summaryrefslogtreecommitdiffstats
path: root/src/ui/widget/canvas/stores.cpp
blob: 70327f5a48b4997e4452d0633f3e10ea51237017 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <cmath>
#include <2geom/transforms.h>
#include <2geom/parallelogram.h>
#include <2geom/point.h>
#include "helper/geom.h"
#include "ui/util.h"
#include "stores.h"
#include "prefs.h"
#include "fragment.h"
#include "graphics.h"

namespace Inkscape {
namespace UI {
namespace Widget {
namespace {

// Determine whether an affine transformation approximately maps the unit square [0, 1]^2 to itself.
bool preserves_unitsquare(Geom::Affine const &affine)
{
    return approx_dihedral(Geom::Translate(0.5, 0.5) * affine * Geom::Translate(-0.5, -0.5));
}

// Apply an affine transformation to a region, then return a strictly smaller region approximating it, made from chunks of size roughly d.
// To reduce computation, only the intersection of the result with bounds will be valid.
auto region_affine_approxinwards(Cairo::RefPtr<Cairo::Region> const &reg, Geom::Affine const &affine, Geom::IntRect const &bounds, int d = 200)
{
    // Trivial empty case.
    if (reg->empty()) return Cairo::Region::create();

    // Trivial identity case.
    if (affine.isIdentity(0.001)) return reg->copy();

    // Fast-path for rectilinear transformations.
    if (affine.withoutTranslation().isScale(0.001)) {
        auto regdst = Cairo::Region::create();

        auto transform = [&] (const Geom::IntPoint &p) {
            return (Geom::Point(p) * affine).round();
        };

        for (int i = 0; i < reg->get_num_rectangles(); i++) {
            auto rect = cairo_to_geom(reg->get_rectangle(i));
            regdst->do_union(geom_to_cairo(Geom::IntRect(transform(rect.min()), transform(rect.max()))));
        }

        return regdst;
    }

    // General case.
    auto ext = cairo_to_geom(reg->get_extents());
    auto rectdst = ((Geom::Parallelogram(ext) * affine).bounds().roundOutwards() & bounds).regularized();
    if (!rectdst) return Cairo::Region::create();
    auto rectsrc = (Geom::Parallelogram(*rectdst) * affine.inverse()).bounds().roundOutwards();

    auto regdst = Cairo::Region::create(geom_to_cairo(*rectdst));
    auto regsrc = Cairo::Region::create(geom_to_cairo(rectsrc));
    regsrc->subtract(reg);

    double fx = min(absolute(Geom::Point(1.0, 0.0) * affine.withoutTranslation()));
    double fy = min(absolute(Geom::Point(0.0, 1.0) * affine.withoutTranslation()));

    for (int i = 0; i < regsrc->get_num_rectangles(); i++)
    {
        auto rect = cairo_to_geom(regsrc->get_rectangle(i));
        int nx = std::ceil(rect.width()  * fx / d);
        int ny = std::ceil(rect.height() * fy / d);
        auto pt = [&] (int x, int y) {
            return rect.min() + (rect.dimensions() * Geom::IntPoint(x, y)) / Geom::IntPoint(nx, ny);
        };
        for (int x = 0; x < nx; x++) {
            for (int y = 0; y < ny; y++) {
                auto r = Geom::IntRect(pt(x, y), pt(x + 1, y + 1));
                auto r2 = (Geom::Parallelogram(r) * affine).bounds().roundOutwards();
                regdst->subtract(geom_to_cairo(r2));
            }
        }
    }

    return regdst;
}

} // namespace

Geom::IntRect Stores::centered(Fragment const &view) const
{
    // Return the visible region of the view, plus the prerender and padding margins.
    return expandedBy(view.rect, _prefs.prerender + _prefs.padding);
}

void Stores::recreate_store(Fragment const &view)
{
    // Recreate the store at the view's affine.
    _store.affine = view.affine;
    _store.rect = centered(view);
    _store.drawn = Cairo::Region::create();
    // Tell the graphics to create a blank new store.
    _graphics->recreate_store(_store.rect.dimensions());
}

void Stores::shift_store(Fragment const &view)
{
    // Create a new fragment centred on the viewport.
    auto rect = centered(view);
    // Tell the graphics to copy the drawn part of the old store to the new store.
    _graphics->shift_store(Fragment{ _store.affine, rect });
    // Set the shifted store as the new store.
    _store.rect = rect;
    // Clip the drawn region to the new store.
    _store.drawn->intersect(geom_to_cairo(_store.rect));
};

void Stores::take_snapshot(Fragment const &view)
{
    // Copy the store to the snapshot, leaving us temporarily in an invalid state.
    _snapshot = std::move(_store);
    // Tell the graphics to do the same, except swapping them so we can re-use the old snapshot store.
    _graphics->swap_stores();
    // Reset the store.
    recreate_store(view);
    // Transform the snapshot's drawn region to the new store's affine.
    _snapshot.drawn = shrink_region(region_affine_approxinwards(_snapshot.drawn, _snapshot.affine.inverse() * _store.affine, _store.rect), 4, -2);
}

void Stores::snapshot_combine(Fragment const &view)
{
    // Add the drawn region to the snapshot drawn region (they both exist in store space, so this is valid), and save its affine.
    _snapshot.drawn->do_union(_store.drawn);
    auto old_store_affine = _store.affine;

    // Get the list of corner points in the store's drawn region and the snapshot bounds rect, all at the view's affine.
    std::vector<Geom::Point> pts;
    auto add_rect = [&, this] (Geom::Parallelogram const &pl) {
        for (int i = 0; i < 4; i++) {
            pts.emplace_back(Geom::Point(pl.corner(i)));
        }
    };
    auto add_store = [&, this] (Store const &s) {
        int nrects = s.drawn->get_num_rectangles();
        auto affine = s.affine.inverse() * view.affine;
        for (int i = 0; i < nrects; i++) {
            add_rect(Geom::Parallelogram(cairo_to_geom(s.drawn->get_rectangle(i))) * affine);
        }
    };
    add_store(_store);
    add_rect(Geom::Parallelogram(_snapshot.rect) * _snapshot.affine.inverse() * view.affine);

    // Compute their minimum-area bounding box as a fragment - an (affine, rect) pair.
    auto [affine, rect] = min_bounding_box(pts);
    affine = view.affine * affine;

    // Check if the paste transform takes the snapshot store exactly onto the new fragment, possibly with a dihedral transformation.
    auto paste = Geom::Scale(_snapshot.rect.dimensions())
               * Geom::Translate(_snapshot.rect.min())
               * _snapshot.affine.inverse()
               * affine
               * Geom::Translate(-rect.min())
               * Geom::Scale(rect.dimensions()).inverse();
    if (preserves_unitsquare(paste)) {
        // If so, simply take the new fragment to be exactly the same as the snapshot store.
        rect   = _snapshot.rect;
        affine = _snapshot.affine;
    }

    // Compute the scale difference between the backing store and the new fragment, giving the amount of detail that would be lost by pasting.
    if ( double scale_ratio = std::sqrt(std::abs(_store.affine.det() / affine.det()));
                scale_ratio > 4.0 )
    {
        // Zoom the new fragment in to increase its quality.
        double grow = scale_ratio / 2.0;
        rect   *= Geom::Scale(grow);
        affine *= Geom::Scale(grow);
    }

    // Do not allow the fragment to become more detailed than the window.
    if ( double scale_ratio = std::sqrt(std::abs(affine.det() / view.affine.det()));
                scale_ratio > 1.0 )
    {
        // Zoom the new fragment out to reduce its quality.
        double shrink = 1.0 / scale_ratio;
        rect   *= Geom::Scale(shrink);
        affine *= Geom::Scale(shrink);
    }

    // Find the bounding rect of the visible region + prerender margin within the new fragment. We do not want to discard this content in the next clipping step.
    auto renderable = (Geom::Parallelogram(expandedBy(view.rect, _prefs.prerender)) * view.affine.inverse() * affine).bounds() & rect;

    // Cap the dimensions of the new fragment to slightly larger than the maximum dimension of the window by clipping it towards the screen centre. (Lower in Cairo mode since otherwise too slow to cope.)
    double max_dimension = max(view.rect.dimensions()) * (_graphics->is_opengl() ? 1.7 : 0.8);
    auto dimens = rect.dimensions();
    dimens.x() = std::min(dimens.x(), max_dimension);
    dimens.y() = std::min(dimens.y(), max_dimension);
    auto center = Geom::Rect(view.rect).midpoint() * view.affine.inverse() * affine;
    center.x() = Util::safeclamp(center.x(), rect.left() + dimens.x() * 0.5, rect.right()  - dimens.x() * 0.5);
    center.y() = Util::safeclamp(center.y(), rect.top()  + dimens.y() * 0.5, rect.bottom() - dimens.y() * 0.5);
    rect = Geom::Rect(center - dimens * 0.5, center + dimens * 0.5);

    // Ensure the new fragment contains the renderable rect from earlier, enlarging it and reducing resolution if necessary.
    if (!rect.contains(renderable)) {
        auto oldrect = rect;
        rect.unionWith(renderable);
        double shrink = 1.0 / std::max(rect.width() / oldrect.width(), rect.height() / oldrect.height());
        rect   *= Geom::Scale(shrink);
        affine *= Geom::Scale(shrink);
    }

    // Calculate the paste transform from the snapshot store to the new fragment (again).
    paste = Geom::Scale(_snapshot.rect.dimensions())
          * Geom::Translate(_snapshot.rect.min())
          * _snapshot.affine.inverse()
          * affine
          * Geom::Translate(-rect.min())
          * Geom::Scale(rect.dimensions()).inverse();

    if (_prefs.debug_logging) std::cout << "New fragment dimensions " << rect.width() << ' ' << rect.height() << std::endl;

    if (paste.isIdentity(0.001) && rect.dimensions().round() == _snapshot.rect.dimensions()) {
        // Fast path: simply paste the backing store onto the snapshot store.
        if (_prefs.debug_logging) std::cout << "Fast snapshot combine" << std::endl;
        _graphics->fast_snapshot_combine();
    } else {
        // General path: paste the snapshot store and then the backing store onto a new fragment, then set that as the snapshot store.
        auto frag_rect = rect.roundOutwards();
        _graphics->snapshot_combine(Fragment{ affine, frag_rect });
        _snapshot.rect = frag_rect;
        _snapshot.affine = affine;
    }

    // Start drawing again on a new blank store aligned to the screen.
    recreate_store(view);
    // Transform the snapshot clean region to the new store.
    // Todo: Should really clip this to the new snapshot rect, only we can't because it's generally not aligned with the store's affine.
    _snapshot.drawn = shrink_region(region_affine_approxinwards(_snapshot.drawn, old_store_affine.inverse() * _store.affine, _store.rect), 4, -2);
};

void Stores::reset()
{
    _mode = Mode::None;
    _store.drawn.clear();
    _snapshot.drawn.clear();
}

// Handle transitions and actions in response to viewport changes.
auto Stores::update(Fragment const &view) -> Action
{
    switch (_mode) {
        
        case Mode::None: {
            // Not yet initialised or just reset - create store for first time.
            recreate_store(view);
            _mode = Mode::Normal;
            if (_prefs.debug_logging) std::cout << "Full reset" << std::endl;
            return Action::Recreated;
        }
        
        case Mode::Normal: {
            auto result = Action::None;
            // Enter decoupled mode if the affine has changed from what the store was drawn at.
            if (view.affine != _store.affine) {
                // Snapshot and reset the store.
                take_snapshot(view);
                // Enter decoupled mode.
                _mode = Mode::Decoupled;
                if (_prefs.debug_logging) std::cout << "Enter decoupled mode" << std::endl;
                result = Action::Recreated;
            } else {
                // Determine whether the view has moved sufficiently far that we need to shift the store.
                if (!_store.rect.contains(expandedBy(view.rect, _prefs.prerender))) {
                    // The visible region + prerender margin has reached the edge of the store.
                    if (!(cairo_to_geom(_store.drawn->get_extents()) & expandedBy(view.rect, _prefs.prerender + _prefs.padding)).regularized()) {
                        // If the store contains no reusable content at all, recreate it.
                        recreate_store(view);
                        if (_prefs.debug_logging) std::cout << "Recreate store" << std::endl;
                        result = Action::Recreated;
                    } else {
                        // Otherwise shift it.
                        shift_store(view);
                        if (_prefs.debug_logging) std::cout << "Shift store" << std::endl;
                        result = Action::Shifted;
                    }
                }
            }
            // After these operations, the store should now contain the visible region + prerender margin.
            assert(_store.rect.contains(expandedBy(view.rect, _prefs.prerender)));
            return result;
        }
        
        case Mode::Decoupled: {
            // Completely cancel the previous redraw and start again if the viewing parameters have changed too much.
            auto check_restart_redraw = [&, this] {
                // With this debug feature on, redraws should never be restarted.
                if (_prefs.debug_sticky_decoupled) return false;

                // Restart if the store is no longer covering the middle 50% of the screen. (Usually triggered by rotating or zooming out.)
                auto pl = Geom::Parallelogram(view.rect);
                pl *= Geom::Translate(-pl.midpoint()) * Geom::Scale(0.5) * Geom::Translate(pl.midpoint());
                pl *= view.affine.inverse() * _store.affine;
                if (!Geom::Parallelogram(_store.rect).contains(pl)) {
                    if (_prefs.debug_logging) std::cout << "Restart redraw (store not fully covering screen)" << std::endl;
                    return true;
                }

                // Also restart if zoomed in or out too much.
                auto scale_ratio = std::abs(view.affine.det() / _store.affine.det());
                if (scale_ratio > 3.0 || scale_ratio < 0.7) {
                    // Todo: Un-hard-code these thresholds.
                    //  * The threshold 3.0 is for zooming in. It says that if the quality of what is being redrawn is more than 3x worse than that of the screen, restart. This is necessary to ensure acceptably high resolution is kept as you zoom in.
                    //  * The threshold 0.7 is for zooming out. It says that if the quality of what is being redrawn is too high compared to the screen, restart. This prevents wasting time redrawing the screen slowly, at too high a quality that will probably not ever be seen.
                    if (_prefs.debug_logging) std::cout << "Restart redraw (zoomed changed too much)" << std::endl;
                    return true;
                }

                // Don't restart.
                return false;
            };

            if (check_restart_redraw()) {
                // Re-use as much content as possible from the store and the snapshot, and set as the new snapshot.
                snapshot_combine(view);
                return Action::Recreated;
            }

            return Action::None;
        }
        
        default: {
            assert(false);
            return Action::None;
        }
    }
}

auto Stores::finished_draw(Fragment const &view) -> Action
{
    // Finished drawing. Handle transitions out of decoupled mode, by checking if we need to reset the store to the correct affine.
    if (_mode == Mode::Decoupled) {
        if (_prefs.debug_sticky_decoupled) {
            // Debug feature: stop redrawing, but stay in decoupled mode.
        } else if (_store.affine == view.affine) {
            // Store is at the correct affine - exit decoupled mode.
            if (_prefs.debug_logging) std::cout << "Exit decoupled mode" << std::endl;
            // Exit decoupled mode.
            _mode = Mode::Normal;
            _graphics->invalidate_snapshot();
        } else {
            // Content is rendered at the wrong affine - take a new snapshot and continue idle process to continue rendering at the new affine.
            // Snapshot and reset the backing store.
            take_snapshot(view);
            if (_prefs.debug_logging) std::cout << "Remain in decoupled mode" << std::endl;
            return Action::Recreated;
        }
    }

    return Action::None;
}

} // namespace Widget
} // namespace UI
} // namespace Inkscape

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :