diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /src/2geom/solve-bezier-parametric.cpp | |
parent | Initial commit. (diff) | |
download | lib2geom-upstream.tar.xz lib2geom-upstream.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/2geom/solve-bezier-parametric.cpp')
-rw-r--r-- | src/2geom/solve-bezier-parametric.cpp | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/src/2geom/solve-bezier-parametric.cpp b/src/2geom/solve-bezier-parametric.cpp new file mode 100644 index 0000000..2fb3f41 --- /dev/null +++ b/src/2geom/solve-bezier-parametric.cpp @@ -0,0 +1,189 @@ +#include <2geom/bezier.h> +#include <2geom/point.h> +#include <2geom/solver.h> +#include <algorithm> + +namespace Geom { + +/*** Find the zeros of the parametric function in 2d defined by two beziers X(t), Y(t). The code subdivides until it happy with the linearity of the bezier. This requires an n^2 subdivision for each step, even when there is only one solution. + * + * Perhaps it would be better to subdivide particularly around nodes with changing sign, rather than simply cutting in half. + */ + +#define SGN(a) (((a)<0) ? -1 : 1) + +/* + * Forward declarations + */ +unsigned +crossing_count(Geom::Point const *V, unsigned degree); +static unsigned +control_poly_flat_enough(Geom::Point const *V, unsigned degree); +static double +compute_x_intercept(Geom::Point const *V, unsigned degree); + +const unsigned MAXDEPTH = 64; /* Maximum depth for recursion */ + +const double BEPSILON = ldexp(1.0,-MAXDEPTH-1); /*Flatness control value */ + +unsigned total_steps, total_subs; + +/* + * find_bezier_roots : Given an equation in Bernstein-Bezier form, find all + * of the roots in the interval [0, 1]. Return the number of roots found. + */ +void +find_parametric_bezier_roots(Geom::Point const *w, /* The control points */ + unsigned degree, /* The degree of the polynomial */ + std::vector<double> &solutions, /* RETURN candidate t-values */ + unsigned depth) /* The depth of the recursion */ +{ + total_steps++; + const unsigned max_crossings = crossing_count(w, degree); + switch (max_crossings) { + case 0: /* No solutions here */ + return; + + case 1: + /* Unique solution */ + /* Stop recursion when the tree is deep enough */ + /* if deep enough, return 1 solution at midpoint */ + if (depth >= MAXDEPTH) { + solutions.push_back((w[0][Geom::X] + w[degree][Geom::X]) / 2.0); + return; + } + + // I thought secant method would be faster here, but it'aint. -- njh + + if (control_poly_flat_enough(w, degree)) { + solutions.push_back(compute_x_intercept(w, degree)); + return; + } + break; + } + + /* Otherwise, solve recursively after subdividing control polygon */ + + //Geom::Point Left[degree+1], /* New left and right */ + // Right[degree+1]; /* control polygons */ + std::vector<Geom::Point> Left( degree+1 ), Right(degree+1); + + casteljau_subdivision(0.5, w, Left.data(), Right.data(), degree); + total_subs ++; + find_parametric_bezier_roots(Left.data(), degree, solutions, depth+1); + find_parametric_bezier_roots(Right.data(), degree, solutions, depth+1); +} + + +/* + * crossing_count: + * Count the number of times a Bezier control polygon + * crosses the 0-axis. This number is >= the number of roots. + * + */ +unsigned +crossing_count(Geom::Point const *V, /* Control pts of Bezier curve */ + unsigned degree) /* Degree of Bezier curve */ +{ + unsigned n_crossings = 0; /* Number of zero-crossings */ + + int old_sign = SGN(V[0][Geom::Y]); + for (unsigned i = 1; i <= degree; i++) { + int sign = SGN(V[i][Geom::Y]); + if (sign != old_sign) + n_crossings++; + old_sign = sign; + } + return n_crossings; +} + + + +/* + * control_poly_flat_enough : + * Check if the control polygon of a Bezier curve is flat enough + * for recursive subdivision to bottom out. + * + */ +static unsigned +control_poly_flat_enough(Geom::Point const *V, /* Control points */ + unsigned degree) /* Degree of polynomial */ +{ + /* Find the perpendicular distance from each interior control point to line connecting V[0] and + * V[degree] */ + + /* Derive the implicit equation for line connecting first */ + /* and last control points */ + const double a = V[0][Geom::Y] - V[degree][Geom::Y]; + const double b = V[degree][Geom::X] - V[0][Geom::X]; + const double c = V[0][Geom::X] * V[degree][Geom::Y] - V[degree][Geom::X] * V[0][Geom::Y]; + + const double abSquared = (a * a) + (b * b); + + //double distance[degree]; /* Distances from pts to line */ + std::vector<double> distance(degree); /* Distances from pts to line */ + for (unsigned i = 1; i < degree; i++) { + /* Compute distance from each of the points to that line */ + double & dist(distance[i-1]); + const double d = a * V[i][Geom::X] + b * V[i][Geom::Y] + c; + dist = d*d / abSquared; + if (d < 0.0) + dist = -dist; + } + + + // Find the largest distance + double max_distance_above = 0.0; + double max_distance_below = 0.0; + for (unsigned i = 0; i < degree-1; i++) { + const double d = distance[i]; + if (d < 0.0) + max_distance_below = std::min(max_distance_below, d); + if (d > 0.0) + max_distance_above = std::max(max_distance_above, d); + } + + const double intercept_1 = (c + max_distance_above) / -a; + const double intercept_2 = (c + max_distance_below) / -a; + + /* Compute bounding interval*/ + const double left_intercept = std::min(intercept_1, intercept_2); + const double right_intercept = std::max(intercept_1, intercept_2); + + const double error = 0.5 * (right_intercept - left_intercept); + + if (error < BEPSILON) + return 1; + + return 0; +} + + + +/* + * compute_x_intercept : + * Compute intersection of chord from first control point to last + * with 0-axis. + * + */ +static double +compute_x_intercept(Geom::Point const *V, /* Control points */ + unsigned degree) /* Degree of curve */ +{ + const Geom::Point A = V[degree] - V[0]; + + return (A[Geom::X]*V[0][Geom::Y] - A[Geom::Y]*V[0][Geom::X]) / -A[Geom::Y]; +} + +}; + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |