1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
#version 150
#if(XBMC_texture_rectangle)
# define texture2D texture2DRect
# define sampler2D sampler2DRect
#endif
uniform sampler2D m_sampY;
uniform sampler2D m_sampU;
uniform sampler2D m_sampV;
uniform vec2 m_step;
uniform mat4 m_yuvmat;
uniform float m_stretch;
uniform float m_alpha;
uniform mat3 m_primMat;
uniform float m_gammaDstInv;
uniform float m_gammaSrc;
uniform float m_toneP1;
uniform float m_luminance;
uniform vec3 m_coefsDst;
in vec2 m_cordY;
in vec2 m_cordU;
in vec2 m_cordV;
out vec4 fragColor;
vec2 stretch(vec2 pos)
{
#if (XBMC_STRETCH)
// our transform should map [0..1] to itself, with f(0) = 0, f(1) = 1, f(0.5) = 0.5, and f'(0.5) = b.
// a simple curve to do this is g(x) = b(x-0.5) + (1-b)2^(n-1)(x-0.5)^n + 0.5
// where the power preserves sign. n = 2 is the simplest non-linear case (required when b != 1)
#if(XBMC_texture_rectangle)
float x = (pos.x * m_step.x) - 0.5;
return vec2((mix(2.0 * x * abs(x), x, m_stretch) + 0.5) / m_step.x, pos.y);
#else
float x = pos.x - 0.5;
return vec2(mix(2.0 * x * abs(x), x, m_stretch) + 0.5, pos.y);
#endif
#else
return pos;
#endif
}
vec4 process()
{
vec4 rgb;
vec4 yuv;
#if defined(XBMC_YV12)
yuv.rgba = vec4( texture(m_sampY, stretch(m_cordY)).r
, texture(m_sampU, stretch(m_cordU)).r
, texture(m_sampV, stretch(m_cordV)).r
, 1.0 );
#elif defined(XBMC_NV12)
yuv.rgba = vec4( texture(m_sampY, stretch(m_cordY)).r
, texture(m_sampU, stretch(m_cordU)).rg
, 1.0 );
#elif defined(XBMC_YUY2) || defined(XBMC_UYVY)
vec2 stepxy = m_step;
vec2 pos = stretch(m_cordY);
pos = vec2(pos.x - stepxy.x * 0.25, pos.y);
vec2 f = fract(pos / stepxy);
//y axis will be correctly interpolated by opengl
//x axis will not, so we grab two pixels at the center of two columns and interpolate ourselves
vec4 c1 = texture(m_sampY, vec2(pos.x + (0.5 - f.x) * stepxy.x, pos.y));
vec4 c2 = texture(m_sampY, vec2(pos.x + (1.5 - f.x) * stepxy.x, pos.y));
/* each pixel has two Y subpixels and one UV subpixel
YUV Y YUV
check if we're left or right of the middle Y subpixel and interpolate accordingly*/
#ifdef XBMC_YUY2 //BGRA = YUYV
float leftY = mix(c1.b, c1.r, f.x * 2.0);
float rightY = mix(c1.r, c2.b, f.x * 2.0 - 1.0);
vec2 outUV = mix(c1.ga, c2.ga, f.x);
#else //BGRA = UYVY
float leftY = mix(c1.g, c1.a, f.x * 2.0);
float rightY = mix(c1.a, c2.g, f.x * 2.0 - 1.0);
vec2 outUV = mix(c1.br, c2.br, f.x);
#endif //XBMC_YUY2
float outY = mix(leftY, rightY, step(0.5, f.x));
yuv = vec4(outY, outUV, 1.0);
#endif
rgb = m_yuvmat * yuv;
rgb.a = m_alpha;
#if defined(XBMC_COL_CONVERSION)
rgb.rgb = pow(max(vec3(0), rgb.rgb), vec3(m_gammaSrc));
rgb.rgb = max(vec3(0), m_primMat * rgb.rgb);
rgb.rgb = pow(rgb.rgb, vec3(m_gammaDstInv));
#if defined(KODI_TONE_MAPPING_REINHARD)
float luma = dot(rgb.rgb, m_coefsDst);
rgb.rgb *= reinhard(luma) / luma;
#elif defined(KODI_TONE_MAPPING_ACES)
rgb.rgb = inversePQ(rgb.rgb);
rgb.rgb *= (10000.0 / m_luminance) * (2.0 / m_toneP1);
rgb.rgb = aces(rgb.rgb);
rgb.rgb *= (1.24 / m_toneP1);
rgb.rgb = pow(rgb.rgb, vec3(0.27));
#elif defined(KODI_TONE_MAPPING_HABLE)
rgb.rgb = inversePQ(rgb.rgb);
rgb.rgb *= m_toneP1;
float wp = m_luminance / 100.0;
rgb.rgb = hable(rgb.rgb * wp) / hable(vec3(wp));
rgb.rgb = pow(rgb.rgb, vec3(1.0 / 2.2));
#endif
#endif
return rgb;
}
|