1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
// SPDX-License-Identifier: GPL-2.0-or-later
/** @file Implementation of the OKLab/OKLch perceptual color space.
*/
/*
* Authors:
* Rafał Siejakowski <rs@rs-math.net>
*
* Copyright (C) 2022 Authors
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include "oklab.h"
#include <algorithm>
#include <2geom/angle.h>
#include <2geom/math-utils.h>
#include <2geom/polynomial.h>
#include "color.h"
namespace Oklab {
/** Two-dimensional array to store a constant 3x3 matrix. */
using Matrix = const double[3][3];
/** Matrix of the linear transformation from linear RGB space to linear
* cone responses, used in the first step of RGB to OKLab conversion.
*/
Matrix LRGB2CONE = {
{ 0.4122214708, 0.5363325363, 0.0514459929 },
{ 0.2119034982, 0.6806995451, 0.1073969566 },
{ 0.0883024619, 0.2817188376, 0.6299787005 }
};
/** The inverse of the matrix LRGB2CONE. */
Matrix CONE2LRGB = {
{ 4.0767416613479942676681908333711298900607278264432, -3.30771159040819331315866078424893188865618253342, 0.230969928729427886449650619561935920170561518112 },
{ -1.2684380040921760691815055595117506020901414005992, 2.60975740066337143024050095284233623056192338553, -0.341319396310219620992658250306535533187548361872 },
{ -0.0041960865418371092973767821251846315637521173374, -0.70341861445944960601310996913659932654899822384, 1.707614700930944853864541790660472961199090408527 }
};
/** The matrix M2 used in the second step of RGB to OKLab conversion.
* Taken from https://bottosson.github.io/posts/oklab/ (retrieved 2022).
*/
Matrix M2 = {
{ 0.2104542553, 0.793617785, -0.0040720468 },
{ 1.9779984951, -2.428592205, 0.4505937099 },
{ 0.0259040371, 0.7827717662, -0.808675766 }
};
/** The inverse of the matrix M2. The first column looks like it wants to be 1 but
* this form is closer to the actual inverse (due to numerics). */
Matrix M2_INVERSE = {
{ 0.99999999845051981426207542502031373637162589278552, 0.39633779217376785682345989261573192476766903603, 0.215803758060758803423141461830037892590617787467 },
{ 1.00000000888176077671607524567047071276183677410134, -0.10556134232365634941095687705472233997368274024, -0.063854174771705903405254198817795633810975771082 },
{ 1.00000005467241091770129286515344610721841028698942, -0.08948418209496575968905274586339134130669669716, -1.291485537864091739948928752914772401878545675371 }
};
/** Compute the dot-product between two 3D-vectors. */
template <typename A1, typename A2>
inline constexpr double dot3(const A1 &a1, const A2 &a2)
{
return a1[0] * a2[0] + a1[1] * a2[1] + a1[2] * a2[2];
}
Triplet oklab_to_oklch(Triplet const &ok_lab_color)
{
Triplet result;
result[0] = ok_lab_color[0]; // copy the L component
// Convert a, b to polar coordinates c, h.
result[1] = std::hypot(ok_lab_color[1], ok_lab_color[2]);
if (result[1] > 0.001) {
Geom::Angle const hue_angle = std::atan2(ok_lab_color[2], ok_lab_color[1]);
result[2] = Geom::deg_from_rad(hue_angle.radians0());
} else {
result[2] = 0;
}
return result;
}
Triplet oklch_to_oklab(Triplet const &ok_lch_color)
{
return oklch_radians_to_oklab({ ok_lch_color[0],
ok_lch_color[1],
Geom::Angle::from_degrees(ok_lch_color[2]) });
}
Triplet oklch_radians_to_oklab(Triplet const &oklch_rad)
{
Triplet result;
result[0] = oklch_rad[0]; // Copy the L component
// c and h are polar coordinates; convert to Cartesian a, b coords.
Geom::sincos(oklch_rad[2], result[2], result[1]);
result[1] *= oklch_rad[1];
result[2] *= oklch_rad[1];
return result;
}
Triplet oklab_to_linear_rgb(Triplet const &oklab_color)
{
Triplet cones;
for (unsigned i = 0; i < 3; i++) {
cones[i] = Geom::cube(dot3(M2_INVERSE[i], oklab_color));
}
Triplet result;
for (unsigned i = 0; i < 3; i++) {
result[i] = std::clamp(dot3(CONE2LRGB[i], cones), 0.0, 1.0);
}
return result;
}
Triplet linear_rgb_to_oklab(Triplet const &linear_rgb_color)
{
Triplet cones;
for (unsigned i = 0; i < 3; i++) {
cones[i] = std::cbrt(dot3(LRGB2CONE[i], linear_rgb_color));
}
Triplet result;
for (unsigned i = 0; i < 3; i++) {
result[i] = dot3(M2[i], cones);
}
return result;
}
Triplet oklab_to_okhsl(Triplet const &ok_lab_color)
{
Triplet result;
result[2] = std::clamp(ok_lab_color[0], 0.0, 1.0); // Copy the L component.
// Compute the chroma.
double const absolute_chroma = std::hypot(ok_lab_color[1], ok_lab_color[2]);
if (absolute_chroma < 1e-7) {
// It would be numerically unstable to calculate the hue for this
// color, so we set the hue and saturation to zero (grayscale color).
result[0] = 0.0;
result[1] = 0.0;
return result;
}
// Compute the hue (in the unit interval).
Geom::Angle const hue_angle = std::atan2(ok_lab_color[2], ok_lab_color[1]);
result[0] = hue_angle.radians0() / (2.0 * M_PI);
// Compute the linear saturation.
double const hue_degrees = Geom::deg_from_rad(hue_angle.radians0());
double const chromax = max_chroma(result[2], hue_degrees);
result[1] = (chromax == 0.0) ? 0.0 : std::clamp(absolute_chroma / chromax, 0.0, 1.0);
return result;
}
Triplet okhsl_to_oklab(Triplet const &ok_hsl_color)
{
Triplet result;
result[0] = std::clamp(ok_hsl_color[2], 0.0, 1.0); // Copy the L component.
// Get max chroma for this hue and lightness and compute the absolute chroma.
double const chromax = max_chroma(result[0], ok_hsl_color[0] * 360.0);
double const absolute_chroma = ok_hsl_color[1] * chromax;
// Convert hue and chroma to the Cartesian a, b coordinates.
Geom::sincos(ok_hsl_color[0] * 2.0 * M_PI, result[2], result[1]);
result[1] *= absolute_chroma;
result[2] *= absolute_chroma;
return result;
}
/** @brief
* Data needed to compute coefficients in the cubic polynomials which express the lines
* of constant luminosity and hue (but varying chroma) as curves in the linear RGB space.
*/
struct ChromaLineCoefficients {
// Variable naming: `c%d` contains coefficients of c^%d in the polynomial, where c is
// the OKLch chroma. l refers to the luminosity, cos and sin to the cosine and sine of
// the hue angle. Trailing digits are exponents. For example,
// c2.lcos2 is the coefficient of (l * cos(hue_angle)^2) in the overall coefficient of c^2.
struct {
double l2cos, l2sin;
} c1;
struct {
double lcos2, lcossin, lsin2;
} c2;
struct {
double cos3, cos2sin, cossin2, sin3;
} c3;
};
ChromaLineCoefficients const LAB_BOUNDS[] = {
// Red polynomial
{
.c1 = {
.l2cos = 5.83279532899080641005754476131631984,
.l2sin = 2.3780791275435732378965655753413412
},
.c2 = {
.lcos2 = 1.81614129917652075864819542521099165275,
.lcossin = 2.11851258971260413543962953223104329409,
.lsin2 = 1.68484527361538384522450980300698198391
},
.c3 = {
.cos3 = 0.257535869797624151773507242289856932594,
.cos2sin = 0.414490345667882332785000888243122224651,
.cossin2 = 0.126596511492002610582126014059213892767,
.sin3 = -0.455702039844046560333204117380816048203
}
},
// Green polynomial
{
.c1 = {
.l2cos = -2.243030176177044107983968331289088261,
.l2sin = 0.00129441240977850026657772225608
},
.c2 = {
.lcos2 = -0.5187087369791308621879921351291952375,
.lcossin = -0.7820717390897833607054953914674219281,
.lsin2 = -1.8531911425339782749638630868227383795
},
.c3 = {
.cos3 = -0.0817959138495637068389017598370049459,
.cos2sin = -0.1239788660641220973883495153116480854,
.cossin2 = 0.0792215342150077349794741576353537047,
.sin3 = 0.7218132301017783162780535454552058572
}
},
// Blue polynomial
{
.c1 = {
.l2cos = -0.2406412780923628220925350522352767957,
.l2sin = -6.48404701978782955733370693958213669
},
.c2 = {
.lcos2 = 0.015528352128452044798222201797574285162,
.lcossin = 1.153466975472590255156068122829360981648,
.lsin2 = 8.535379923500727607267514499627438513637
},
.c3 = {
.cos3 = -0.0006573855374563134769075967180540368,
.cos2sin = -0.0519029179849443823389557527273309386,
.cossin2 = -0.763927972885238036962716856256210617,
.sin3 = -3.67825541507929556013845659620477582
}
}
};
/** Stores powers of luminance, hue cosine and hue sine angles. */
struct ConstraintMonomials
{
double l, l2, l3, c, c2, c3, s, s2, s3;
ConstraintMonomials(double l, double h)
: l{l}
{
l2 = Geom::sqr(l);
l3 = l2 * l;
Geom::sincos(Geom::rad_from_deg(h), s, c);
c2 = Geom::sqr(c);
c3 = c2 * c;
s2 = 1.0 - c2; // Use sin^2 = 1 - cos^2.
s3 = s2 * s;
}
};
/** @brief Find the coefficients of the cubic polynomial expressing the linear
* R, G or B component as a function of OKLch chroma.
*
* The returned polynomial gives R(c), G(c) or B(c) for all values of c and fixed
* values of luminance and hue.
*
* @param index The index of the component to evaluate (0 for R, 1 for G, 2 for B).
* @param m The monomials in L, cos(hue) and sin(hue) needed for the calculation.
* @return an array whose i-th element is the coefficient of c^i in the polynomial.
*/
static std::array<double, 4> component_coefficients(unsigned index, ConstraintMonomials const &m)
{
auto const &coeffs = LAB_BOUNDS[index];
std::array<double, 4> result;
// Multiply the coefficients by the corresponding monomials.
result[0] = m.l3; // The coefficient of l^3 is always 1
result[1] = coeffs.c1.l2cos * m.l2 * m.c + coeffs.c1.l2sin * m.l2 * m.s;
result[2] = coeffs.c2.lcos2 * m.l * m.c2 + coeffs.c2.lcossin * m.l * m.c * m.s + coeffs.c2.lsin2 * m.l * m.s2;
result[3] = coeffs.c3.cos3 * m.c3 + coeffs.c3.cos2sin * m.c2 * m.s
+ coeffs.c3.cossin2 * m.c * m.s2 + coeffs.c3.sin3 * m.s3;
return result;
}
/* Compute the maximum Lch chroma for the given luminosity and hue.
*
* Implementation notes:
* The space of Lch colors is a complicated solid with curved faces in the
* (L, c, h)-space. So it is not easy to find the maximum chroma for the given
* luminosity and hue. (By maximum chroma, we mean the maximum value of c such
* that the color oklch(L c h) still fits in the sRGB gamut.)
*
* We consider an abstract ray (L, c, h) where L and h are fixed and c varies
* from 0 to infinity. Conceptually, we transform this ray to the linear RGB space,
* which is the unit cube. The ray thus becomes a 3D cubic curve in the RGB cube
* and the coordinates R(c), G(c) and B(c) are degree 3 polynomials in the chroma
* variable c. The coefficients of c^i in those polynomials will depend on L and h.
*
* To find the smallest positive value of c for which the curve leaves the unit
* cube, we must solve the equations R(c) = 0, R(c) = 1 and similarly for G(c)
* and B(c). The desired value is the smallest positive solution among those 6
* equations.
*
* The case of very small or very large luminosity is handled separately.
*/
double max_chroma(double l, double h)
{
static double const EPS = 1e-7;
if (l < EPS || l > 1.0 - EPS) { // Black or white allow no chroma.
return 0;
}
double chroma_bound = Geom::infinity();
auto const process_root = [&](double root) -> bool {
if (root < EPS) { // Ignore roots less than epsilon
return false;
}
if (chroma_bound > root) {
chroma_bound = root;
}
return true;
};
// Check relevant chroma constraints for all three coordinates R, G, B.
auto const monomials = ConstraintMonomials(l, h);
for (unsigned i = 0; i < 3; i++) {
auto const coeffs = component_coefficients(i, monomials);
// The cubic polynomial is coeffs[3]*c^3 + coeffs[2]*c^2 + coeffs[1]*c + coeffs[0]
// First we solve for the R/G/B component equal to zero.
for (double root : Geom::solve_cubic(coeffs[3], coeffs[2], coeffs[1], coeffs[0])) {
if (process_root(root)) {
break;
}
}
// Now solve for the component equal to 1 by subtracting 1.0 from coeffs[0].
for (double root : Geom::solve_cubic(coeffs[3], coeffs[2], coeffs[1], coeffs[0] - 1.0)) {
if (process_root(root)) {
break;
}
}
}
if (chroma_bound == Geom::infinity()) { // No bound was found, so everything was < EPS
return 0;
}
return chroma_bound;
}
/** @brief How many intervals a color scale should be subdivided into for the chroma bounds probing.
*
* The reason this constant exists is because probing chroma bounds requires solving 6 cubic equations,
* which would not be feasible for all 1024 pixels on a scale without slowing down the UI.
* To speed things up, we subdivide the scale into COLOR_SCALE_INTERVALS intervals and linearly
* interpolate the chroma bound on each interval. Note that the actual color interpolation is still
* done in the OKLab space, but the computed absolute chroma may be slightly off in the middle of
* each interval (hopefully, in an imperceptible way).
*
* @todo Consider rendering the color sliders asynchronously, which might make this
* interpolation unnecessary. We would then get full precision gradients.
*/
unsigned const COLOR_SCALE_INTERVALS = 32; // Must be a power of 2 and less than 1024.
uint8_t const *render_hue_scale(double s, double l, std::array<uint8_t, 4 * 1024> *map)
{
auto const data = map->data();
auto pos = data;
unsigned const interval_length = 1024 / COLOR_SCALE_INTERVALS;
double h = 0; // Variable hue
double chroma_bound = max_chroma(l, h);
double next_chroma_bound;
double const step = 360.0 / 1024.0;
double const interpolation_step = 360.0 / COLOR_SCALE_INTERVALS;
for (unsigned i = 0; i < COLOR_SCALE_INTERVALS; i++) {
double const initial_chroma = chroma_bound * s;
next_chroma_bound = max_chroma(l, h + interpolation_step);
double const final_chroma = next_chroma_bound * s;
for (unsigned j = 0; j < interval_length; j++) {
double const c = Geom::lerp(static_cast<double>(j) / interval_length, initial_chroma, final_chroma);
auto [r, g, b] = oklab_to_rgb(oklch_to_oklab({l, c, h}));
*pos++ = (uint8_t)SP_COLOR_F_TO_U(r);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(g);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(b);
*pos++ = 0xFF;
h += step;
}
chroma_bound = next_chroma_bound;
}
return data;
}
uint8_t const *render_saturation_scale(double h, double l, std::array<uint8_t, 4 * 1024> *map)
{
auto const data = map->data();
auto pos = data;
auto chromax = max_chroma(l, h);
if (chromax == 0.0) { // Render black or white strip.
uint8_t const bw = (l > 0.9) ? 0xFF : 0x00;
for (size_t i = 0; i < 1024; i++) {
*pos++ = bw; // red
*pos++ = bw; // green
*pos++ = bw; // blue
*pos++ = 0xFF; // alpha
}
} else { // Render strip of varying chroma.
double const chroma_step = chromax / 1024.0;
double c = 0.0;
for (size_t i = 0; i < 1024; i++) {
auto [r, g, b] = oklab_to_rgb(oklch_to_oklab({l, c, h}));
*pos++ = (uint8_t)SP_COLOR_F_TO_U(r);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(g);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(b);
*pos++ = 0xFF;
c += chroma_step;
}
}
return data;
}
uint8_t const *render_lightness_scale(double h, double s, std::array<uint8_t, 4 * 1024> *map)
{
auto const data = map->data();
auto pos = data;
unsigned const interval_length = 1024 / COLOR_SCALE_INTERVALS;
double l = 0; // Variable lightness
double chroma_bound = max_chroma(l, h);
double next_chroma_bound;
double const step = 1.0 / 1024.0;
double const interpolation_step = 1.0 / COLOR_SCALE_INTERVALS;
for (unsigned i = 0; i < COLOR_SCALE_INTERVALS; i++) {
double const initial_chroma = chroma_bound * s;
next_chroma_bound = max_chroma(l + interpolation_step, h);
double const final_chroma = next_chroma_bound * s;
for (unsigned j = 0; j < interval_length; j++) {
double const c = Geom::lerp(static_cast<double>(j) / interval_length, initial_chroma, final_chroma);
auto [r, g, b] = oklab_to_rgb(oklch_to_oklab({l, c, h}));
*pos++ = (uint8_t)SP_COLOR_F_TO_U(r);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(g);
*pos++ = (uint8_t)SP_COLOR_F_TO_U(b);
*pos++ = 0xFF;
l += step;
}
chroma_bound = next_chroma_bound;
}
return data;
}
} // namespace Oklab
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|