summaryrefslogtreecommitdiffstats
path: root/include/2geom/symbolic/mvpoly-tools.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/2geom/symbolic/mvpoly-tools.h')
-rw-r--r--include/2geom/symbolic/mvpoly-tools.h690
1 files changed, 690 insertions, 0 deletions
diff --git a/include/2geom/symbolic/mvpoly-tools.h b/include/2geom/symbolic/mvpoly-tools.h
new file mode 100644
index 0000000..34dece7
--- /dev/null
+++ b/include/2geom/symbolic/mvpoly-tools.h
@@ -0,0 +1,690 @@
+/*
+ * Routines that extend univariate polynomial functions
+ * to multi-variate polynomial exploiting recursion at compile time
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#ifndef _GEOM_SL_MVPOLY_TOOLS_H_
+#define _GEOM_SL_MVPOLY_TOOLS_H_
+
+
+#include <2geom/exception.h>
+
+#include <2geom/symbolic/multi-index.h>
+#include <2geom/symbolic/unity-builder.h>
+#include <2geom/symbolic/polynomial.h>
+
+#include <array>
+#include <functional>
+#include <iostream>
+#include <type_traits>
+
+
+namespace Geom { namespace SL {
+
+/*
+ * rank<PolyT>::value == total amount of indeterminates
+ * x_(0),x_(1),...,x_(rank-1) that belong to type PolyT
+ */
+
+template <typename T>
+struct rank
+{
+ static const size_t value = 0;
+};
+
+template <typename CoeffT>
+struct rank< Polynomial<CoeffT> >
+{
+ static const size_t value = rank<CoeffT>::value + 1;
+};
+
+
+/*
+ * mvpoly<N, CoeffT> creates a multi-variate polynomial type
+ * by nesting N-1 Polynomial class template and setting
+ * the coefficient type of the most nested Polynomial to CoeffT
+ * example: mvpoly<3, double>::type is the same than
+ * Polynomial< Polynomial< Polynomial<double> > >
+ */
+
+template <size_t N, typename CoeffT>
+struct mvpoly
+{
+ typedef Polynomial<typename mvpoly<N-1, CoeffT>::type> type;
+ typedef CoeffT coeff_type;
+ static const size_t rank = N;
+
+ /*
+ * computes the lexicographic degree of the mv polynomial p
+ */
+ static
+ multi_index_type lex_degree (type const& p)
+ {
+ multi_index_type D(N);
+ lex_degree_impl<0>(p, D);
+ return D;
+ }
+
+ /*
+ * Returns in the out-parameter D an N-sequence where each entry value
+ * represents the max degree of the polynomial related to the passed
+ * index I, if one index value in I is greater than the related max degree
+ * the routine returns false otherwise it returns true.
+ * This routine can be used to test if a given multi-index I is related
+ * to an actual initialized coefficient.
+ */
+ static
+ bool max_degree (type const& p,
+ multi_index_type& D,
+ multi_index_type const& I)
+ {
+ if (I.size() != N)
+ THROW_RANGEERROR ("multi-index with wrong length");
+ D.resize(N);
+ return max_degree_impl<0>(p, D, I);
+ }
+
+ /*
+ * Returns in the out-parameter D an N-sequence where each entry value
+ * represents the real degree of the polynomial related to the passed
+ * index I, if one index value in I is greater than the related real degree
+ * the routine returns false otherwise it returns true.
+ * This routine can be used to test if a given multi-index I is related
+ * to an actual initialized and non-zero coefficient.
+ */
+
+ static
+ bool real_degree (type const& p,
+ multi_index_type& D,
+ multi_index_type const& I)
+ {
+ if (I.size() != N)
+ THROW_RANGEERROR ("multi-index with wrong length");
+ D.resize(N);
+ return real_degree_impl<0>(p, D, I);
+ }
+
+ /*
+ * Multiplies p by X^I
+ */
+ static
+ void shift(type & p, multi_index_type const& I)
+ {
+ if (I.size() != N)
+ THROW_RANGEERROR ("multi-index with wrong length");
+ shift_impl<0>(p, I);
+ }
+
+ /*
+ * mv poly evaluation:
+ * T can be any type that is able to be += with the coefficient type
+ * and that can be *= with the same type T moreover a specialization
+ * of zero struct for the type T is needed
+ */
+ template <typename T>
+ static
+ T evaluate(type const& p, std::array<T, N> const& X)
+ {
+ return evaluate_impl<T, 0>(p, X);
+ }
+
+ /*
+ * trim leading zero coefficients
+ */
+ static
+ void normalize(type & p)
+ {
+ p.normalize();
+ for (size_t k = 0; k < p.size(); ++k)
+ mvpoly<N-1, CoeffT>::normalize(p[k]);
+ }
+
+ /*
+ * Applies the unary operator "op" to each coefficient of p with rank M.
+ * For instance when M = 0 op is applied to each coefficient
+ * of the multi-variate polynomial p.
+ * When M < N the function call recursively the for_each routine
+ * for p.real_degree() times, when M == N the operator "op" is invoked on p;
+ */
+ template <size_t M>
+ static
+ void for_each
+ (type & p,
+ std::function<void (typename mvpoly<M, CoeffT>::type &)> const& op,
+ typename std::enable_if_t<(M < N)>* = 0)
+ {
+ for (size_t k = 0; k <= p.real_degree(); ++k)
+ {
+ mvpoly<N-1, CoeffT>::template for_each<M>(p[k], op);
+ }
+ }
+
+ template <size_t M>
+ static
+ void for_each
+ (type & p,
+ std::function<void (typename mvpoly<M, CoeffT>::type &)> const& op,
+ typename std::enable_if_t<(M == N)>* = 0)
+ {
+ op(p);
+ }
+
+ // this is only an helper function to be passed to the for_each routine
+ static
+ void multiply_to (type& p, type const& q)
+ {
+ p *= q;
+ }
+
+ private:
+ template <size_t i>
+ static
+ void lex_degree_impl (type const& p, multi_index_type& D)
+ {
+ D[i] = p.real_degree();
+ mvpoly<N-1, CoeffT>::template lex_degree_impl<i+1>(p[D[i]], D);
+ }
+
+ template <size_t i>
+ static
+ bool max_degree_impl (type const& p,
+ multi_index_type& D,
+ multi_index_type const& I)
+ {
+ D[i] = p.max_degree();
+ if (I[i] > D[i]) return false;
+ return
+ mvpoly<N-1, CoeffT>::template max_degree_impl<i+1>(p[I[i]], D, I);
+ }
+
+ template <size_t i>
+ static
+ bool real_degree_impl (type const& p,
+ multi_index_type& D,
+ multi_index_type const& I)
+ {
+ D[i] = p.real_degree();
+ if (I[i] > D[i]) return false;
+ return
+ mvpoly<N-1, CoeffT>::template real_degree_impl<i+1>(p[I[i]], D, I);
+ }
+
+ template <size_t i>
+ static
+ void shift_impl(type & p, multi_index_type const& I)
+ {
+ p <<= I[i];
+ for (size_t k = 0; k < p.size(); ++k)
+ {
+ mvpoly<N-1, CoeffT>::template shift_impl<i+1>(p[k], I);
+ }
+ }
+
+ template <typename T, size_t i>
+ static
+ T evaluate_impl(type const& p, std::array<T, N+i> const& X)
+ {
+// T r = zero<T>()();
+// for (size_t k = p.max_degree(); k > 0; --k)
+// {
+// r += mvpoly<N-1, CoeffT>::template evaluate_impl<T, i+1>(p[k], X);
+// r *= X[i];
+// }
+// r += mvpoly<N-1, CoeffT>::template evaluate_impl<T, i+1>(p[0], X);
+
+ int n = p.max_degree();
+ T r = mvpoly<N-1, CoeffT>::template evaluate_impl<T, i+1>(p[n], X);
+ for (int k = n - 1; k >= 0; --k)
+ {
+ r *= X[i];
+ r += mvpoly<N-1, CoeffT>::template evaluate_impl<T, i+1>(p[k], X);
+ }
+ return r;
+ }
+
+ template <size_t M, typename C>
+ friend struct mvpoly;
+};
+
+/*
+ * rank 0 mv poly, that is a scalar value (usually a numeric value),
+ * the routines implemented here are used only to stop recursion
+ * (but for_each)
+ */
+template< typename CoeffT >
+struct mvpoly<0, CoeffT>
+{
+ typedef CoeffT type;
+ typedef CoeffT coeff_type;
+ static const size_t rank = 0;
+
+ template <size_t M>
+ static
+ void for_each
+ (type & p,
+ std::function<void (typename mvpoly<M, CoeffT>::type &)> const& op,
+ typename std::enable_if_t<(M == 0)>* = 0)
+ {
+ op(p);
+ }
+
+ // multiply_to and divide_to are only helper functions
+ // to be passed to the for_each routine
+ static
+ void multiply_to (type& p, type const& q)
+ {
+ p *= q;
+ }
+
+ static
+ void divide_to (type& p, type const& c)
+ {
+ p /= c;
+ }
+
+ private:
+ template <size_t i>
+ static
+ void lex_degree_impl (type const &/*p*/, multi_index_type&/*D*/)
+ {
+ return;
+ }
+
+ template <size_t i>
+ static
+ bool max_degree_impl (type const &/*p*/,
+ multi_index_type &/*D*/,
+ multi_index_type const &/*I*/)
+ {
+ return true;
+ }
+
+ template <size_t i>
+ static
+ bool real_degree_impl (type const &/*p*/,
+ multi_index_type &/*D*/,
+ multi_index_type const &/*I*/)
+ {
+ return true;
+ }
+
+ template <size_t i>
+ static
+ void shift_impl(type &/*p*/, multi_index_type const &/*I*/)
+ {}
+
+ template <typename T, size_t i>
+ static
+ T evaluate_impl(type const &p, std::array<T, i> const &/*X*/)
+ {
+ return p;
+ }
+
+ static
+ void normalize(type &/*p*/)
+ {}
+
+
+ template <size_t M, typename C>
+ friend struct mvpoly;
+};
+
+
+/*
+ * monomial::make generate a mv-poly made up by a single term:
+ * monomial::make<N>(I,c) == c*X^I, where X=(x_(0), .., x_(N-1))
+ */
+
+template <size_t N, typename CoeffT>
+struct monomial
+{
+ typedef typename mvpoly<N, CoeffT>::type poly_type;
+
+ static inline
+ poly_type make(multi_index_type const& I, CoeffT c)
+ {
+ if (I.size() != N) // an exponent for each indeterminate
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return make_impl<0>(I, c);
+ }
+
+ private:
+ // at i-th level of recursion I need to pick up the i-th exponent in "I"
+ // so I pass i as a template parameter, this trick is needed to avoid
+ // to create a new multi-index at each recursion level:
+ // (J = I[std::slice[1, I.size()-1, 1)]) that will be more expensive
+ template <size_t i>
+ static
+ poly_type make_impl(multi_index_type const& I, CoeffT c)
+ {
+ poly_type p(monomial<N-1,CoeffT>::template make_impl<i+1>(I, c), I[i]);
+ return p;
+ }
+
+ // make_impl private require that monomial classes to be each other friend
+ template <size_t M, typename C>
+ friend struct monomial;
+};
+
+
+// case N = 0 for stopping recursion
+template <typename CoeffT>
+struct monomial<0, CoeffT>
+{
+ private:
+ template <size_t i>
+ static
+ CoeffT make_impl(multi_index_type const &/*I*/, CoeffT c)
+ {
+ return c;
+ }
+
+ template<size_t N, typename C>
+ friend struct monomial;
+};
+
+
+/*
+ * coefficient<N, PolyT>
+ *
+ * N should be in the range [0, rank<PolyT>-1]
+ *
+ * "type" == the type of the coefficient of the polynomial with
+ * rank = rank<PolyT> - N - 1, that is it is the type of the object returned
+ * by applying the operator[] of a Polynomial object N+1 times;
+ *
+ * "zero" represents the zero element (in the group theory meaning)
+ * for the coefficient type "type"; having it as a static class member
+ * allows to return always a (const) reference by the "get_safe" method
+ *
+ * get(p, I) returns the coefficient of the monomial X^I
+ * this method doesn't check if such a coefficient really exists,
+ * so it's up to the user checking that the passed multi-index I is
+ * not out of range
+ *
+ * get_safe(p, I) returns the coefficient of the monomial X^I
+ * in case such a coefficient doesn't really exist "zero" is returned
+ *
+ * set_safe(p, I, c) set the coefficient of the monomial X^I to "c"
+ * in case such a coefficient doesn't really exist this method creates it
+ * and creates all monomials X^J with J < I that don't exist yet, setting
+ * their coefficients to "zero";
+ * (with J < I we mean "<" wrt the lexicographic order)
+ *
+ */
+
+template <size_t N, typename T>
+struct coefficient
+{
+};
+
+
+template <size_t N, typename CoeffT>
+struct coefficient< N, Polynomial<CoeffT> >
+{
+ typedef typename coefficient<N-1, CoeffT>::type type;
+ typedef Polynomial<CoeffT> poly_type;
+
+ static const type zero;
+
+ static
+ type const& get(poly_type const& p, multi_index_type const& I)
+ {
+ if (I.size() != N+1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return get_impl<0>(p, I);
+ }
+
+ static
+ type & get(poly_type & p, multi_index_type const& I)
+ {
+ if (I.size() != N+1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return get_impl<0>(p, I);
+ }
+
+ static
+ type const& get_safe(poly_type const& p, multi_index_type const& I)
+ {
+ if (I.size() != N+1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return get_safe_impl<0>(p, I);
+ }
+
+ static
+ void set_safe(poly_type & p, multi_index_type const& I, type const& c)
+ {
+ if (I.size() != N+1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return set_safe_impl<0>(p, I, c);
+ }
+
+ private:
+ template <size_t i>
+ static
+ type const& get_impl(poly_type const& p, multi_index_type const& I)
+ {
+ return coefficient<N-1, CoeffT>::template get_impl<i+1>(p[I[i]], I);
+ }
+
+ template <size_t i>
+ static
+ type & get_impl(poly_type & p, multi_index_type const& I)
+ {
+ return coefficient<N-1, CoeffT>::template get_impl<i+1>(p[I[i]], I);
+ }
+
+ template <size_t i>
+ static
+ type const& get_safe_impl(poly_type const& p, multi_index_type const& I)
+ {
+ if (I[i] > p.max_degree())
+ {
+ return zero;
+ }
+ else
+ {
+ return
+ coefficient<N-1, CoeffT>::template get_safe_impl<i+1>(p[I[i]], I);
+ }
+ }
+
+ template <size_t i>
+ static
+ void set_safe_impl(poly_type & p, multi_index_type const& I, type const& c)
+ {
+ if (I[i] > p.max_degree())
+ {
+ multi_index_type J = shift(I, i+1);
+ CoeffT m = monomial<N, type>::make(J, c);
+ p.coefficient(I[i], m);
+ }
+ else
+ {
+ coefficient<N-1, CoeffT>::template set_safe_impl<i+1>(p[I[i]], I, c);
+ }
+ }
+
+ template<size_t M, typename T>
+ friend struct coefficient;
+
+};
+
+// initialization of static member zero
+template <size_t N, typename CoeffT>
+const typename coefficient< N, Polynomial<CoeffT> >::type
+coefficient< N, Polynomial<CoeffT> >::zero
+ = Geom::SL::zero<typename coefficient< N, Polynomial<CoeffT> >::type >()();
+
+
+// case N = 0 for stopping recursion
+template <typename CoeffT>
+struct coefficient< 0, Polynomial<CoeffT> >
+{
+ typedef CoeffT type;
+ typedef Polynomial<CoeffT> poly_type;
+
+ static const type zero;
+
+ static
+ type const& get(poly_type const& p, multi_index_type const& I)
+ {
+ if (I.size() != 1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return p[I[0]];
+ }
+
+ static
+ type & get(poly_type & p, multi_index_type const& I)
+ {
+ if (I.size() != 1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return p[I[0]];
+ }
+
+ static
+ type const& get_safe(poly_type const& p, multi_index_type const& I)
+ {
+ if (I.size() != 1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ return p.coefficient(I[0]);
+ }
+
+ static
+ void set_safe(poly_type & p, multi_index_type const& I, type const& c)
+ {
+ if (I.size() != 1)
+ THROW_RANGEERROR ("multi-index with wrong length");
+
+ p.coefficient(I[0], c);
+ }
+
+ private:
+ template <size_t i>
+ static
+ type const& get_impl(poly_type const& p, multi_index_type const& I)
+ {
+ return p[I[i]];
+ }
+
+ template <size_t i>
+ static
+ type & get_impl(poly_type & p, multi_index_type const& I)
+ {
+ return p[I[i]];
+ }
+
+ template <size_t i>
+ static
+ type const& get_safe_impl(poly_type const& p, multi_index_type const& I)
+ {
+ return p.coefficient(I[i]);
+ }
+
+ template <size_t i>
+ static
+ void set_safe_impl(poly_type & p, multi_index_type const& I, type const& c)
+ {
+ p.coefficient(I[i], c);
+ }
+
+ template<size_t M, typename T>
+ friend struct coefficient;
+};
+
+// initialization of static member zero
+template <typename CoeffT>
+const typename coefficient< 0, Polynomial<CoeffT> >::type
+coefficient< 0, Polynomial<CoeffT> >::zero
+ = Geom::SL::zero<typename coefficient< 0, Polynomial<CoeffT> >::type >()();
+
+
+/*
+ * ordering types:
+ * lex : lexicographic ordering
+ * ilex : inverse lexicographic ordering
+ * max_lex : max degree + lexicographic ordering for disambiguation
+ *
+ */
+
+namespace ordering
+{
+ struct lex; // WARNING: at present only lex ordering is supported
+ struct ilex;
+ struct max_lex;
+}
+
+
+/*
+ * degree of a mv poly wrt a given ordering
+ */
+
+template <size_t N, typename CoeffT, typename OrderT = ordering::lex>
+struct mvdegree
+{};
+
+template <size_t N, typename CoeffT>
+struct mvdegree<N, CoeffT, ordering::lex>
+{
+ typedef typename mvpoly<N, CoeffT>::type poly_type;
+ typedef ordering::lex ordering;
+
+ static
+ multi_index_type value(poly_type const& p)
+ {
+ return Geom::SL::mvpoly<N, CoeffT>::lex_degree(p);
+ }
+};
+
+} /*end namespace Geom*/ } /*end namespace SL*/
+
+
+#endif // _GEOM_SL_MVPOLY_TOOLS_H_
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :