1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* 3x4 transformation matrix to map points from projective 3-space into the projective plane
*
* Authors:
* Maximilian Albert <Anhalter42@gmx.de>
*
* Copyright (C) 2007 Authors
*
* Released under GNU GPL v2+, read the file 'COPYING' for more information.
*/
#include "transf_mat_3x4.h"
#include <2geom/affine.h>
#include "svg/stringstream.h"
#include "syseq.h"
namespace Proj {
TransfMat3x4::TransfMat3x4 () {
for (unsigned int i = 0; i < 3; ++i) {
for (unsigned int j = 0; j < 4; ++j) {
tmat[i][j] = (i == j ? 1 : 0); // or should we initialize all values with 0? does it matter at all?
}
}
}
TransfMat3x4::TransfMat3x4 (Proj::Pt2 vp_x, Proj::Pt2 vp_y, Proj::Pt2 vp_z, Proj::Pt2 origin) {
for (unsigned int i = 0; i < 3; ++i) {
tmat[i][0] = vp_x[i];
tmat[i][1] = vp_y[i];
tmat[i][2] = vp_z[i];
tmat[i][3] = origin[i];
}
}
TransfMat3x4::TransfMat3x4(TransfMat3x4 const &rhs) {
for (unsigned int i = 0; i < 3; ++i) {
for (unsigned int j = 0; j < 4; ++j) {
tmat[i][j] = rhs.tmat[i][j];
}
}
}
Pt2
TransfMat3x4::column (Proj::Axis axis) const {
return Proj::Pt2 (tmat[0][axis], tmat[1][axis], tmat[2][axis]);
}
Pt2
TransfMat3x4::image (Pt3 const &point) {
double x = tmat[0][0] * point[0] + tmat[0][1] * point[1] + tmat[0][2] * point[2] + tmat[0][3] * point[3];
double y = tmat[1][0] * point[0] + tmat[1][1] * point[1] + tmat[1][2] * point[2] + tmat[1][3] * point[3];
double w = tmat[2][0] * point[0] + tmat[2][1] * point[1] + tmat[2][2] * point[2] + tmat[2][3] * point[3];
return Pt2 (x, y, w);
}
Pt3
TransfMat3x4::preimage (Geom::Point const &pt, double coord, Proj::Axis axis) {
const double init_val = std::numeric_limits<double>::quiet_NaN();
double x[4] = { init_val, init_val, init_val, init_val };
double v[3] = { pt[Geom::X], pt[Geom::Y], 1.0 };
int index = (int) axis;
SysEq::SolutionKind sol = SysEq::gaussjord_solve<3,4>(tmat, x, v, index, coord, true);
if (sol != SysEq::unique) {
if (sol == SysEq::no_solution) {
g_warning ("No solution. Please investigate.");
} else {
g_warning ("Infinitely many solutions. Please investigate.");
}
}
return Pt3(x[0], x[1], x[2], x[3]);
}
void
TransfMat3x4::set_image_pt (Proj::Axis axis, Proj::Pt2 const &pt) {
// FIXME: Do we need to adapt the coordinates in any way or can we just use them as they are?
for (int i = 0; i < 3; ++i) {
tmat[i][axis] = pt[i];
}
}
void
TransfMat3x4::toggle_finite (Proj::Axis axis) {
g_return_if_fail (axis != Proj::W);
if (has_finite_image(axis)) {
Geom::Point dir (column(axis).affine());
Geom::Point origin (column(Proj::W).affine());
dir -= origin;
set_column (axis, Proj::Pt2(dir[Geom::X], dir[Geom::Y], 0));
} else {
Proj::Pt2 dir (column(axis));
Proj::Pt2 origin (column(Proj::W).affine());
dir = dir + origin;
dir[2] = 1.0;
set_column (axis, dir);
}
}
gchar *
TransfMat3x4::pt_to_str (Proj::Axis axis) {
Inkscape::SVGOStringStream os;
os << tmat[0][axis] << " : "
<< tmat[1][axis] << " : "
<< tmat[2][axis];
return g_strdup(os.str().c_str());
}
/* Check for equality (with a small tolerance epsilon) */
bool
TransfMat3x4::operator==(const TransfMat3x4 &rhs) const
{
// Should we allow a certain tolerance or "normalize" the matrices first?
for (int i = 0; i < 3; ++i) {
Proj::Pt2 pt1 = column(Proj::axes[i]);
Proj::Pt2 pt2 = rhs.column(Proj::axes[i]);
if (pt1 != pt2) {
return false;
}
}
return true;
}
/* Multiply a projective matrix by an affine matrix (by only multiplying the 'affine part' of the
* projective matrix) */
TransfMat3x4
TransfMat3x4::operator*(Geom::Affine const &A) const {
TransfMat3x4 ret;
for (int j = 0; j < 4; ++j) {
ret.tmat[0][j] = A[0]*tmat[0][j] + A[2]*tmat[1][j] + A[4]*tmat[2][j];
ret.tmat[1][j] = A[1]*tmat[0][j] + A[3]*tmat[1][j] + A[5]*tmat[2][j];
ret.tmat[2][j] = tmat[2][j];
}
return ret;
}
// FIXME: Shouldn't rather operator* call operator*= for efficiency? (Because in operator*=
// there is in principle no need to create a temporary object, which happens in the assignment)
TransfMat3x4 &
TransfMat3x4::operator*=(Geom::Affine const &A) {
*this = *this * A;
return *this;
}
void
TransfMat3x4::copy_tmat(double rhs[3][4]) {
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 4; ++j) {
rhs[i][j] = tmat[i][j];
}
}
}
void
TransfMat3x4::print () const {
g_print ("Transformation matrix:\n");
for (const auto & i : tmat) {
g_print (" ");
for (double j : i) {
g_print ("%8.2f ", j);
}
g_print ("\n");
}
}
void
TransfMat3x4::normalize_column (Proj::Axis axis) {
Proj::Pt2 new_col(column(axis));
new_col.normalize();
set_image_pt(axis, new_col);
}
} // namespace Proj
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|