summaryrefslogtreecommitdiffstats
path: root/src/livarot/PathSimplify.cpp
blob: 4317783952fd14bb0747659cb250a2657143e92b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
// SPDX-License-Identifier: GPL-2.0-or-later
/** @file
 * TODO: insert short description here
 *//*
 * Authors:
 * see git history
 * Fred
 *
 * Copyright (C) 2018 Authors
 * Released under GNU GPL v2+, read the file 'COPYING' for more information.
 */

#include <memory>
#include <glib.h>
#include <2geom/affine.h>
#include "livarot/Path.h"
#include "livarot/path-description.h"

/*
 * Reassembling polyline segments into cubic bezier patches
 * thes functions do not need the back data. but they are slower than recomposing
 * path descriptions when you have said back data (it's always easier with a model)
 * there's a bezier fitter in bezier-utils.cpp too. the main difference is the way bezier patch are split
 * here: walk on the polyline, trying to extend the portion you can fit by respecting the treshhold, split when 
 * treshhold is exceeded. when encountering a "forced" point, lower the treshhold to favor splitting at that point
 * in bezier-utils: fit the whole polyline, get the position with the higher deviation to the fitted curve, split
 * there and recurse
 */


// algo d'origine: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/CURVE-APP-global.html

// need the b-spline basis for cubic splines
// pas oublier que c'est une b-spline clampee
// et que ca correspond a une courbe de bezier normale
#define N03(t) ((1.0-t)*(1.0-t)*(1.0-t))
#define N13(t) (3*t*(1.0-t)*(1.0-t))
#define N23(t) (3*t*t*(1.0-t))
#define N33(t) (t*t*t)
// quadratic b-splines (jsut in case)
#define N02(t) ((1.0-t)*(1.0-t))
#define N12(t) (2*t*(1.0-t))
#define N22(t) (t*t)
// linear interpolation b-splines
#define N01(t) ((1.0-t))
#define N11(t) (t)



void Path::Simplify(double treshhold)
{
    // There is nothing to fit if you have 0 to 1 points
    if (pts.size() <= 1) {
        return;
    }
    
    // clear all existing path descriptions
    Reset();
  
    // each path (where a path is a MoveTo followed by one or more LineTo) is fitted on separately
    // Say you had M L L L L M L L L M L L L L
    // pattern     --------  ------- ---------
    //              path 1    path 2  path 3
    // Each would be simplified individually.

    int lastM = 0; // index of the lastMove
    while (lastM < int(pts.size())) {
        int lastP = lastM + 1; // last point
        while (lastP < int(pts.size())
               && (pts[lastP].isMoveTo == polyline_lineto
                   || pts[lastP].isMoveTo == polyline_forced)) // if it's a LineTo or a forcedPoint we move forward
        {
            lastP++;
        }
        // we would only come out of the above while loop when pts[lastP] becomes a MoveTo or we
        // run out of points
        // M L L L L L
        // 0 1 2 3 4 5 6 <-- we came out from loop here
        // lastM = 0; lastP = 6; lastP - lastM = 6;
        // We pass the first point the algorithm should start at (lastM) and the total number of
        // points (lastP - lastM)
        DoSimplify(lastM, lastP - lastM, treshhold);

        lastM = lastP;
    }
}


#if 0
// dichomtomic method to get distance to curve approximation
// a real polynomial solver would get the minimum more efficiently, but since the polynom
// would likely be of degree >= 5, that would imply using some generic solver, liek using the sturm method
static double RecDistanceToCubic(Geom::Point const &iS, Geom::Point const &isD,
                                 Geom::Point const &iE, Geom::Point const &ieD,
                                 Geom::Point &pt, double current, int lev, double st, double et)
{
    if ( lev <= 0 ) {
        return current;
    }
	
    Geom::Point const m = 0.5 * (iS + iE) + 0.125 * (isD - ieD);
    Geom::Point const md = 0.75 * (iE - iS) - 0.125 * (isD + ieD);
    double const mt = (st + et) / 2;
	
    Geom::Point const hisD = 0.5 * isD;
    Geom::Point const hieD = 0.5 * ieD;
	
    Geom::Point const mp = pt - m;
    double nle = Geom::dot(mp, mp);
    
    if ( nle < current ) {

        current = nle;
        nle = RecDistanceToCubic(iS, hisD, m, md, pt, current, lev - 1, st, mt);
        if ( nle < current ) {
            current = nle;
        }
        nle = RecDistanceToCubic(m, md, iE, hieD, pt, current, lev - 1, mt, et);
        if ( nle < current ) {
            current = nle;
        }
        
    } else if ( nle < 2 * current ) {

        nle = RecDistanceToCubic(iS, hisD, m, md, pt, current, lev - 1, st, mt);
        if ( nle < current ) {
            current = nle;
        }
        nle = RecDistanceToCubic(m, md, iE, hieD, pt, current, lev - 1, mt, et);
        if ( nle < current ) {
            current = nle;
        }
    }
    
    return current;
}
#endif

/**
 * Smallest distance from a point to a line.
 *
 * You might think this function calculates the distance from a CubicBezier to a point? Neh, it
 * doesn't do that. Firstly, this function doesn't care at all about a CubicBezier, as you can see
 * res.start and res.end are not even used in the function body. It calculates the shortest
 * possible distance to get from the point pt to the line from start to res.p.
 * There two possibilities so let me illustrate:
 * Case 1:
 *
 *              o (pt)
 *              |
 *              |   <------ returns this distance
 *              |
 * o-------------------------o
 * start                    res.p
 *
 * Case 2:
 *
 *        o (pt)
 *         -
 *          -
 *           - <--- returns this distance
 *            -
 *             -
 *              o-------------------------o
 *              start                    res.p
 * if the line is defined by l(t) over 0 <= t <= 1, this distance between pt and any point on line
 * l(t) is defined as |l(t) - pt|. This function returns the minimum of this function over t.
 *
 * @param start The start point of the cubic Bezier.
 * @param res The cubic Bezier command which we really don't care about. We only use res.p.
 * @param pt The point to measure the distance from.
 *
 * @return See the comments above.
 */
static double DistanceToCubic(Geom::Point const &start, PathDescrCubicTo res, Geom::Point &pt)
{
    Geom::Point const sp = pt - start;
    Geom::Point const ep = pt - res.p;
    double nle = Geom::dot(sp, sp);
    double nnle = Geom::dot(ep, ep);
    if ( nnle < nle ) {
        nle = nnle;
    }
    
    Geom::Point seg = res.p - start;
    nnle = Geom::cross(sp, seg);
    nnle *= nnle;
    nnle /= Geom::dot(seg, seg);
    if ( nnle < nle ) {
        if ( Geom::dot(sp,seg) >= 0 ) {
            seg = start - res.p;
            if ( Geom::dot(ep,seg) >= 0 ) {
                nle = nnle;
            }
        }
    }
    
    return nle;
}


/**
 *    Simplification on a subpath.
 */

void Path::DoSimplify(int off, int N, double treshhold)
{
  // non-dichotomic method: grow an interval of points approximated by a curve, until you reach the treshhold, and repeat
    // nothing to do with one/zero point(s).
    if (N <= 1) {
        return;
    }
    
    int curP = 0;
  
    fitting_tables data;
    data.Xk = data.Yk = data.Qk = nullptr;
    data.tk = data.lk = nullptr;
    data.fk = nullptr;
    data.totLen = 0;
    data.nbPt = data.maxPt = data.inPt = 0;
  
    // MoveTo to the first point
    Geom::Point const moveToPt = pts[off].p;
    MoveTo(moveToPt);
    // endToPt stores the last point of each cubic bezier patch (or line segment) that we add
    Geom::Point endToPt = moveToPt;
  
    // curP is a local index and we add the offset (off) in it to get the real
    // index. The loop has N - 1 instead of N because there is no point starting
    // the fitting process on the last point
    while (curP < N - 1) {
        // lastP becomes the lastPoint to fit on, basically, we wanna try fitting
        // on a sequence of points that start with curP and ends at lastP
        // We start with curP being 0 (the first point) and lastP being 1 (the second point)
        // M holds the total number of points we are trying to fix
        int lastP = curP + 1;
        int M = 2;

        // remettre a zero
        data.inPt = data.nbPt = 0;

        // a cubic bezier command that will be the patch fitted, which will be appended to the list
        // of path commands
        PathDescrCubicTo res(Geom::Point(0, 0), Geom::Point(0, 0), Geom::Point(0, 0));
        // a flag to indicate if there is a forced point in the current sequence that
        // we are trying to fit
        bool contains_forced = false;
        // the fitting code here is called in a binary search fashion, you can say
        // that we have fixed the start point for our fitting sequence (curP) and
        // need the highest possible endpoint (lastP) (highest in index) such
        // that the threshold is respected.
        // To do this search, we add "step" number of points to the current sequence
        // and fit, if successful, we add "step" more points, if not, we go back to
        // the last sequence of points, divide step by 2 and try extending again, this
        // process repeats until step becomes 0.
        // One more point to mention is how forced points are handled. Once lastP is
        // at a forced point, threshold will not be happy with any point after lastP, thus,
        // step will slowly reduce to 0, ultimately finishing the patch at the forced point.
        int step = 64;
        while ( step > 0 ) {   
            int forced_pt = -1;
            int worstP = -1;
            // this loop attempts to fit and if the threshold was fine with our fit, we
            // add "step" more points to the sequence that we are fitting on
            do {
                // if the point if forced, we set the flag, basically if there is a forced
                // point in the sequence (anywhere), this code will trigger at some point (I think)
                if (pts[off + lastP].isMoveTo == polyline_forced) {
                    contains_forced = true;
                }
                forced_pt = lastP; // store the forced point (any regular point also gets stored :/)
                lastP += step; // move the end marker by + step
                M += step; // add "step" to number of points we are trying to fit
                // the loop breaks if we either ran out of boundaries or the threshold didn't like
                // the fit
            } while (lastP < N && ExtendFit(off + curP, M, data,
                                            (contains_forced) ? 0.05 * treshhold : treshhold, // <-- if the last point here is a forced one we
                                            res, worstP) ); // make the threshold really strict so it'll definitely complain about the fit thus
                                                            // favoring us to stop and go back by "step" units
            // did we go out of boundaries?
            if (lastP >= N) {
                lastP -= step; // okay, come back by "step" units
                M -= step;
            } else { // the threshold complained
                // le dernier a echoue
                lastP -= step; // come back by "step" units
                M -= step;
                
                if ( contains_forced ) {
                    lastP = forced_pt; // we ensure that we are back at "forced" point.
                    M = lastP - curP + 1;
                }

                // fit stuff again (so we save the results in res); Threshold shouldn't complain
                // with this btw
                AttemptSimplify(off + curP, M, treshhold, res, worstP);       // ca passe forcement
            }
            step /= 2; // divide step by 2
        }
    
        // mark lastP as the end point of the sequence we are fitting on
        endToPt = pts[off + lastP].p;
        // add a patch, for two points a line else a cubic bezier, res has already been calculated
        // by AttemptSimplify
        if (M <= 2) {
            LineTo(endToPt);
        } else {
            CubicTo(endToPt, res.start, res.end);
        }
        // next patch starts where this one ended
        curP = lastP;
    }
  
    // if the last point that we added is very very close to the first one, it's a loop so close
    // it.
    if (Geom::LInfty(endToPt - moveToPt) < 0.00001) {
        Close();
    }
  
    g_free(data.Xk);
    g_free(data.Yk);
    g_free(data.Qk);
    g_free(data.tk);
    g_free(data.lk);
    g_free(data.fk);
}


// warning: slow
// idea behind this feature: splotches appear when trying to fit a small number of points: you can
// get a cubic bezier that fits the points very well but doesn't fit the polyline itself
// so we add a bit of the error at the middle of each segment of the polyline
// also we restrict this to <=20 points, to avoid unnecessary computations
#define with_splotch_killer

// primitive= calc the cubic bezier patche that fits Xk and Yk best
// Qk est deja alloue
// retourne false si probleme (matrice non-inversible)
bool Path::FitCubic(Geom::Point const &start, PathDescrCubicTo &res,
                    double *Xk, double *Yk, double *Qk, double *tk, int nbPt)
{
    Geom::Point const end = res.p;
    
    // la matrice tNN
    Geom::Affine M(0, 0, 0, 0, 0, 0);
    for (int i = 1; i < nbPt - 1; i++) {
        M[0] += N13(tk[i]) * N13(tk[i]);
        M[1] += N23(tk[i]) * N13(tk[i]);
        M[2] += N13(tk[i]) * N23(tk[i]);
        M[3] += N23(tk[i]) * N23(tk[i]);
    }
  
    double const det = M.det();
    if (fabs(det) < 0.000001) {
        res.start[0]=res.start[1]=0.0;
        res.end[0]=res.end[1]=0.0;
        return false;
    }
    
    Geom::Affine const iM = M.inverse();
    M = iM;
  
    // phase 1: abcisses
    // calcul des Qk
    Xk[0] = start[0];
    Yk[0] = start[1];
    Xk[nbPt - 1] = end[0];
    Yk[nbPt - 1] = end[1];
  
    for (int i = 1; i < nbPt - 1; i++) {
        Qk[i] = Xk[i] - N03 (tk[i]) * Xk[0] - N33 (tk[i]) * Xk[nbPt - 1];
    }
  
    // le vecteur Q
    Geom::Point Q(0, 0);
    for (int i = 1; i < nbPt - 1; i++) {
        Q[0] += N13 (tk[i]) * Qk[i];
        Q[1] += N23 (tk[i]) * Qk[i];
    }
  
    Geom::Point P = Q * M;
    Geom::Point cp1;
    Geom::Point cp2;
    cp1[Geom::X] = P[Geom::X];
    cp2[Geom::X] = P[Geom::Y];
  
    // phase 2: les ordonnees
    for (int i = 1; i < nbPt - 1; i++) {
        Qk[i] = Yk[i] - N03 (tk[i]) * Yk[0] - N33 (tk[i]) * Yk[nbPt - 1];
    }
  
    // le vecteur Q
    Q = Geom::Point(0, 0);
    for (int i = 1; i < nbPt - 1; i++) {
        Q[0] += N13 (tk[i]) * Qk[i];
        Q[1] += N23 (tk[i]) * Qk[i];
    }
  
    P = Q * M;
    cp1[Geom::Y] = P[Geom::X];
    cp2[Geom::Y] = P[Geom::Y];
  
    res.start = 3.0 * (cp1 - start);
    res.end = 3.0 * (end - cp2 );

    return true;
}


bool Path::ExtendFit(int off, int N, fitting_tables &data, double treshhold, PathDescrCubicTo &res, int &worstP)
{
    // if N is greater or equal to data.maxPt, reallocate total of 2*N+1 and copy existing data to
    // those arrays
    if ( N >= data.maxPt ) {
        data.maxPt = 2 * N + 1;
        data.Xk = (double *) g_realloc(data.Xk, data.maxPt * sizeof(double));
        data.Yk = (double *) g_realloc(data.Yk, data.maxPt * sizeof(double));
        data.Qk = (double *) g_realloc(data.Qk, data.maxPt * sizeof(double));
        data.tk = (double *) g_realloc(data.tk, data.maxPt * sizeof(double));
        data.lk = (double *) g_realloc(data.lk, data.maxPt * sizeof(double));
        data.fk = (char *) g_realloc(data.fk, data.maxPt * sizeof(char));
    }
    
    // is N greater than data.inPt? data.inPt seems to hold the total number of points stored in X,
    // Y, fk of data and thus, we add those that are not there but now should be.
    if ( N > data.inPt ) {
        for (int i = data.inPt; i < N; i++) {
            data.Xk[i] = pts[off + i].p[Geom::X];
            data.Yk[i] = pts[off + i].p[Geom::Y];
            data.fk[i] = ( pts[off + i].isMoveTo == polyline_forced ) ? 0x01 : 0x00;        
        }
        data.lk[0] = 0;
        data.tk[0] = 0;
        
        // calculate the total length of the points that already existed in data
        double prevLen = 0;
        for (int i = 0; i < data.inPt; i++) {
            prevLen += data.lk[i];
        }
        data.totLen = prevLen;
        
        // calculate the lengths data.lk for the new points that we just added
        for (int i = ( (data.inPt > 0) ? data.inPt : 1); i < N; i++) {
            Geom::Point diff;
            diff[Geom::X] = data.Xk[i] - data.Xk[i - 1];
            diff[Geom::Y] = data.Yk[i] - data.Yk[i - 1];
            data.lk[i] = Geom::L2(diff);
            data.totLen += data.lk[i];
            data.tk[i] = data.totLen; // set tk[i] to the length so far...
        }
        
        // for the points that existed already, multiply by their previous total length to convert
        // the time values into the actual "length so far".
        for (int i = 0; i < data.inPt; i++) {
            data.tk[i] *= prevLen;
            data.tk[i] /= data.totLen; // divide by the new total length to get the newer t value
        }
        
        for (int i = data.inPt; i < N; i++) { // now divide for the newer ones too
            data.tk[i] /= data.totLen;
        }
        data.inPt = N; // update inPt to include the new points too now
    }
    
    // this block is for the situation where you just did a fitting on say 0 to 20 points and now
    // you are doing one on 0 to 15 points. N was previously 20 and now it's 15. While your lk
    // values are still fine, your tk values are messed up since the tk is 1 at point 20 when
    // it should be 1 at point 15 now. So we recalculate tk values.
    if ( N < data.nbPt ) {
        // We've gone too far; we'll have to recalulate the .tk.
        data.totLen = 0;
        data.tk[0] = 0;
        data.lk[0] = 0;
        for (int i = 1; i < N; i++) {
            data.totLen += data.lk[i];
            data.tk[i] = data.totLen;
        }
        
        for (int i = 1; i < N; i++) {
            data.tk[i] /= data.totLen;
        }
    }
  
    data.nbPt = N;
    
    /*
     * There is something that I think is wrong with this implementation. Say we initially fit on
     * point 0 to 10, it works well, so we add 10 more points and fit on 0-20 points. Out tk values
     * are correct so far. That fit is problematic so maybe we fit on 0-15 but now, N < data.nbPt
     * block will run and recalculate tk values. So we will have correct tk values from 0-15 but
     * the older tk values in 15-20. Say after this we fit on 0-18 points. Well we ran into a
     * problem N > data.nbPt so no recalculation happens. data.inPt is already 20 so nothing
     * happens in that block either. We have invalid tk values and FitCubic will be called with
     * these invalid values. I've drawn paths and seen this situation where FitCubic was called
     * with wrong tk values. Values that would go 0, 0.25, 0.5, 0.75, 1, 0.80, 0.90. Maybe the
     * consequences are not that terrible so we didn't notice this in results?
     * TODO: Do we fix this or investigate more?
     */

    if ( data.nbPt <= 0 ) {
        return false;
    }
  
    res.p[0] = data.Xk[data.nbPt - 1];
    res.p[1] = data.Yk[data.nbPt - 1];
    res.start[0] = res.start[1] = 0;
    res.end[0] = res.end[1] = 0;
    worstP = 1;
    if ( N <= 2 ) {
        return true;
    }
    // this is the same popular block that's found in the other AttemptSimplify so please go there
    // to see what it does and how
    if ( data.totLen < 0.0001 ) {
        double worstD = 0;
        Geom::Point start;
        worstP = -1;
        start[0] = data.Xk[0];
        start[1] = data.Yk[0];
        for (int i = 1; i < N; i++) {
            Geom::Point nPt;
            bool isForced = data.fk[i];
            nPt[0] = data.Xk[i];
            nPt[1] = data.Yk[i];
      
            double nle = DistanceToCubic(start, res, nPt);
            if ( isForced ) {
                // forced points are favored for splitting the recursion; we do this by increasing their distance
                if ( worstP < 0 || 2*nle > worstD ) {
                    worstP = i;
                    worstD = 2*nle;
                }
            } else {
                if ( worstP < 0 || nle > worstD ) {
                    worstP = i;
                    worstD = nle;
                }
            }
        }
        return true; // it's weird that this is the only block of this kind that returns true instead of false. Livarot
                     // can you please be more consistent? -_-
    }
  
    return AttemptSimplify(data, treshhold, res, worstP);
}


// fit a polyline to a bezier patch, return true is treshhold not exceeded (ie: you can continue)
// version that uses tables from the previous iteration, to minimize amount of work done
bool Path::AttemptSimplify (fitting_tables &data,double treshhold, PathDescrCubicTo & res,int &worstP)
{
    Geom::Point start,end;
    // pour une coordonnee
    Geom::Point cp1, cp2;
  
    worstP = 1;
    if (pts.size() == 2) {
        return true;
    }
  
    start[0] = data.Xk[0];
    start[1] = data.Yk[0];
    cp1[0] = data.Xk[1];
    cp1[1] = data.Yk[1];
    end[0] = data.Xk[data.nbPt - 1];
    end[1] = data.Yk[data.nbPt - 1];
    cp2 = cp1;
  
    if (pts.size()  == 3) {
        // start -> cp1 -> end
        res.start = cp1 - start;
        res.end = end - cp1;
        worstP = 1;
        return true;
    }
  
    if ( FitCubic(start, res, data.Xk, data.Yk, data.Qk, data.tk, data.nbPt) ) {
        cp1 = start + res.start / 3;
        cp2 = end - res.end / 3;
    } else {
        // aie, non-inversible
        double worstD = 0;
        worstP = -1;
        for (int i = 1; i < data.nbPt; i++) {
            Geom::Point nPt;
            nPt[Geom::X] = data.Xk[i];
            nPt[Geom::Y] = data.Yk[i];
            double nle = DistanceToCubic(start, res, nPt);
            if ( data.fk[i] ) {
                // forced points are favored for splitting the recursion; we do this by increasing their distance
                if ( worstP < 0 || 2 * nle > worstD ) {
                    worstP = i;
                    worstD = 2 * nle;
                }
            } else {
                if ( worstP < 0 || nle > worstD ) {
                    worstP = i;
                    worstD = nle;
                }
            }
        }
        return false;
    }
   
    // calcul du delta= pondere par les longueurs des segments
    double delta = 0;
    {
        double worstD = 0;
        worstP = -1;
        Geom::Point prevAppP;
        Geom::Point prevP;
        double prevDist;
        prevP[Geom::X] = data.Xk[0];
        prevP[Geom::Y] = data.Yk[0];
        prevAppP = prevP; // le premier seulement
        prevDist = 0;
#ifdef with_splotch_killer
        if ( data.nbPt <= 20 ) {
            for (int i = 1; i < data.nbPt - 1; i++) {
                Geom::Point curAppP;
                Geom::Point curP;
                double curDist;
                Geom::Point midAppP;
                Geom::Point midP;
                double midDist;
                
                curAppP[Geom::X] = N13(data.tk[i]) * cp1[Geom::X] +
                    N23(data.tk[i]) * cp2[Geom::X] +
                    N03(data.tk[i]) * data.Xk[0] +
                    N33(data.tk[i]) * data.Xk[data.nbPt - 1];
                
                curAppP[Geom::Y] = N13(data.tk[i]) * cp1[Geom::Y] +
                    N23(data.tk[i]) * cp2[Geom::Y] +
                    N03(data.tk[i]) * data.Yk[0] +
                    N33(data.tk[i]) * data.Yk[data.nbPt - 1];
                
                curP[Geom::X] = data.Xk[i];
                curP[Geom::Y] = data.Yk[i];
                double mtk = 0.5 * (data.tk[i] + data.tk[i - 1]);
                
                midAppP[Geom::X] = N13(mtk) * cp1[Geom::X] +
                    N23(mtk) * cp2[Geom::X] +
                    N03(mtk) * data.Xk[0] +
                    N33(mtk) * data.Xk[data.nbPt - 1];
                
                midAppP[Geom::Y] = N13(mtk) * cp1[Geom::Y] +
                    N23(mtk) * cp2[Geom::Y] +
                    N03(mtk) * data.Yk[0] +
                    N33(mtk) * data.Yk[data.nbPt - 1];
                
                midP = 0.5 * (curP + prevP);
        
                Geom::Point diff = curAppP - curP;
                curDist = dot(diff, diff);
                diff = midAppP - midP;
                midDist = dot(diff, diff);
        
                delta += 0.3333 * (curDist + prevDist + midDist) * data.lk[i];
                if ( curDist > worstD ) {
                    worstD = curDist;
                    worstP = i;
                } else if ( data.fk[i] && 2 * curDist > worstD ) {
                    worstD = 2*curDist;
                    worstP = i;
                }
                prevP = curP;
                prevAppP = curAppP;
                prevDist = curDist;
            }
            delta /= data.totLen;
            
        } else {
#endif
            for (int i = 1; i < data.nbPt - 1; i++) {
                Geom::Point curAppP;
                Geom::Point curP;
                double    curDist;
        
                curAppP[Geom::X] = N13(data.tk[i]) * cp1[Geom::X] +
                    N23(data.tk[i]) * cp2[Geom::X] +
                    N03(data.tk[i]) * data.Xk[0] +
                    N33(data.tk[i]) * data.Xk[data.nbPt - 1];
                
                curAppP[Geom::Y] = N13(data.tk[i]) * cp1[Geom::Y] +
                    N23(data.tk[i]) * cp2[Geom::Y] +
                    N03(data.tk[i]) * data.Yk[0] +
                    N33(data.tk[i]) * data.Yk[data.nbPt - 1];
                
                curP[Geom::X] = data.Xk[i];
                curP[Geom::Y] = data.Yk[i];
      
                Geom::Point diff = curAppP-curP;
                curDist = dot(diff, diff);
                delta += curDist;
        
                if ( curDist > worstD ) {
                    worstD = curDist;
                    worstP = i;
                } else if ( data.fk[i] && 2 * curDist > worstD ) {
                    worstD = 2*curDist;
                    worstP = i;
                }
                prevP = curP;
                prevAppP = curAppP;
                prevDist = curDist;
            }
#ifdef with_splotch_killer
        }
#endif
    }
  
    if (delta < treshhold * treshhold) {
        // premier jet
    
        // Refine a little.
        for (int i = 1; i < data.nbPt - 1; i++) {
            Geom::Point pt(data.Xk[i], data.Yk[i]);
            data.tk[i] = RaffineTk(pt, start, cp1, cp2, end, data.tk[i]);
            if (data.tk[i] < data.tk[i - 1]) {
                // Force tk to be monotonic non-decreasing.
                data.tk[i] = data.tk[i - 1];
	    }
        }
    
        if ( FitCubic(start, res, data.Xk, data.Yk, data.Qk, data.tk, data.nbPt) == false) {
            // ca devrait jamais arriver, mais bon
            res.start = 3.0 * (cp1 - start);
            res.end = 3.0 * (end - cp2 );
            return true;
        }
        
        double ndelta = 0;
        {
            double worstD = 0;
            worstP = -1;
            Geom::Point prevAppP;
            Geom::Point prevP(data.Xk[0], data.Yk[0]);
            double prevDist = 0;
            prevAppP = prevP; // le premier seulement
#ifdef with_splotch_killer
            if ( data.nbPt <= 20 ) {
                for (int i = 1; i < data.nbPt - 1; i++) {
                    Geom::Point curAppP;
                    Geom::Point curP;
                    double  curDist;
                    Geom::Point midAppP;
                    Geom::Point midP;
                    double  midDist;
          
                    curAppP[Geom::X] = N13(data.tk[i]) * cp1[Geom::X] +
                        N23(data.tk[i]) * cp2[Geom::X] +
                        N03(data.tk[i]) * data.Xk[0] +
                        N33(data.tk[i]) * data.Xk[data.nbPt - 1];
                    
                    curAppP[Geom::Y] = N13(data.tk[i]) * cp1[Geom::Y] +
                        N23(data.tk[i]) * cp2[Geom::Y] +
                        N03(data.tk[i]) * data.Yk[0] +
                        N33(data.tk[i]) * data.Yk[data.nbPt - 1];
                    
                    curP[Geom::X] = data.Xk[i];
                    curP[Geom::Y] = data.Yk[i];
                    double mtk = 0.5 * (data.tk[i] + data.tk[i - 1]);
                    
                    midAppP[Geom::X] = N13(mtk) * cp1[Geom::X] +
                        N23(mtk) * cp2[Geom::X] +
                        N03(mtk) * data.Xk[0] +
                        N33(mtk) * data.Xk[data.nbPt - 1];
                    
                    midAppP[Geom::Y] = N13(mtk) * cp1[Geom::Y] +
                        N23(mtk) * cp2[Geom::Y] +
                        N03(mtk) * data.Yk[0] +
                        N33(mtk) * data.Yk[data.nbPt - 1];
                    
                    midP = 0.5 * (curP + prevP);
          
                    Geom::Point diff = curAppP - curP;
                    curDist = dot(diff, diff);
          
                    diff = midAppP - midP;
                    midDist = dot(diff, diff);
          
                    ndelta += 0.3333 * (curDist + prevDist + midDist) * data.lk[i];
          
                    if ( curDist > worstD ) {
                        worstD = curDist;
                        worstP = i;
                    } else if ( data.fk[i] && 2 * curDist > worstD ) {
                        worstD = 2*curDist;
                        worstP = i;
                    }
                    
                    prevP = curP;
                    prevAppP = curAppP;
                    prevDist = curDist;
                }
                ndelta /= data.totLen;
            } else {
#endif
                for (int i = 1; i < data.nbPt - 1; i++) {
                    Geom::Point curAppP;
                    Geom::Point curP;
                    double    curDist;
                    
                    curAppP[Geom::X] = N13(data.tk[i]) * cp1[Geom::X] +
                        N23(data.tk[i]) * cp2[Geom::X] +
                        N03(data.tk[i]) * data.Xk[0] +
                        N33(data.tk[i]) * data.Xk[data.nbPt - 1];
                    
                    curAppP[Geom::Y] = N13(data.tk[i]) * cp1[Geom::Y] +
                        N23(data.tk[i]) * cp2[1] +
                        N03(data.tk[i]) * data.Yk[0] +
                        N33(data.tk[i]) * data.Yk[data.nbPt - 1];
                    
                    curP[Geom::X] = data.Xk[i];
                    curP[Geom::Y] = data.Yk[i];
        
                    Geom::Point diff = curAppP - curP;
                    curDist = dot(diff, diff);

                    ndelta += curDist;

                    if ( curDist > worstD ) {
                        worstD = curDist;
                        worstP = i;
                    } else if ( data.fk[i] && 2 * curDist > worstD ) {
                        worstD = 2 * curDist;
                        worstP = i;
                    }
                    prevP = curP;
                    prevAppP = curAppP;
                    prevDist = curDist;
                }
#ifdef with_splotch_killer
            }
#endif
        }
    
        if (ndelta < delta + 0.00001) {
            return true;
        } else {
            // nothing better to do
            res.start = 3.0 * (cp1 - start);
            res.end = 3.0 * (end - cp2 );
        }
        
        return true;
    }
  
  return false;
}


bool Path::AttemptSimplify(int off, int N, double treshhold, PathDescrCubicTo &res,int &worstP)
{
    Geom::Point start;
    Geom::Point end;
    
    // pour une coordonnee
    double *Xk;				// la coordonnee traitee (x puis y)
    double *Yk;				// la coordonnee traitee (x puis y)
    double *lk;				// les longueurs de chaque segment
    double *tk;				// les tk
    double *Qk;				// les Qk
    char *fk;       // si point force
  
    Geom::Point cp1; // first control point of the cubic patch
    Geom::Point cp2; // second control point of the cubic patch
  
    // If only two points, return immediately, but why say that point 1 has worst error though?
    if (N == 2) {
        worstP = 1;
        return true;
    }
  
    start = pts[off].p; // point at index "off" is start
    cp1 = pts[off + 1].p;  // for now take the first control point to be the point after "off"
    end = pts[off + N - 1].p; // last point would be end of the patch of course
  
    // we will return the control handles in "res" right? so set the end point but set the handles
    // to zero for now
    res.p = end;
    res.start[0] = res.start[1] = 0;
    res.end[0] = res.end[1] = 0;

    // if there are 3 points only, we fit a cubic patch that starts at the first point, ends at the
    // third point and has both control points on the 2nd point
    if (N == 3) {
        // start -> cp1 -> end
        res.start = cp1 - start;
        res.end = end - cp1;
        worstP = 1;
        return true;
    }
  
    // Totally inefficient, allocates & deallocates all the time.
    // allocate arrows for fitting information
    tk = (double *) g_malloc(N * sizeof(double));
    Qk = (double *) g_malloc(N * sizeof(double));
    Xk = (double *) g_malloc(N * sizeof(double));
    Yk = (double *) g_malloc(N * sizeof(double));
    lk = (double *) g_malloc(N * sizeof(double));
    fk = (char *) g_malloc(N * sizeof(char));
  
    // chord length method
    tk[0] = 0.0;
    lk[0] = 0.0;
    {
        // Not setting Xk[0], Yk[0] might look like a bug, but FitCubic sets it later before
        // it performs the fit
        Geom::Point prevP = start; // store the first point
        for (int i = 1; i < N; i++) { // start the loop on the second point
            Xk[i] = pts[off + i].p[Geom::X]; // store the x coordinate
            Yk[i] = pts[off + i].p[Geom::Y]; // store the y coordinate

            // mark the point as forced if it's forced
            if ( pts[off + i].isMoveTo == polyline_forced ) {
                fk[i] = 0x01;
            } else {
                fk[i] = 0;
            }
            
            // calculate a vector from previous point to this point and store its length in lk
            Geom::Point diff(Xk[i] - prevP[Geom::X], Yk[i] - prevP[1]);
            prevP[0] = Xk[i]; // set prev to current point for next iteration
            prevP[1] = Yk[i]; // set prev to current point for next iteration
            lk[i] = Geom::L2(diff);
            tk[i] = tk[i - 1] + lk[i]; // tk should have the length till this point, later we divide whole thing by total length to calculate time
        }
    }
    
    // if total length is below 0.00001 (very unrealistic scenario)
    if (tk[N - 1] < 0.00001) {
        // longueur nulle 
        res.start[0] = res.start[1] = 0; // set start handle to zero
        res.end[0] = res.end[1] = 0;     // set end handle to zero
        double worstD = 0;               // worst distance b/w the curve and the polyline (to fit)
        worstP = -1;                     // point at which worst difference came up
        for (int i = 1; i < N; i++) { // start at second point till the last one
            Geom::Point nPt;
            bool isForced = fk[i];
            nPt[0] = Xk[i]; // get the point
            nPt[1] = Yk[i];
 
            double nle = DistanceToCubic(start, res, nPt); // distance from point. see the documentation on that function
            if ( isForced ) {
                // forced points are favored for splitting the recursion; we do this by increasing their distance
                if ( worstP < 0 || 2 * nle > worstD ) { // exaggerating distance for the forced point?
                    worstP = i;
                    worstD = 2 * nle;
                }
            } else {
                if ( worstP < 0 || nle > worstD ) { // if worstP not set or the distance for this point is greater than previous worse
                    worstP = i;                     // make this one the worse
                    worstD = nle;
                }
            }
        }
        
        g_free(tk);
        g_free(Qk);
        g_free(Xk);
        g_free(Yk);
        g_free(fk);
        g_free(lk);
        
        return false; // not sure why we return false? because the length of points to fit is zero?
        // anyways, rare case, so fine to return false and a cubic bezier that starts
        // at first and ends at last point with control points being same as
        // endpoins.
    }
    
    // divide by total length to make "time" values. See documentation of fitting_table structure
    double totLen = tk[N - 1];
    for (int i = 1; i < N - 1; i++) {
        tk[i] /= totLen;
    }
  
    res.p = end;
    if ( FitCubic(start, res, Xk, Yk, Qk, tk, N) ) { // fit a cubic, if goes well, set cp1 and cp2
        cp1 = start + res.start / 3; // this factor of three comes from the fact that this is how livarot stores them. See docs in path-description.h
        cp2 = end + res.end / 3;
    } else {
        // aie, non-inversible
        // okay we couldn't fit one, don't know when this would happen but probably due to matrix
        // being non-inversible (no idea when that would happen either)

        // same code from above, calculates error (kinda, see comments on DistanceToCubic) and returns false
        res.start[0] = res.start[1] = 0;
        res.end[0] = res.end[1] = 0;
        double worstD = 0;
        worstP = -1;
        for (int i = 1; i < N; i++) {
            Geom::Point nPt(Xk[i], Yk[i]);
            bool isForced = fk[i];
            double nle = DistanceToCubic(start, res, nPt);
            if ( isForced ) {
                // forced points are favored for splitting the recursion; we do this by increasing their distance
                if ( worstP < 0 || 2 * nle > worstD ) {
                    worstP = i;
                    worstD = 2 * nle;
                }
            } else {
                if ( worstP < 0 || nle > worstD ) {
                    worstP = i;
                    worstD = nle;
                }
            }
        }
        
        g_free(tk);
        g_free(Qk);
        g_free(Xk);
        g_free(Yk);
        g_free(fk);
        g_free(lk);
        return false;
    }
   
    // calcul du delta= pondere par les longueurs des segments
    // if we are here, fitting went well, let's calculate error between the cubic bezier that we
    // fit and the actual polyline
    double delta = 0;
    {
        double worstD = 0;
        worstP = -1;
        Geom::Point prevAppP;
        Geom::Point   prevP;
        double      prevDist;
        prevP[0] = Xk[0];
        prevP[1] = Yk[0];
        prevAppP = prevP; // le premier seulement
        prevDist = 0;
#ifdef with_splotch_killer  // <-- ignore the splotch killer if you're new and go to the part where this (N <= 20) if's else is
        // so the thing is, if the number of points you're fitting on are few, you can often have a
        // fit where the error on your polyline points are zero but it's a terrible fit, for
        // example imagine three point  o------o-------o and an S fitting on these. Error is zero,
        // but it's a terrible fit. So to fix this problem, we calculate error at mid points of the
        // line segments too, to be a better judge, and if it's terrible, we just reject this fit
        // and the parent algorithm will do something about it (fit a smaller one or just do a line
        // segment)
        if ( N <= 20 ) {
            for (int i = 1; i < N - 1; i++) // for every point that's not an endpoint
            {
                Geom::Point curAppP;
                Geom::Point curP;
                double    curDist;
                Geom::Point midAppP;
                Geom::Point midP;
                double    midDist;

                curAppP[0] = N13 (tk[i]) * cp1[0] + N23 (tk[i]) * cp2[0] + N03 (tk[i]) * Xk[0] + N33 (tk[i]) * Xk[N - 1]; // point on the curve
                curAppP[1] = N13 (tk[i]) * cp1[1] + N23 (tk[i]) * cp2[1] + N03 (tk[i]) * Yk[0] + N33 (tk[i]) * Yk[N - 1];
                curP[0] = Xk[i]; // polyline point
                curP[1] = Yk[i];
                midAppP[0] = N13 (0.5*(tk[i]+tk[i-1])) * cp1[0] + N23 (0.5*(tk[i]+tk[i-1])) * cp2[0] + N03 (0.5*(tk[i]+tk[i-1])) * Xk[0] + N33 (0.5*(tk[i]+tk[i-1])) * Xk[N - 1]; // midpoint on the curve
                midAppP[1] = N13 (0.5*(tk[i]+tk[i-1])) * cp1[1] + N23 (0.5*(tk[i]+tk[i-1])) * cp2[1] + N03 (0.5*(tk[i]+tk[i-1])) * Yk[0] + N33 (0.5*(tk[i]+tk[i-1])) * Yk[N - 1];
                midP=0.5*(curP+prevP); // midpoint on the polyline

                Geom::Point diff;
                diff = curAppP-curP;
                curDist = dot(diff,diff); // squared distance between point on cubic curve and the polyline point

                diff = midAppP-midP;
                midDist = dot(diff,diff); // squared distance between midpoint on polyline and the equivalent on cubic curve

                delta+=0.3333*(curDist+prevDist+midDist)/**lk[i]*/; // The multiplication by lk[i] here kind of creates a weightage mechanism
                // we divide delta by total length afterwards, so line segments with more share in
                // the length get weighted more. Why do we care about prevDist though? Anyways,
                // it's a way of measuring error, so probably fine

                if ( curDist > worstD ) { // worst error management
                    worstD = curDist;
                    worstP = i;
                } else if ( fk[i] && 2*curDist > worstD ) {
                    worstD = 2*curDist;
                    worstP = i;
                }
                prevP = curP;
                prevAppP = curAppP; // <-- useless
                prevDist = curDist;
            }
            delta/=totLen;
        } else {
#endif
            for (int i = 1; i < N - 1; i++) // for each point in the polyline that's not an end point
            {
                Geom::Point curAppP; // the current point on the bezier patch
                Geom::Point curP;    // the polyline point
                double    curDist;

                // https://en.wikipedia.org/wiki/B%C3%A9zier_curve
                curAppP[0] = N13 (tk[i]) * cp1[0] + N23 (tk[i]) * cp2[0] + N03 (tk[i]) * Xk[0] + N33 (tk[i]) * Xk[N - 1]; // <-- cubic bezier function
                curAppP[1] = N13 (tk[i]) * cp1[1] + N23 (tk[i]) * cp2[1] + N03 (tk[i]) * Yk[0] + N33 (tk[i]) * Yk[N - 1];
                curP[0] = Xk[i];
                curP[1] = Yk[i];

                Geom::Point diff;
                diff = curAppP-curP;      // difference between the two
                curDist = dot(diff,diff); // square of the difference
                delta += curDist;         // add to total error
                if ( curDist > worstD ) { // management of worst error (max finder basically)
                    worstD = curDist;
                    worstP = i;
                } else if ( fk[i] && 2*curDist > worstD ) { // it wasn't the worse, but if it's forced point, judge more harshly
                    worstD = 2*curDist;
                    worstP = i;
                }
                prevP = curP;
                prevAppP = curAppP; // <-- we are not using these
                prevDist = curDist; // <-- we are not using these
            }
#ifdef with_splotch_killer
        }
#endif
    }

    // are we fine with the error? Compare it to threshold squared
    if (delta < treshhold * treshhold)
    {
        // premier jet
        res.start = 3.0 * (cp1 - start); // calculate handles
        res.end = -3.0 * (cp2 - end);
        res.p = end;

        // Refine a little.
        for (int i = 1; i < N - 1; i++) // do Newton Raphson iterations
        {
            Geom::Point
                pt;
            pt[0] = Xk[i];
            pt[1] = Yk[i];
            tk[i] = RaffineTk (pt, start, cp1, cp2, end, tk[i]);
            if (tk[i] < tk[i - 1])
            {
                // Force tk to be monotonic non-decreasing.
                tk[i] = tk[i - 1];
            }
        }

        if ( FitCubic(start,res,Xk,Yk,Qk,tk,N) ) { // fit again and this should work
        } else { // just in case it doesn't
            // ca devrait jamais arriver, mais bon
            res.start = 3.0 * (cp1 - start);
            res.end = -3.0 * (cp2 - end);
            g_free(tk);
            g_free(Qk);
            g_free(Xk);
            g_free(Yk);
            g_free(fk);
            g_free(lk);
            return true;
        }
        double ndelta = 0; // the same error computing stuff with and without splotch killer as before
        {
            double worstD = 0;
            worstP = -1;
            Geom::Point   prevAppP;
            Geom::Point   prevP;
            double      prevDist;
            prevP[0] = Xk[0];
            prevP[1] = Yk[0];
            prevAppP = prevP; // le premier seulement
            prevDist = 0;
#ifdef with_splotch_killer
            if ( N <= 20 ) {
                for (int i = 1; i < N - 1; i++)
                {
                    Geom::Point curAppP;
                    Geom::Point curP;
                    double    curDist;
                    Geom::Point midAppP;
                    Geom::Point midP;
                    double    midDist;

                    curAppP[0] = N13 (tk[i]) * cp1[0] + N23 (tk[i]) * cp2[0] + N03 (tk[i]) * Xk[0] + N33 (tk[i]) * Xk[N - 1];
                    curAppP[1] = N13 (tk[i]) * cp1[1] + N23 (tk[i]) * cp2[1] + N03 (tk[i]) * Yk[0] + N33 (tk[i]) * Yk[N - 1];
                    curP[0] = Xk[i];
                    curP[1] = Yk[i];
                    midAppP[0] = N13 (0.5*(tk[i]+tk[i-1])) * cp1[0] + N23 (0.5*(tk[i]+tk[i-1])) * cp2[0] + N03 (0.5*(tk[i]+tk[i-1])) * Xk[0] + N33 (0.5*(tk[i]+tk[i-1])) * Xk[N - 1];
                    midAppP[1] = N13 (0.5*(tk[i]+tk[i-1])) * cp1[1] + N23 (0.5*(tk[i]+tk[i-1])) * cp2[1] + N03 (0.5*(tk[i]+tk[i-1])) * Yk[0] + N33 (0.5*(tk[i]+tk[i-1])) * Yk[N - 1];
                    midP = 0.5*(curP+prevP);

                    Geom::Point diff;
                    diff = curAppP-curP;
                    curDist = dot(diff,diff);
                    diff = midAppP-midP;
                    midDist = dot(diff,diff);

                    ndelta+=0.3333*(curDist+prevDist+midDist)/**lk[i]*/;

                    if ( curDist > worstD ) {
                        worstD = curDist;
                        worstP = i;
                    } else if ( fk[i] && 2*curDist > worstD ) {
                        worstD = 2*curDist;
                        worstP = i;
                    }
                    prevP = curP;
                    prevAppP = curAppP;
                    prevDist = curDist;
                }
                ndelta /= totLen;
            } else {
#endif
                for (int i = 1; i < N - 1; i++)
                {
                    Geom::Point curAppP;
                    Geom::Point curP;
                    double    curDist;

                    curAppP[0] = N13 (tk[i]) * cp1[0] + N23 (tk[i]) * cp2[0] + N03 (tk[i]) * Xk[0] + N33 (tk[i]) * Xk[N - 1];
                    curAppP[1] = N13 (tk[i]) * cp1[1] + N23 (tk[i]) * cp2[1] + N03 (tk[i]) * Yk[0] + N33 (tk[i]) * Yk[N - 1];
                    curP[0]=Xk[i];
                    curP[1]=Yk[i];

                    Geom::Point diff;
                    diff=curAppP-curP;
                    curDist=dot(diff,diff);
                    ndelta+=curDist;

                    if ( curDist > worstD ) {
                        worstD=curDist;
                        worstP=i;
                    } else if ( fk[i] && 2*curDist > worstD ) {
                        worstD=2*curDist;
                        worstP=i;
                    }
                    prevP=curP;
                    prevAppP=curAppP;
                    prevDist=curDist;
                }
#ifdef with_splotch_killer
            }
#endif
        }

        g_free(tk);
        g_free(Qk);
        g_free(Xk);
        g_free(Yk);
        g_free(fk);
        g_free(lk);

        if (ndelta < delta + 0.00001) // is the new one after newton raphson better? they are stored in "res"
        {
            return true; // okay great return those handles.
        } else {
            // nothing better to do
            res.start = 3.0 * (cp1 - start); // new ones aren't better? use the old ones stored in cp1 and cp2
            res.end = -3.0 * (cp2 - end);
        }
        return true;
    } else { // threshold got disrespected, return false
        // nothing better to do
    }

    g_free(tk);
    g_free(Qk);
    g_free(Xk);
    g_free(Yk);
    g_free(fk);
    g_free(lk);
    return false;
}

double Path::RaffineTk (Geom::Point pt, Geom::Point p0, Geom::Point p1, Geom::Point p2, Geom::Point p3, double it)
{
    // Refinement of the tk values. 
    // Just one iteration of Newtow Raphson, given that we're approaching the curve anyway.
    // [fr: vu que de toute facon la courbe est approchC)e]
    double const Ax = pt[Geom::X] -
        p0[Geom::X] * N03(it) -
        p1[Geom::X] * N13(it) -
        p2[Geom::X] * N23(it) -
        p3[Geom::X] * N33(it);
    
    double const Bx = (p1[Geom::X] - p0[Geom::X]) * N02(it) +
        (p2[Geom::X] - p1[Geom::X]) * N12(it) +
        (p3[Geom::X] - p2[Geom::X]) * N22(it);
  
    double const Cx = (p0[Geom::X] - 2 * p1[Geom::X] + p2[Geom::X]) * N01(it) +
        (p3[Geom::X] - 2 * p2[Geom::X] + p1[Geom::X]) * N11(it);
    
    double const Ay =  pt[Geom::Y] -
        p0[Geom::Y] * N03(it) -
        p1[Geom::Y] * N13(it) -
        p2[Geom::Y] * N23(it) -
        p3[Geom::Y] * N33(it);
    
    double const By = (p1[Geom::Y] - p0[Geom::Y]) * N02(it) +
        (p2[Geom::Y] - p1[Geom::Y]) * N12(it) +
        (p3[Geom::Y] - p2[Geom::Y]) * N22(it);
    
    double const Cy = (p0[Geom::Y] - 2 * p1[Geom::Y] + p2[Geom::Y]) * N01(it) +
        (p3[Geom::Y] - 2 * p2[Geom::Y] + p1[Geom::Y]) * N11(it);
    
    double const dF = -6 * (Ax * Bx + Ay * By);
    double const ddF = 18 * (Bx * Bx + By * By) - 12 * (Ax * Cx + Ay * Cy);
    if (fabs (ddF) > 0.0000001) {
        return it - dF / ddF;
    }
    
    return it;
}

// Variation on the fitting theme: try to merge path commands into cubic bezier patches.
// The goal is to reduce the number of path commands, especially when operations on path produce
// lots of small path elements; ideally you could get rid of very small segments at reduced visual cost.
void Path::Coalesce(double tresh)
{
    if ( descr_flags & descr_adding_bezier ) {
        CancelBezier();
    }
    
    if ( descr_flags & descr_doing_subpath ) {
        CloseSubpath();
    }
    
    if (descr_cmd.size() <= 2) {
        return;
    }
  
    SetBackData(false);
    Path* tempDest = new Path();
    tempDest->SetBackData(false);
  
    ConvertEvenLines(0.25*tresh);
  
    int lastP = 0;
    int lastAP = -1;
    // As the elements are stored in a separate array, it's no longer worth optimizing
    // the rewriting in the same array.
    // [[comme les elements sont stockes dans un tableau a part, plus la peine d'optimiser
    // la réécriture dans la meme tableau]]
    
    int lastA = descr_cmd[0]->associated;
    int prevA = lastA;
    Geom::Point firstP;

    /* FIXME: the use of this variable probably causes a leak or two.
    ** It's a hack anyway, and probably only needs to be a type rather than
    ** a full PathDescr.
    */
    std::unique_ptr<PathDescr> lastAddition(new PathDescrMoveTo(Geom::Point(0, 0)));
    bool containsForced = false;
    PathDescrCubicTo pending_cubic(Geom::Point(0, 0), Geom::Point(0, 0), Geom::Point(0, 0));
  
    for (int curP = 0; curP < int(descr_cmd.size()); curP++) {
        int typ = descr_cmd[curP]->getType();
        int nextA = lastA;

        if (typ == descr_moveto) {

            if (lastAddition->flags != descr_moveto) {
                FlushPendingAddition(tempDest,lastAddition.get(),pending_cubic,lastAP);
            }
            lastAddition.reset(descr_cmd[curP]->clone());
            lastAP = curP;
            FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
            // Added automatically (too bad about multiple moveto's).
            // [fr: (tant pis pour les moveto multiples)]
            containsForced = false;
      
            PathDescrMoveTo *nData = dynamic_cast<PathDescrMoveTo *>(descr_cmd[curP]);
            firstP = nData->p;
            lastA = descr_cmd[curP]->associated;
            prevA = lastA;
            lastP = curP;
            
        } else if (typ == descr_close) {
            nextA = descr_cmd[curP]->associated;
            if (lastAddition->flags != descr_moveto) {
        
                PathDescrCubicTo res(Geom::Point(0, 0), Geom::Point(0, 0), Geom::Point(0, 0));
                int worstP = -1;
                if (AttemptSimplify(lastA, nextA - lastA + 1, (containsForced) ? 0.05 * tresh : tresh, res, worstP)) {
                    lastAddition.reset(new PathDescrCubicTo(Geom::Point(0, 0),
                                                          Geom::Point(0, 0),
                                                          Geom::Point(0, 0)));
                    pending_cubic = res;
                    lastAP = -1;
                }

                FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
                FlushPendingAddition(tempDest, descr_cmd[curP], pending_cubic, curP);
        
	    } else {
                FlushPendingAddition(tempDest,descr_cmd[curP],pending_cubic,curP);
	    }
            
            containsForced = false;
            lastAddition.reset(new PathDescrMoveTo(Geom::Point(0, 0)));
            prevA = lastA = nextA;
            lastP = curP;
            lastAP = curP;
            
        } else if (typ == descr_forced) {
            
            nextA = descr_cmd[curP]->associated;
            if (lastAddition->flags != descr_moveto) {
                
                PathDescrCubicTo res(Geom::Point(0, 0), Geom::Point(0, 0), Geom::Point(0, 0));
                int worstP = -1;
                if (AttemptSimplify(lastA, nextA - lastA + 1, 0.05 * tresh, res, worstP)) {
                    // plus sensible parce que point force
                    // ca passe
                    /* (Possible translation: More sensitive because contains a forced point.) */
                    containsForced = true;
                } else  {
                    // Force the addition.
                    FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
                    lastAddition.reset(new PathDescrMoveTo(Geom::Point(0, 0)));
                    prevA = lastA = nextA;
                    lastP = curP;
                    lastAP = curP;
                    containsForced = false;
                }
	    }
            
        } else if (typ == descr_lineto || typ == descr_cubicto || typ == descr_arcto) {
            
            nextA = descr_cmd[curP]->associated;
            if (lastAddition->flags != descr_moveto) {
                
                PathDescrCubicTo res(Geom::Point(0, 0), Geom::Point(0, 0), Geom::Point(0, 0));
                int worstP = -1;
                if (AttemptSimplify(lastA, nextA - lastA + 1, tresh, res, worstP)) {
                    lastAddition.reset(new PathDescrCubicTo(Geom::Point(0, 0),
                                                          Geom::Point(0, 0),
                                                          Geom::Point(0, 0)));
                    pending_cubic = res;
                    lastAddition->associated = lastA;
                    lastP = curP;
                    lastAP = -1;
                }  else {
                    lastA = descr_cmd[lastP]->associated;	// pourrait etre surecrit par la ligne suivante
                        /* (possible translation: Could be overwritten by the next line.) */
                    FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
                    lastAddition.reset(descr_cmd[curP]->clone());
                    if ( typ == descr_cubicto ) {
                        pending_cubic = *(dynamic_cast<PathDescrCubicTo*>(descr_cmd[curP]));
                    }
                    lastAP = curP;
                    containsForced = false;
                }
        
	    } else {
                lastA = prevA /*descr_cmd[curP-1]->associated */ ;
                lastAddition.reset(descr_cmd[curP]->clone());
                if ( typ == descr_cubicto ) {
                    pending_cubic = *(dynamic_cast<PathDescrCubicTo*>(descr_cmd[curP]));
                }
                lastAP = curP;
                containsForced = false;
	    }
            prevA = nextA;
            
        } else if (typ == descr_bezierto) {

            if (lastAddition->flags != descr_moveto) {
                FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
                lastAddition.reset(new PathDescrMoveTo(Geom::Point(0, 0)));
	    }
            lastAP = -1;
            lastA = descr_cmd[curP]->associated;
            lastP = curP;
            PathDescrBezierTo *nBData = dynamic_cast<PathDescrBezierTo*>(descr_cmd[curP]);
            for (int i = 1; i <= nBData->nb; i++) {
                FlushPendingAddition(tempDest, descr_cmd[curP + i], pending_cubic, curP + i);
            }
            curP += nBData->nb;
            prevA = nextA;
            
        } else if (typ == descr_interm_bezier) {
            continue;
        } else {
            continue;
        }
    }
    
    if (lastAddition->flags != descr_moveto) {
        FlushPendingAddition(tempDest, lastAddition.get(), pending_cubic, lastAP);
    }
  
    Copy(tempDest);
    delete tempDest;
}


void Path::FlushPendingAddition(Path *dest, PathDescr *lastAddition,
                                PathDescrCubicTo &lastCubic, int lastAP)
{
    switch (lastAddition->getType()) {

    case descr_moveto:
        if ( lastAP >= 0 ) {
            PathDescrMoveTo* nData = dynamic_cast<PathDescrMoveTo *>(descr_cmd[lastAP]);
            dest->MoveTo(nData->p);
        }
        break;
        
    case descr_close:
        dest->Close();
        break;

    case descr_cubicto:
        dest->CubicTo(lastCubic.p, lastCubic.start, lastCubic.end);
        break;

    case descr_lineto:
        if ( lastAP >= 0 ) {
            PathDescrLineTo *nData = dynamic_cast<PathDescrLineTo *>(descr_cmd[lastAP]);
            dest->LineTo(nData->p);
        }
        break;

    case descr_arcto:
        if ( lastAP >= 0 ) {
            PathDescrArcTo *nData = dynamic_cast<PathDescrArcTo *>(descr_cmd[lastAP]);
            dest->ArcTo(nData->p, nData->rx, nData->ry, nData->angle, nData->large, nData->clockwise);
        }
        break;

    case descr_bezierto:
        if ( lastAP >= 0 ) {
            PathDescrBezierTo *nData = dynamic_cast<PathDescrBezierTo *>(descr_cmd[lastAP]);
            dest->BezierTo(nData->p);
        }
        break;

    case descr_interm_bezier:
        if ( lastAP >= 0 ) {
            PathDescrIntermBezierTo *nData = dynamic_cast<PathDescrIntermBezierTo*>(descr_cmd[lastAP]);
            dest->IntermBezierTo(nData->p);
        }
        break;
    }
}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :