1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) Johan Engelen 2007 <j.b.c.engelen@utwente.nl>
* Copyright 2006 Michael G. Sloan <mgsloan@gmail.com>
* Copyright 2006 Aaron Spike <aaron@ekips.org>
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include "live_effects/lpe-gears.h"
#include <2geom/bezier-to-sbasis.h>
// TODO due to internal breakage in glibmm headers, this must be last:
#include <glibmm/i18n.h>
using namespace Geom;
class Gear {
public:
// pitch circles touch on two properly meshed gears
// all measurements are taken from the pitch circle
double pitch_diameter() {return (_number_of_teeth * _module) / M_PI;}
double pitch_radius() {return pitch_diameter() / 2.0;}
void pitch_radius(double R) {_module = (2 * M_PI * R) / _number_of_teeth;}
// base circle serves as the basis for the involute toothe profile
double base_diameter() {return pitch_diameter() * cos(_pressure_angle);}
double base_radius() {return base_diameter() / 2.0;}
// diametrical pitch
double diametrical_pitch() {return _number_of_teeth / pitch_diameter();}
// height of the tooth above the pitch circle
double addendum() {return 1.0 / diametrical_pitch();}
// depth of the tooth below the pitch circle
double dedendum() {return addendum() + _clearance;}
// root circle specifies the bottom of the fillet between teeth
double root_radius() {return pitch_radius() - dedendum();}
double root_diameter() {return root_radius() * 2.0;}
// outer circle is the outside diameter of the gear
double outer_radius() {return pitch_radius() + addendum();}
double outer_diameter() {return outer_radius() * 2.0;}
// angle covered by the tooth on the pitch circle
double tooth_thickness_angle() {return M_PI / _number_of_teeth;}
Geom::Point centre() {return _centre;}
void centre(Geom::Point c) {_centre = c;}
double angle() {return _angle;}
void angle(double a) {_angle = a;}
int number_of_teeth() {return _number_of_teeth;}
Geom::Path path();
Gear spawn(Geom::Point p);
Gear(int n, double m, double phi)
: _number_of_teeth(n)
, _pressure_angle(phi)
, _module(m)
{
}
private:
int _number_of_teeth;
double _pressure_angle;
double _module;
double _clearance = 0.0;
double _angle = 0.0;
Geom::Point _centre;
D2<SBasis> _involute(double start, double stop) {
D2<SBasis> B;
D2<SBasis> I;
Linear bo = Linear(start,stop);
B[0] = cos(bo,2);
B[1] = sin(bo,2);
I = B - Linear(0,1) * derivative(B);
I = I*base_radius() + _centre;
return I;
}
D2<SBasis> _arc(double start, double stop, double R) {
D2<SBasis> B;
Linear bo = Linear(start,stop);
B[0] = cos(bo,2);
B[1] = sin(bo,2);
B = B*R + _centre;
return B;
}
// angle of the base circle used to create the involute to a certain radius
double involute_swath_angle(double R) {
if (R <= base_radius()) return 0.0;
return sqrt(R*R - base_radius()*base_radius())/base_radius();
}
// angle of the base circle between the origin of the involute and the intersection on another radius
double involute_intersect_angle(double R) {
if (R <= base_radius()) return 0.0;
return (sqrt(R*R - base_radius()*base_radius())/base_radius()) - acos(base_radius()/R);
}
};
static void
makeContinuous(D2<SBasis> &a, Point const b) {
for(unsigned d=0;d<2;d++)
a[d][0][0] = b[d];
}
Geom::Path Gear::path() {
Geom::Path pb;
// angle covered by a full tooth and fillet
double tooth_rotation = 2.0 * tooth_thickness_angle();
// angle covered by an involute
double involute_advance = involute_intersect_angle(outer_radius()) - involute_intersect_angle(root_radius());
// angle covered by the tooth tip
double tip_advance = tooth_thickness_angle() - (2 * (involute_intersect_angle(outer_radius()) - involute_intersect_angle(pitch_radius())));
// angle covered by the toothe root
double root_advance = (tooth_rotation - tip_advance) - (2.0 * involute_advance);
// begin drawing the involute at t if the root circle is larger than the base circle
double involute_t = involute_swath_angle(root_radius())/involute_swath_angle(outer_radius());
//rewind angle to start drawing from the leading edge of the tooth
double first_tooth_angle = _angle - ((0.5 * tip_advance) + involute_advance);
Geom::Point prev;
for (int i=0; i < _number_of_teeth; i++)
{
double cursor = first_tooth_angle + (i * tooth_rotation);
D2<SBasis> leading_I = compose(_involute(cursor, cursor + involute_swath_angle(outer_radius())), Linear(involute_t,1));
if(i != 0) makeContinuous(leading_I, prev);
pb.append(SBasisCurve(leading_I));
cursor += involute_advance;
prev = leading_I.at1();
D2<SBasis> tip = _arc(cursor, cursor+tip_advance, outer_radius());
makeContinuous(tip, prev);
pb.append(SBasisCurve(tip));
cursor += tip_advance;
prev = tip.at1();
cursor += involute_advance;
D2<SBasis> trailing_I = compose(_involute(cursor, cursor - involute_swath_angle(outer_radius())), Linear(1,involute_t));
makeContinuous(trailing_I, prev);
pb.append(SBasisCurve(trailing_I));
prev = trailing_I.at1();
if (base_radius() > root_radius()) {
Geom::Point leading_start = trailing_I.at1();
Geom::Point leading_end = (root_radius() * unit_vector(leading_start - _centre)) + _centre;
prev = leading_end;
pb.appendNew<LineSegment>(leading_end);
}
D2<SBasis> root = _arc(cursor, cursor+root_advance, root_radius());
makeContinuous(root, prev);
pb.append(SBasisCurve(root));
//cursor += root_advance;
prev = root.at1();
if (base_radius() > root_radius()) {
Geom::Point trailing_start = root.at1();
Geom::Point trailing_end = (base_radius() * unit_vector(trailing_start - _centre)) + _centre;
pb.appendNew<LineSegment>(trailing_end);
prev = trailing_end;
}
}
return pb;
}
Gear Gear::spawn(Geom::Point p) {
double radius = Geom::distance(this->centre(), p) - this->pitch_radius();
int N = (int) floor( (radius / this->pitch_radius()) * this->number_of_teeth() );
Gear gear(N, _module, _pressure_angle);
gear.centre(p);
double a = atan2(p - this->centre());
double new_angle = 0.0;
if (gear.number_of_teeth() % 2 == 0)
new_angle -= gear.tooth_thickness_angle();
new_angle -= (_angle) * (pitch_radius() / gear.pitch_radius());
new_angle += (a) * (pitch_radius() / gear.pitch_radius());
gear.angle(new_angle + a);
return gear;
}
// #################################################################
namespace Inkscape {
namespace LivePathEffect {
LPEGears::LPEGears(LivePathEffectObject *lpeobject) :
Effect(lpeobject),
teeth(_("_Teeth:"), _("The number of teeth"), "teeth", &wr, this, 10),
phi(_("_Phi:"), _("Tooth pressure angle (typically 20-25 deg). The ratio of teeth not in contact."), "phi", &wr, this, 5),
min_radius(_("Min Radius:"), _("Minimum radius, low values can be slow"), "min_radius", &wr, this, 5.0)
{
/* Tooth pressure angle: The angle between the tooth profile and a perpendicular to the pitch
* circle, usually at the point where the pitch circle meets the tooth profile. Standard angles
* are 20 and 25 degrees. The pressure angle affects the force that tends to separate mating
* gears. A high pressure angle means that higher ratio of teeth not in contact. However, this
* allows the teeth to have higher capacity and also allows fewer teeth without undercutting.
*/
teeth.param_make_integer();
teeth.param_set_range(3, 1e10);
min_radius.param_set_range(0.01, std::numeric_limits<double>::max());
registerParameter(&teeth);
registerParameter(&phi);
registerParameter(&min_radius);
}
LPEGears::~LPEGears() = default;
Geom::PathVector
LPEGears::doEffect_path (Geom::PathVector const &path_in)
{
Geom::PathVector path_out;
Geom::Path gearpath = path_in[0];
Geom::Path::iterator it(gearpath.begin());
if ( it == gearpath.end() ) return path_out;
Gear * gear = new Gear(teeth, 200.0, phi * M_PI / 180);
Geom::Point gear_centre = (*it).finalPoint();
gear->centre(gear_centre);
gear->angle(atan2((*it).initialPoint() - gear_centre));
++it;
if ( it == gearpath.end() ) return path_out;
double radius = Geom::distance(gear_centre, (*it).finalPoint());
radius = radius < min_radius?min_radius:radius;
gear->pitch_radius(radius);
path_out.push_back( gear->path());
for (++it; it != gearpath.end() ; ++it) {
if (are_near((*it).initialPoint(), (*it).finalPoint())) {
continue;
}
// iterate through Geom::Curve in path_in
Gear* gearnew = new Gear(gear->spawn( (*it).finalPoint() ));
path_out.push_back( gearnew->path() );
delete gear;
gear = gearnew;
}
delete gear;
return path_out;
}
} // namespace LivePathEffect
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
|