - Ax) * (Px - Ax) + (Py - Ay) * (Py - Ay);
} else if (s >= 1.0) {
dist2 = (Px - Bx) * (Px - Bx) + (Py - By) * (Py - By);
} else {
Geom::Coord Qx, Qy;
Qx = Ax + s * Dx;
Qy = Ay + s * Dy;
dist2 = (Px - Qx) * (Px - Qx) + (Py - Qy) * (Py - Qy);
}
if (dist2 < (*best * *best)) *best = sqrt (dist2);
}
if (wind) {
/* Find wind */
if ((Ax >= Px) && (Bx >= Px)) return;
if ((Ay >= Py) && (By >= Py)) return;
if ((Ay < Py) && (By < Py)) return;
if (Ay == By) return;
/* Ctach upper y bound */
if (Ay == Py) {
if (Ax < Px) *wind -= 1;
return;
} else if (By == Py) {
if (Bx < Px) *wind += 1;
return;
} else {
Geom::Coord Qx;
/* Have to calculate intersection */
Qx = Ax + Dx * (Py - Ay) / Dy;
if (Qx < Px) {
*wind += (Dy > 0.0) ? 1 : -1;
}
}
}
}
static void
geom_cubic_bbox_wind_distance (Geom::Coord x000, Geom::Coord y000,
Geom::Coord x001, Geom::Coord y001,
Geom::Coord x011, Geom::Coord y011,
Geom::Coord x111, Geom::Coord y111,
Geom::Point const &pt,
Geom::Rect *bbox, int *wind, Geom::Coord *best,
Geom::Coord tolerance)
{
Geom::Coord x0, y0, x1, y1, len2;
int needdist, needwind;
const Geom::Coord Px = pt[X];
const Geom::Coord Py = pt[Y];
needdist = 0;
needwind = 0;
if (bbox) cubic_bbox (x000, y000, x001, y001, x011, y011, x111, y111, *bbox);
x0 = std::min (x000, x001);
x0 = std::min (x0, x011);
x0 = std::min (x0, x111);
y0 = std::min (y000, y001);
y0 = std::min (y0, y011);
y0 = std::min (y0, y111);
x1 = std::max (x000, x001);
x1 = std::max (x1, x011);
x1 = std::max (x1, x111);
y1 = std::max (y000, y001);
y1 = std::max (y1, y011);
y1 = std::max (y1, y111);
if (best) {
/* Quickly adjust to endpoints */
len2 = (x000 - Px) * (x000 - Px) + (y000 - Py) * (y000 - Py);
if (len2 < (*best * *best)) *best = (Geom::Coord) sqrt (len2);
len2 = (x111 - Px) * (x111 - Px) + (y111 - Py) * (y111 - Py);
if (len2 < (*best * *best)) *best = (Geom::Coord) sqrt (len2);
if (((x0 - Px) < *best) && ((y0 - Py) < *best) && ((Px - x1) < *best) && ((Py - y1) < *best)) {
/* Point is inside sloppy bbox */
/* Now we have to decide, whether subdivide */
/* fixme: (Lauris) */
if (((y1 - y0) > 5.0) || ((x1 - x0) > 5.0)) {
needdist = 1;
}
}
}
if (!needdist && wind) {
if ((y1 >= Py) && (y0 < Py) && (x0 < Px)) {
/* Possible intersection at the left */
/* Now we have to decide, whether subdivide */
/* fixme: (Lauris) */
if (((y1 - y0) > 5.0) || ((x1 - x0) > 5.0)) {
needwind = 1;
}
}
}
if (needdist || needwind) {
Geom::Coord x00t, x0tt, xttt, x1tt, x11t, x01t;
Geom::Coord y00t, y0tt, yttt, y1tt, y11t, y01t;
Geom::Coord s, t;
t = 0.5;
s = 1 - t;
x00t = s * x000 + t * x001;
x01t = s * x001 + t * x011;
x11t = s * x011 + t * x111;
x0tt = s * x00t + t * x01t;
x1tt = s * x01t + t * x11t;
xttt = s * x0tt + t * x1tt;
y00t = s * y000 + t * y001;
y01t = s * y001 + t * y011;
y11t = s * y011 + t * y111;
y0tt = s * y00t + t * y01t;
y1tt = s * y01t + t * y11t;
yttt = s * y0tt + t * y1tt;
geom_cubic_bbox_wind_distance (x000, y000, x00t, y00t, x0tt, y0tt, xttt, yttt, pt, nullptr, wind, best, tolerance);
geom_cubic_bbox_wind_distance (xttt, yttt, x1tt, y1tt, x11t, y11t, x111, y111, pt, nullptr, wind, best, tolerance);
} else {
geom_line_wind_distance (x000, y000, x111, y111, pt, wind, best);
}
}
static void
geom_curve_bbox_wind_distance(Geom::Curve const & c, Geom::Affine const &m,
Geom::Point const &pt,
Geom::Rect *bbox, int *wind, Geom::Coord *dist,
Geom::Coord tolerance, Geom::Rect const *viewbox,
Geom::Point &p0) // pass p0 through as it represents the last endpoint added (the finalPoint of last curve)
{
unsigned order = 0;
if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
order = b->order();
}
if (order == 1) {
Geom::Point pe = c.finalPoint() * m;
if (bbox) {
bbox->expandTo(pe);
}
if (dist || wind) {
if (wind) { // we need to pick fill, so do what we're told
geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist);
} else { // only stroke is being picked; skip this segment if it's totally outside the viewbox
Geom::Rect swept(p0, pe);
if (!viewbox || swept.intersects(*viewbox))
geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist);
}
}
p0 = pe;
}
else if (order == 3) {
Geom::CubicBezier const& cubic_bezier = static_cast<Geom::CubicBezier const&>(c);
Geom::Point p1 = cubic_bezier[1] * m;
Geom::Point p2 = cubic_bezier[2] * m;
Geom::Point p3 = cubic_bezier[3] * m;
// get approximate bbox from handles (convex hull property of beziers):
Geom::Rect swept(p0, p3);
swept.expandTo(p1);
swept.expandTo(p2);
if (!viewbox || swept.intersects(*viewbox)) { // we see this segment, so do full processing
geom_cubic_bbox_wind_distance ( p0[X], p0[Y],
p1[X], p1[Y],
p2[X], p2[Y],
p3[X], p3[Y],
pt,
bbox, wind, dist, tolerance);
} else {
if (wind) { // if we need fill, we can just pretend it's a straight line
geom_line_wind_distance (p0[X], p0[Y], p3[X], p3[Y], pt, wind, dist);
} else { // otherwise, skip it completely
}
}
p0 = p3;
} else {
//this case handles sbasis as well as all other curve types
try {
Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1);
//recurse to convert the new path resulting from the sbasis to svgd
for (const auto & iter : sbasis_path) {
geom_curve_bbox_wind_distance(iter, m, pt, bbox, wind, dist, tolerance, viewbox, p0);
}
} catch (const Geom::Exception &e) {
// Curve isFinite failed.
g_warning("Error parsing curve: %s", e.what());
}
}
}
bool
pointInTriangle(Geom::Point const &p, Geom::Point const &p1, Geom::Point const &p2, Geom::Point const &p3)
{
//http://totologic.blogspot.com.es/2014/01/accurate-point-in-triangle-test.html
using Geom::X;
using Geom::Y;
double denominator = (p1[X]*(p2[Y] - p3[Y]) + p1[Y]*(p3[X] - p2[X]) + p2[X]*p3[Y] - p2[Y]*p3[X]);
double t1 = (p[X]*(p3[Y] - p1[Y]) + p[Y]*(p1[X] - p3[X]) - p1[X]*p3[Y] + p1[Y]*p3[X]) / denominator;
double t2 = (p[X]*(p2[Y] - p1[Y]) + p[Y]*(p1[X] - p2[X]) - p1[X]*p2[Y] + p1[Y]*p2[X]) / -denominator;
double s = t1 + t2;
return 0 <= t1 && t1 <= 1 && 0 <= t2 && t2 <= 1 && s <= 1;
}
/* Calculates...
and returns ... in *wind and the distance to ... in *dist.
Returns bounding box in *bbox if bbox!=NULL.
*/
void
pathv_matrix_point_bbox_wind_distance (Geom::PathVector const & pathv, Geom::Affine const &m, Geom::Point const &pt,
Geom::Rect *bbox, int *wind, Geom::Coord *dist,
Geom::Coord tolerance, Geom::Rect const *viewbox)
{
if (pathv.empty()) {
if (wind) *wind = 0;
if (dist) *dist = Geom::infinity();
return;
}
// remember last point of last curve
Geom::Point p0(0,0);
// remembering the start of subpath
Geom::Point p_start(0,0);
bool start_set = false;
for (const auto & it : pathv) {
if (start_set) { // this is a new subpath
if (wind && (p0 != p_start)) // for correct fill picking, each subpath must be closed
geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
}
p0 = it.initialPoint() * m;
p_start = p0;
start_set = true;
if (bbox) {
bbox->expandTo(p0);
}
// loop including closing segment if path is closed
for (Geom::Path::const_iterator cit = it.begin(); cit != it.end_default(); ++cit) {
geom_curve_bbox_wind_distance(*cit, m, pt, bbox, wind, dist, tolerance, viewbox, p0);
}
}
if (start_set) {
if (wind && (p0 != p_start)) // for correct picking, each subpath must be closed
geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
}
}
//#################################################################################
/**
* An exact check for whether the two pathvectors intersect or overlap, including the case of
* a line crossing through a solid shape.
*/
bool pathvs_have_nonempty_overlap(Geom::PathVector const &a, Geom::PathVector const &b)
{
// Fast negative check using bounds.
auto intersected_bounds = a.boundsFast() & b.boundsFast();
if (!intersected_bounds) {
return false;
}
// Slightly slower positive check using vertex containment.
for (auto &node : b.nodes()) {
if (a.winding(node)) {
return true;
}
}
for (auto &node : a.nodes()) {
if (b.winding(node)) {
return true;
}
}
// The winding method may not detect nodeless Bézier arcs in one pathvector glancing
// the edge of the other pathvector. We must deal with this possibility by also checking for
// intersections of boundaries.
auto crossings = Geom::SimpleCrosser().crossings(a, b);
if (crossings.empty()) {
return false;
}
auto is_empty = [](Geom::Crossings const &xings) -> bool { return xings.empty(); };
if (!std::all_of(crossings.begin(), crossings.end(), is_empty)) { // An intersection has been found
return true;
}
return false;
}
/*
* Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or
* Geom::VLineSegment or Geom::CubicBezier.
*/
Geom::PathVector
pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv )
{
Geom::PathVector output;
for (const auto & pit : pathv) {
output.push_back( Geom::Path() );
output.back().setStitching(true);
output.back().start( pit.initialPoint() );
for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_open(); ++cit) {
if (is_straight_curve(*cit)) {
Geom::LineSegment l(cit->initialPoint(), cit->finalPoint());
output.back().append(l);
} else {
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
if (curve && curve->order() == 3) {
Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
output.back().append(b);
} else {
// convert all other curve types to cubicbeziers
try {
Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1);
cubicbezier_path.close(false);
output.back().append(cubicbezier_path);
} catch (const Geom::Exception &e) {
// Curve isFinite failed.
g_warning("Error parsing curve: %s", e.what());
break;
}
}
}
}
output.back().close( pit.closed() );
}
return output;
}
/*
* Converts all segments in all paths to Geom::LineSegment. There is an intermediate
* stage where some may be converted to beziers. maxdisp is the maximum displacement from
* the line segment to the bezier curve; ** maxdisp is not used at this moment **.
*
* This is NOT a terribly fast method, but it should give a solution close to the one with the
* fewest points.
*/
Geom::PathVector
pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/)
{
Geom::PathVector output;
Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv);
// Now all path segments are either already lines, or they are beziers.
for (const auto & pit : tmppath) {
output.push_back( Geom::Path() );
output.back().start( pit.initialPoint() );
output.back().close( pit.closed() );
for (Geom::Path::const_iterator cit = pit.begin(); cit != pit.end_open(); ++cit) {
if (is_straight_curve(*cit)) {
Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint());
output.back().append(ls);
}
else { /* all others must be Bezier curves */
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
std::vector<Geom::Point> bzrpoints = curve->controlPoints();
Geom::Point A = bzrpoints[0];
Geom::Point B = bzrpoints[1];
Geom::Point C = bzrpoints[2];
Geom::Point D = bzrpoints[3];
std::vector<Geom::Point> pointlist;
pointlist.push_back(A);
recursive_bezier4(
A[X], A[Y],
B[X], B[Y],
C[X], C[Y],
D[X], D[Y],
pointlist,
0);
pointlist.push_back(D);
Geom::Point r1 = pointlist[0];
for (unsigned int i=1; i<pointlist.size();i++){
Geom::Point prev_r1 = r1;
r1 = pointlist[i];
Geom::LineSegment ls(prev_r1, r1);
output.back().append(ls);
}
pointlist.clear();
}
}
}
return output;
}
/*
* Converts all segments in all paths to Geom Cubic bezier.
* This is used in lattice2 LPE, maybe is better move the function to the effect
* But maybe could be usable by others, so i put here.
* The straight curve part is needed as is for the effect to work appropriately
*/
Geom::PathVector
pathv_to_cubicbezier( Geom::PathVector const &pathv, bool nolines)
{
Geom::PathVector output;
for (const auto & pit : pathv) {
if (pit.empty()) {
continue;
}
output.push_back( Geom::Path() );
output.back().start( pit.initialPoint() );
output.back().close( pit.closed() );
bool end_open = false;
if (pit.closed()) {
const Geom::Curve &closingline = pit.back_closed();
if (!are_near(closingline.initialPoint(), closingline.finalPoint())) {
end_open = true;
}
}
Geom::Path pitCubic = (Geom::Path)pit;
if(end_open && pit.closed()){
pitCubic.close(false);
pitCubic.appendNew<Geom::LineSegment>( pitCubic.initialPoint() );
pitCubic.close(true);
}
for (Geom::Path::iterator cit = pitCubic.begin(); cit != pitCubic.end_open(); ++cit) {
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
// is_straight curves dont work for bspline
if (nolines && is_straight_curve(*cit)) {
Geom::CubicBezier b(cit->initialPoint(), cit->pointAt(0.3334), cit->finalPoint(), cit->finalPoint());
output.back().append(b);
} else if (Geom::are_near((*curve)[0],(*curve)[1]) && Geom::are_near((*curve)[2],(*curve)[3])){
Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint());
output.back().append(ls);
} else {
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
if (curve && curve->order() == 3) {
Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
output.back().append(b);
} else {
// convert all other curve types to cubicbeziers
Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1);
output.back().append(cubicbezier_path);
}
}
}
}
return output;
}
//Study move to 2Geom
size_t
count_pathvector_nodes(Geom::PathVector const &pathv) {
size_t tot = 0;
for (auto const &subpath : pathv) {
tot += count_path_nodes(subpath);
}
return tot;
}
size_t
count_pathvector_degenerations(Geom::PathVector const &pathv) {
size_t tot = 0;
for (auto const &subpath : pathv) {
tot += count_path_degenerations(subpath);
}
return tot;
}
size_t count_path_degenerations(Geom::Path const &path)
{
size_t tot = 0;
Geom::Path::const_iterator curve_it = path.begin();
Geom::Path::const_iterator curve_endit = path.end_default();
if (path.closed()) {
const Geom::Curve &closingline = path.back_closed();
// the closing line segment is always of type
// Geom::LineSegment.
if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
// closingline.isDegenerate() did not work, because it only checks for
// *exact* zero length, which goes wrong for relative coordinates and
// rounding errors...
// the closing line segment has zero-length. So stop before that one!
curve_endit = path.end_open();
}
}
while (curve_it != curve_endit) {
if (curve_it->isDegenerate()) {
tot += 1;
}
++curve_it;
}
return tot;
}
size_t count_path_nodes(Geom::Path const &path)
{
size_t tot = path.size_closed();
if (path.closed()) {
const Geom::Curve &closingline = path.back_closed();
// the closing line segment is always of type
// Geom::LineSegment.
if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
// closingline.isDegenerate() did not work, because it only checks for
// *exact* zero length, which goes wrong for relative coordinates and
// rounding errors...
// the closing line segment has zero-length. So stop before that one!
tot -= 1;
}
}
return tot;
}
// The next routine is modified from curv4_div::recursive_bezier from file agg_curves.cpp
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://antigrain.com
//
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
void
recursive_bezier4(const double x1, const double y1,
const double x2, const double y2,
const double x3, const double y3,
const double x4, const double y4,
std::vector<Geom::Point> &m_points,
int level)
{
// some of these should be parameters, but do it this way for now.
const double curve_collinearity_epsilon = 1e-30;
const double curve_angle_tolerance_epsilon = 0.01;
double m_cusp_limit = 0.0;
double m_angle_tolerance = 0.0;
double m_approximation_scale = 1.0;
double m_distance_tolerance_square = 0.5 / m_approximation_scale;
m_distance_tolerance_square *= m_distance_tolerance_square;
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
#define calc_sq_distance(A,B,C,D) ((A-C)*(A-C) + (B-D)*(B-D))
if(level > curve_recursion_limit)
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x34 = (x3 + x4) / 2;
double y34 = (y3 + y4) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double x234 = (x23 + x34) / 2;
double y234 = (y23 + y34) / 2;
double x1234 = (x123 + x234) / 2;
double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
double dx = x4-x1;
double dy = y4-y1;
double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
double da1, da2, k;
switch((int(d2 > curve_collinearity_epsilon) << 1) +
int(d3 > curve_collinearity_epsilon))
{
case 0:
// All collinear OR p1==p4
//----------------------
k = dx*dx + dy*dy;
if(k == 0)
{
d2 = calc_sq_distance(x1, y1, x2, y2);
d3 = calc_sq_distance(x4, y4, x3, y3);
}
else
{
k = 1 / k;
da1 = x2 - x1;
da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
da1 = x3 - x1;
da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
{
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1);
else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4);
else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy);
if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1);
else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4);
else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
if(d2 > d3)
{
if(d2 < m_distance_tolerance_square)
{
m_points.emplace_back(x2, y2);
return;
}
}
else
{
if(d3 < m_distance_tolerance_square)
{
m_points.emplace_back(x3, y3);
return;
}
}
break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if(m_angle_tolerance < curve_angle_tolerance_epsilon)
{
m_points.emplace_back(x23, y23);
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if(da1 >= M_PI) da1 = 2*M_PI - da1;
if(da1 < m_angle_tolerance)
{
m_points.emplace_back(x2, y2);
m_points.emplace_back(x3, y3);
return;
}
if(m_cusp_limit != 0.0)
{
if(da1 > m_cusp_limit)
{
m_points.emplace_back(x3, y3);
return;
}
}
}
break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if(m_angle_tolerance < curve_angle_tolerance_epsilon)
{
m_points.emplace_back(x23, y23);
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if(da1 >= M_PI) da1 = 2*M_PI - da1;
if(da1 < m_angle_tolerance)
{
m_points.emplace_back(x2, y2);
m_points.emplace_back(x3, y3);
return;
}
if(m_cusp_limit != 0.0)
{
if(da1 > m_cusp_limit)
{
m_points.emplace_back(x2, y2);
return;
}
}
}
break;
case 3:
// Regular case
//-----------------
if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if(m_angle_tolerance < curve_angle_tolerance_epsilon)
{
m_points.emplace_back(x23, y23);
return;
}
// Angle & Cusp Condition
//----------------------
k = atan2(y3 - y2, x3 - x2);
da1 = fabs(k - atan2(y2 - y1, x2 - x1));
da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if(da1 >= M_PI) da1 = 2*M_PI - da1;
if(da2 >= M_PI) da2 = 2*M_PI - da2;
if(da1 + da2 < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
m_points.emplace_back(x23, y23);
return;
}
if(m_cusp_limit != 0.0)
{
if(da1 > m_cusp_limit)
{
m_points.emplace_back(x2, y2);
return;
}
if(da2 > m_cusp_limit)
{
m_points.emplace_back(x3, y3);
return;
}
}
}
break;
}
// Continue subdivision
//----------------------
recursive_bezier4(x1, y1, x12, y12, x123, y123, x1234, y1234, m_points, level + 1);
recursive_bezier4(x1234, y1234, x234, y234, x34, y34, x4, y4, m_points, level + 1);
}
/**
* Returns whether an affine transformation is approximately a dihedral transformation, i.e.
* it maps the axis-aligned unit square centred at the origin to itself.
*/
bool approx_dihedral(Geom::Affine const &affine, double eps)
{
// Ensure translation is zero.
if (std::abs(affine[4]) > eps || std::abs(affine[5]) > eps) return false;
// Ensure matrix has integer components.
std::array<int, 4> arr;
for (int i = 0; i < 4; i++) {
arr[i] = std::round(affine[i]);
if (std::abs(affine[i] - arr[i]) > eps) return false;
arr[i] = std::abs(arr[i]);
}
// Ensure rounded matrix is correct.
return arr == std::array {1, 0, 0, 1 } || arr == std::array{ 0, 1, 1, 0 };
}
/**
* Computes the rotation which puts a set of points in a position where they can be wrapped in the
* smallest possible axis-aligned rectangle, and returns it along with the rectangle.
*/
std::pair<Geom::Affine, Geom::Rect> min_bounding_box(std::vector<Geom::Point> const &pts)
{
// Compute the convex hull.
auto const hull = Geom::ConvexHull(pts);
// Move the point i along until it maximises distance in the direction n.
auto advance = [&] (int &i, Geom::Point const &n) {
auto ih = Geom::dot(hull[i], n);
while (true) {
int j = (i + 1) % hull.size();
auto jh = Geom::dot(hull[j], n);
if (ih >= jh) break;
i = j;
ih = jh;
}
};
double mina = std::numeric_limits<double>::max();
std::pair<Geom::Affine, Geom::Rect> result;
// Run rotating callipers.
int j, k, l;
for (int i = 0; i < hull.size(); i++) {
// Get the current segment.
auto &p1 = hull[i];
auto &p2 = hull[(i + 1) % hull.size()];
auto v = (p2 - p1).normalized();
auto n = Geom::Point(-v.y(), v.x());
if (i == 0) {
// Initialise the points.
j = 0; advance(j, v);
k = j; advance(k, n);
l = k; advance(l, -v);
} else {
// Advance the points.
advance(j, v);
advance(k, n);
advance(l, -v);
}
// Compute the dimensions of the unconstrained rectangle.
auto w = Geom::dot(hull[j] - hull[l], v);
auto h = Geom::dot(hull[k] - hull[i], n);
auto a = w * h;
// Track the minimum.
if (a < mina) {
mina = a;
result = std::make_pair(Geom::Affine(v.x(), -v.y(), v.y(), v.x(), 0.0, 0.0),
Geom::Rect::from_xywh(Geom::dot(hull[l], v), Geom::dot(hull[i], n), w, h));
}
}
return result;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|