diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 11:57:42 +0000 |
commit | 61f3ab8f23f4c924d455757bf3e65f8487521b5a (patch) | |
tree | 885599a36a308f422af98616bc733a0494fe149a /src/toys/sb-of-sb.cpp | |
parent | Initial commit. (diff) | |
download | lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.tar.xz lib2geom-61f3ab8f23f4c924d455757bf3e65f8487521b5a.zip |
Adding upstream version 1.3.upstream/1.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/toys/sb-of-sb.cpp')
-rw-r--r-- | src/toys/sb-of-sb.cpp | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/src/toys/sb-of-sb.cpp b/src/toys/sb-of-sb.cpp new file mode 100644 index 0000000..d2ee2e6 --- /dev/null +++ b/src/toys/sb-of-sb.cpp @@ -0,0 +1,478 @@ +#include <time.h>
+#include <vector>
+#include <toys/path-cairo.h>
+#include <toys/toy-framework-2.h>
+
+#include <2geom/sbasis.h>
+#include <2geom/sbasis-geometric.h>
+#include <2geom/bezier-to-sbasis.h>
+
+#include <2geom/orphan-code/sbasis-of.h>
+
+using namespace Geom;
+using namespace std;
+
+SBasis toSBasis(SBasisOf<double> const &f){
+ SBasis result(f.size(), Linear());
+ for (unsigned i=0; i<f.size(); i++){
+ result[i] = Linear(f[i][0],f[i][1]);
+ }
+ return result;
+}
+SBasisOf<double> toSBasisOfDouble(SBasis const &f){
+ SBasisOf<double> result;
+ for (auto i : f){
+ result.push_back(LinearOf<double>(i[0],i[1]));
+ }
+ return result;
+}
+
+
+#if 0
+template<unsigned dim>
+class LinearDim;
+template<unsigned dim>
+class SBasisDim;
+
+template<unsigned dim>
+class LinearDim : public LinearOf<SBasisDim<dim-1> >{
+public:
+ LinearDim() : LinearOf<SBasisDim<dim-1> >() {};
+ LinearDim(SBasisDim <dim-1> const &a, SBasisDim<dim-1> const &b ) : LinearOf<SBasisDim<dim-1> >(a,b) {};
+ LinearDim(LinearDim <dim-1> const &a, LinearDim<dim-1> const &b ) :
+ LinearOf<SBasisDim<dim-1> >(SBasisDim<dim-1>(a),SBasisDim<dim-1>(b)) {};
+};
+
+template<>
+class LinearDim<1> : public LinearOf<double>{
+public:
+ LinearDim() : LinearOf<double>() {};
+ LinearDim(double const &a, double const &b ) : LinearOf<double>(a,b) {};
+};
+
+
+template<unsigned dim>
+class SBasisDim : public SBasisOf<SBasisDim<dim-1> >{
+public:
+ SBasisDim() : SBasisOf<SBasisDim<dim-1> >() {};
+ SBasisDim(LinearDim<dim> const &lin) :
+ SBasisOf<SBasisDim<dim-1> >(LinearOf<SBasisDim<dim-1> >(lin[0],lin[1])) {};
+};
+
+template<>
+class SBasisDim<1> : public SBasisOf<double>{
+/*
+public:
+ SBasisDim<1>() : SBasisOf<double>() {};
+ SBasisDim(SBasisOf<double> other) : SBasisOf<double>(other) {};
+ SBasisDim(LinearOf<double> other) : SBasisOf<double>(other) {};
+*/
+};
+
+SBasis toSBasis(SBasisDim<1> f){
+ SBasis result(f.size(), Linear());
+ for (unsigned i=0; i<f.size(); i++){
+ result[i] = Linear(f[i][0],f[i][1]);
+ }
+ return result;
+}
+
+template<unsigned dim_f,unsigned dim_g>
+SBasisDim<dim_g> compose(SBasisDim<dim_f> const &f, std::vector<SBasisDim<dim_g> > const &g ){
+
+ assert( dim_f <= g.size() );
+
+ SBasisDim<dim_g> u0 = g[dim_f-1];
+ SBasisDim<dim_g> u1 = -u0 + 1;
+ SBasisDim<dim_g> s = multiply(u0,u1);
+ SBasisDim<dim_g> r;
+
+ for(int i = f.size()-1; i >= 0; i--) {
+ if ( dim_f>1 ){
+ r = s*r + compose(f[i][0],g)*u0 + compose(f[i][1],g)*u1;
+ }else{
+ r = s*r + f[i][0]*u0 + f[i][1]*u1;
+ }
+ }
+ return r;
+}
+
+#endif
+
+template <typename T>
+SBasisOf<T> multi_compose(SBasisOf<double> const &f, SBasisOf<T> const &g ){
+
+ //assert( f.input_dim() <= g.size() );
+
+ SBasisOf<T> u0 = g;
+ SBasisOf<T> u1 = -u0 + LinearOf<SBasisOf<double> >(SBasisOf<double>(LinearOf<double>(1,1)));
+ SBasisOf<T> s = multiply(u0,u1);
+ SBasisOf<T> r;
+
+ for(int i = f.size()-1; i >= 0; i--) {
+ r = s*r + f[i][0]*u0 + f[i][1]*u1;
+ }
+ return r;
+}
+SBasisOf<double> compose(SBasisOf<SBasisOf<double> > const &f,
+ SBasisOf<double> const &x,
+ SBasisOf<double> const &y){
+ SBasisOf<double> y0 = -y + LinearOf<double>(1,1);
+ SBasisOf<double> s = multiply(y0,y);
+ SBasisOf<double> r;
+
+ for(int i = f.size()-1; i >= 0; i--) {
+ r = s*r + compose(f[i][0],x)*y0 + compose(f[i][1],x)*y;
+ }
+ return r;
+}
+
+SBasisOf<double> compose(SBasisOf<SBasisOf<double> > const &f,
+ D2<SBasisOf<double> > const &X){
+ return compose(f, X[0], X[1]);
+}
+
+SBasisOf<double> compose(SBasisOf<SBasisOf<double> > const &f,
+ D2<SBasis> const &X){
+ return compose(f, toSBasisOfDouble(X[0]), toSBasisOfDouble(X[1]));
+}
+
+/*
+static
+SBasis eval_v(SBasisOf<SBasis> const &f, double v){
+ SBasis result(f.size(), Linear());
+ for (unsigned i=0; i<f.size(); i++){
+ result[i] = Linear(f[i][0].valueAt(v),f[i][1].valueAt(v));
+ }
+ return result;
+}
+static
+SBasis eval_v(SBasisOf<SBasisOf<double> > const &f, double v){
+ SBasis result(f.size(), Linear());
+ for (unsigned i=0; i<f.size(); i++){
+ result[i] = Linear(f[i][0].valueAt(v),f[i][1].valueAt(v));
+ }
+ return result;
+}*/
+static
+SBasisOf<double> eval_dim(SBasisOf<SBasisOf<double> > const &f, double t, unsigned dim){
+ if (dim == 1) return f.valueAt(t);
+ SBasisOf<double> result;
+ for (unsigned i=0; i<f.size(); i++){
+ result.push_back(LinearOf<double>(f[i][0].valueAt(t),f[i][1].valueAt(t)));
+ }
+ return result;
+}
+
+/*
+static
+SBasis eval_v(SBasisDim<2> const &f, double v){
+ SBasis result;
+ for (unsigned i=0; i<f.size(); i++){
+ result.push_back(Linear(f[i][0].valueAt(v),f[i][1].valueAt(v)));
+ }
+ return result;
+}
+*/
+
+struct Frame
+{
+ Geom::Point O;
+ Geom::Point x;
+ Geom::Point y;
+ Geom::Point z;
+ // find the point on the x,y plane that projects to P
+ Point unproject(Point P) {
+ return P * from_basis(x, y, O).inverse();
+ }
+};
+
+void
+plot3d(cairo_t *cr, SBasis const &x, SBasis const &y, SBasis const &z, Frame frame){
+ D2<SBasis> curve;
+ for (unsigned dim=0; dim<2; dim++){
+ curve[dim] = x*frame.x[dim] + y*frame.y[dim] + z*frame.z[dim];
+ curve[dim] += frame.O[dim];
+ }
+ cairo_d2_sb(cr, curve);
+}
+void
+plot3d(cairo_t *cr, SBasis const &x, SBasis const &y, SBasisOf<double> const &z, Frame frame){
+ D2<SBasis> curve;
+ for (unsigned dim=0; dim<2; dim++){
+ curve[dim] = x*frame.x[dim] + y*frame.y[dim] + toSBasis(z)*frame.z[dim];
+ curve[dim] += frame.O[dim];
+ }
+ cairo_d2_sb(cr, curve);
+}
+
+void
+plot3d(cairo_t *cr,
+ Piecewise<SBasis> const &x,
+ Piecewise<SBasis> const &y,
+ Piecewise<SBasis> const &z, Frame frame){
+
+ Piecewise<SBasis> xx = partition(x,y.cuts);
+ Piecewise<SBasis> xxx = partition(xx,z.cuts);
+ Piecewise<SBasis> yyy = partition(y,xxx.cuts);
+ Piecewise<SBasis> zzz = partition(z,xxx.cuts);
+
+ for (unsigned i=0; i<xxx.size(); i++){
+ plot3d(cr, xxx[i], yyy[i], zzz[i], frame);
+ }
+}
+
+void
+plot3d(cairo_t *cr, SBasisOf<SBasisOf<double> > const &f, Frame frame){
+ int iMax = 5;
+ for (int i=0; i<iMax; i++){
+ plot3d(cr, Linear(0,1), Linear(i/(iMax-1.)), eval_dim(f, i/(iMax-1.), 0), frame);
+ plot3d(cr, Linear(i/(iMax-1.)), Linear(0,1), eval_dim(f, i/(iMax-1.), 1), frame);
+ }
+}
+
+SBasisOf<SBasisOf<double> > integral(SBasisOf<SBasisOf<double> > const &f, unsigned var){
+ //variable of f = 1, variable of f's coefficients = 0.
+ if (var == 1) return integral(f);
+ SBasisOf<SBasisOf<double> > result;
+ for(unsigned i = 0; i< f.size(); i++) {
+ result.push_back(LinearOf<SBasisOf<double> >( integral(f[i][0]),integral(f[i][1])));
+ }
+ return result;
+}
+
+Piecewise<SBasis> convole(SBasisOf<double> const &f, Interval dom_f,
+ SBasisOf<double> const &g, Interval dom_g){
+
+ if ( dom_f.extent() < dom_g.extent() ) return convole(g, dom_g, f, dom_f);
+
+ SBasisOf<SBasisOf<double> > u,v;
+ u.push_back(LinearOf<SBasisOf<double> >(LinearOf<double>(0,1),
+ LinearOf<double>(0,1)));
+ v.push_back(LinearOf<SBasisOf<double> >(LinearOf<double>(0,0),
+ LinearOf<double>(1,1)));
+ SBasisOf<SBasisOf<double> > v_u = v - u*(dom_f.extent()/dom_g.extent());
+ v_u += SBasisOf<SBasisOf<double> >(SBasisOf<double>(dom_f.min()/dom_g.extent()));
+ SBasisOf<SBasisOf<double> > gg = multi_compose(g,(v - u*(dom_f.extent()/dom_g.extent())));
+ SBasisOf<SBasisOf<double> > ff = SBasisOf<SBasisOf<double> >(f);
+ SBasisOf<SBasisOf<double> > hh = integral(ff*gg,0);
+
+ Piecewise<SBasis> result;
+ result.cuts.push_back(dom_f.min()+dom_g.min());
+ //Note: we know dom_f.extent() >= dom_g.extent()!!
+ double rho = dom_f.extent()/dom_g.extent();
+ SBasisOf<double> a,b,t;
+ SBasis seg;
+ a = SBasisOf<double>(LinearOf<double>(0.,0.));
+ b = SBasisOf<double>(LinearOf<double>(0.,1/rho));
+ t = SBasisOf<double>(LinearOf<double>(dom_f.min()/dom_g.extent(),dom_f.min()/dom_g.extent()+1));
+ seg = toSBasis(compose(hh,b,t)-compose(hh,a,t));
+ result.push(seg,dom_f.min() + dom_g.max());
+ if (dom_f.extent() > dom_g.extent()){
+ a = SBasisOf<double>(LinearOf<double>(0.,1-1/rho));
+ b = SBasisOf<double>(LinearOf<double>(1/rho,1.));
+ t = SBasisOf<double>(LinearOf<double>(dom_f.min()/dom_g.extent()+1, dom_f.max()/dom_g.extent() ));
+ seg = toSBasis(compose(hh,b,t)-compose(hh,a,t));
+ result.push(seg,dom_f.max() + dom_g.min());
+ }
+ a = SBasisOf<double>(LinearOf<double>(1.-1/rho,1.));
+ b = SBasisOf<double>(LinearOf<double>(1.,1.));
+ t = SBasisOf<double>(LinearOf<double>(dom_f.max()/dom_g.extent(), dom_f.max()/dom_g.extent()+1 ));
+ seg = toSBasis(compose(hh,b,t)-compose(hh,a,t));
+ result.push(seg,dom_f.max() + dom_g.max());
+ return result;
+}
+
+template <typename T>
+SBasisOf<T> subderivative(SBasisOf<T> const& f) {
+ SBasisOf<T> res;
+ for(unsigned i = 0; i < f.size(); i++) {
+ res.push_back(LinearOf<T>(derivative(f[i][0]), derivative(f[i][1])));
+ }
+ return res;
+}
+
+OptInterval bounds_fast(SBasisOf<double> const &f) {
+ return bounds_fast(toSBasis(f));
+}
+
+/**
+ * Finds a path which traces the 0 contour of f, traversing from A to B as a single cubic d2<sbasis>.
+ * The algorithm is based on matching direction and curvature at each end point.
+ */
+//TODO: handle the case when B is "behind" A for the natural orientation of the level set.
+//TODO: more generally, there might be up to 4 solutions. Choose the best one!
+D2<SBasis>
+sbofsb_cubic_solve(SBasisOf<SBasisOf<double> > const &f, Geom::Point const &A, Geom::Point const &B){
+ D2<SBasis>result;//(Linear(A[X],B[X]),Linear(A[Y],B[Y]));
+ //g_warning("check 0 = %f = %f!", f.apply(A[X],A[Y]), f.apply(B[X],B[Y]));
+
+ SBasisOf<SBasisOf<double> > f_u = derivative(f);
+ SBasisOf<SBasisOf<double> > f_v = subderivative(f);
+ SBasisOf<SBasisOf<double> > f_uu = derivative(f_u);
+ SBasisOf<SBasisOf<double> > f_uv = derivative(f_v);
+ SBasisOf<SBasisOf<double> > f_vv = subderivative(f_v);
+
+ Geom::Point dfA(f_u.valueAt(A[X]).valueAt(A[Y]),f_v.valueAt(A[X]).valueAt(A[Y]));
+ Geom::Point dfB(f_u.valueAt(B[X]).valueAt(B[Y]),f_v.valueAt(B[X]).valueAt(B[Y]));
+
+ Geom::Point V0 = rot90(dfA);
+ Geom::Point V1 = rot90(dfB);
+
+ double D2fVV0 = f_uu.valueAt(A[X]).valueAt(A[Y])*V0[X]*V0[X]+
+ 2*f_uv.valueAt(A[X]).valueAt(A[Y])*V0[X]*V0[Y]+
+ f_vv.valueAt(A[X]).valueAt(A[Y])*V0[Y]*V0[Y];
+ double D2fVV1 = f_uu.valueAt(B[X]).valueAt(B[Y])*V1[X]*V1[X]+
+ 2*f_uv.valueAt(B[X]).valueAt(B[Y])*V1[X]*V1[Y]+
+ f_vv.valueAt(B[X]).valueAt(B[Y])*V1[Y]*V1[Y];
+
+ std::vector<D2<SBasis> > candidates = cubics_fitting_curvature(A,B,V0,V1,D2fVV0,D2fVV1);
+ if (candidates.size()==0) {
+ return D2<SBasis>(SBasis(A[X],B[X]),SBasis(A[Y],B[Y]));
+ }
+ //TODO: I'm sure std algorithm could do that for me...
+ double error = -1;
+ unsigned best = 0;
+ for (unsigned i=0; i<candidates.size(); i++){
+ Interval bounds = *bounds_fast(compose(f,candidates[i]));
+ double new_error = (fabs(bounds.max())>fabs(bounds.min()) ? fabs(bounds.max()) : fabs(bounds.min()) );
+ if ( new_error < error || error < 0 ){
+ error = new_error;
+ best = i;
+ }
+ }
+ return candidates[best];
+}
+
+class SBasis0fSBasisToy: public Toy {
+ PointSetHandle hand;
+ PointSetHandle cut_hand;
+ void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override {
+
+ double slider_top = width/4.;
+ double slider_bot = width*3./4.;
+ double slider_margin = width/8.;
+ if(hand.pts.empty()) {
+ hand.pts.emplace_back(width*3./16., 3*width/4.);
+ hand.pts.push_back(hand.pts[0] + Geom::Point(width/2., 0));
+ hand.pts.push_back(hand.pts[0] + Geom::Point(width/8., -width/12.));
+ hand.pts.push_back(hand.pts[0] + Geom::Point(0,-width/4.));
+ hand.pts.emplace_back(slider_margin,slider_bot);
+ hand.pts.emplace_back(width-slider_margin,slider_top);
+ }
+
+ hand.pts[4][X] = slider_margin;
+ if (hand.pts[4][Y]<slider_top) hand.pts[4][Y] = slider_top;
+ if (hand.pts[4][Y]>slider_bot) hand.pts[4][Y] = slider_bot;
+ hand.pts[5][X] = width-slider_margin;
+ if (hand.pts[5][Y]<slider_top) hand.pts[5][Y] = slider_top;
+ if (hand.pts[5][Y]>slider_bot) hand.pts[5][Y] = slider_bot;
+
+ //double tA = (slider_bot-hand.pts[4][Y])/(slider_bot-slider_top);
+ //double tB = (slider_bot-hand.pts[5][Y])/(slider_bot-slider_top);
+
+ cairo_move_to(cr,Geom::Point(slider_margin,slider_bot));
+ cairo_line_to(cr,Geom::Point(slider_margin,slider_top));
+ cairo_move_to(cr,Geom::Point(width-slider_margin,slider_bot));
+ cairo_line_to(cr,Geom::Point(width-slider_margin,slider_top));
+ cairo_set_line_width(cr,.5);
+ cairo_set_source_rgba (cr, 0., 0.3, 0., 1.);
+ cairo_stroke(cr);
+
+ Frame frame;
+ frame.O = hand.pts[0];//
+ frame.x = hand.pts[1]-hand.pts[0];//
+ frame.y = hand.pts[2]-hand.pts[0];//
+ frame.z = hand.pts[3]-hand.pts[0];//
+
+ plot3d(cr,Linear(0,1),Linear(0,0),Linear(0,0),frame);
+ plot3d(cr,Linear(0,1),Linear(1,1),Linear(0,0),frame);
+ plot3d(cr,Linear(0,0),Linear(0,1),Linear(0,0),frame);
+ plot3d(cr,Linear(1,1),Linear(0,1),Linear(0,0),frame);
+ cairo_set_line_width(cr,.2);
+ cairo_set_source_rgba (cr, 0., 0., 0., 1.);
+ cairo_stroke(cr);
+
+
+
+ SBasisOf<SBasisOf<double> > f,u,v;
+ u.push_back(LinearOf<SBasisOf<double> >(LinearOf<double>(-1,-1),LinearOf<double>(1,1)));
+ v.push_back(LinearOf<SBasisOf<double> >(LinearOf<double>(-1,1),LinearOf<double>(-1,1)));
+#if 1
+ f = u*u + v*v - LinearOf<SBasisOf<double> >(LinearOf<double>(1,1),LinearOf<double>(1,1));
+ //*notify << "input dim = " << f.input_dim() <<"\n";
+ plot3d(cr,f,frame);
+ cairo_set_line_width(cr,1);
+ cairo_set_source_rgba (cr, .5, 0.5, 0.5, 1.);
+ cairo_stroke(cr);
+
+ LineSegment ls(frame.unproject(cut_hand.pts[0]),
+ frame.unproject(cut_hand.pts[1]));
+ SBasis cutting = toSBasis(compose(f, ls.toSBasis()));
+ //cairo_sb(cr, cutting);
+ //cairo_stroke(cr);
+ plot3d(cr, ls.toSBasis()[0], ls.toSBasis()[1], SBasis(0.0), frame);
+ vector<double> rts = roots(cutting);
+ if(rts.size() >= 2) {
+ Geom::Point A = ls.pointAt(rts[0]);
+ Geom::Point B = ls.pointAt(rts[1]);
+
+ //Geom::Point A(1,0.5);
+ //Geom::Point B(0.5,1);
+ D2<SBasis> zeroset = sbofsb_cubic_solve(f,A,B);
+ plot3d(cr, zeroset[X], zeroset[Y], SBasis(Linear(0.)),frame);
+ cairo_set_line_width(cr,1);
+ cairo_set_source_rgba (cr, 0.9, 0., 0., 1.);
+ cairo_stroke(cr);
+ }
+#else
+
+ SBasisOf<SBasisOf<double> > g = u - v ;
+ g += LinearOf<SBasisOf<double> >(SBasisOf<double>(LinearOf<double>(.5,.5)));
+ SBasisOf<double> h;
+ h.push_back(LinearOf<double>(0,0));
+ h.push_back(LinearOf<double>(0,0));
+ h.push_back(LinearOf<double>(1,1));
+
+ f = multi_compose(h,g);
+ plot3d(cr,f,frame);
+ cairo_set_line_width(cr,1);
+ cairo_set_source_rgba (cr, .75, 0.25, 0.25, 1.);
+ cairo_stroke(cr);
+/*
+ SBasisDim<1> g = SBasisOf<double>(LinearOf<double>(0,1));
+ g.push_back(LinearOf<double>(-1,-1));
+ std::vector<SBasisDim<2> > vars;
+ vars.push_back(ff);
+ plot3d(cr,compose(g,vars),frame);
+ cairo_set_source_rgba (cr, .5, 0.9, 0.5, 1.);
+ cairo_stroke(cr);
+*/
+#endif
+ Toy::draw(cr, notify, width, height, save,timer_stream);
+ }
+
+public:
+ SBasis0fSBasisToy(){
+ handles.push_back(&hand);
+ handles.push_back(&cut_hand);
+ cut_hand.push_back(100,100);
+ cut_hand.push_back(500,500);
+ }
+};
+
+int main(int argc, char **argv) {
+ init(argc, argv, new SBasis0fSBasisToy);
+ return 0;
+}
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype = cpp:expandtab:shiftwidth = 4:tabstop = 8:softtabstop = 4:encoding = utf-8:textwidth = 99 :
|