summaryrefslogtreecommitdiffstats
path: root/src/2geom/curve.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/curve.cpp')
-rw-r--r--src/2geom/curve.cpp235
1 files changed, 235 insertions, 0 deletions
diff --git a/src/2geom/curve.cpp b/src/2geom/curve.cpp
new file mode 100644
index 0000000..f79edb3
--- /dev/null
+++ b/src/2geom/curve.cpp
@@ -0,0 +1,235 @@
+/* Abstract curve type - implementation of default methods
+ *
+ * Authors:
+ * MenTaLguY <mental@rydia.net>
+ * Marco Cecchetti <mrcekets at gmail.com>
+ * Krzysztof Kosiński <tweenk.pl@gmail.com>
+ * Rafał Siejakowski <rs@rs-math.net>
+ *
+ * Copyright 2007-2009 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <2geom/curve.h>
+#include <2geom/exception.h>
+#include <2geom/nearest-time.h>
+#include <2geom/sbasis-geometric.h>
+#include <2geom/sbasis-to-bezier.h>
+#include <2geom/ord.h>
+#include <2geom/path-sink.h>
+
+namespace Geom
+{
+
+Coord Curve::nearestTime(Point const& p, Coord a, Coord b) const
+{
+ return nearest_time(p, toSBasis(), a, b);
+}
+
+std::vector<Coord> Curve::allNearestTimes(Point const& p, Coord from, Coord to) const
+{
+ return all_nearest_times(p, toSBasis(), from, to);
+}
+
+Coord Curve::length(Coord tolerance) const
+{
+ return ::Geom::length(toSBasis(), tolerance);
+}
+
+int Curve::winding(Point const &p) const
+{
+ try {
+ std::vector<Coord> ts = roots(p[Y], Y);
+ if(ts.empty()) return 0;
+ std::sort(ts.begin(), ts.end());
+
+ // skip endpoint roots when they are local maxima on the Y axis
+ // this follows the convention used in other winding routines,
+ // i.e. that the bottommost coordinate is not part of the shape
+ bool ignore_0 = unitTangentAt(0)[Y] <= 0;
+ bool ignore_1 = unitTangentAt(1)[Y] >= 0;
+
+ int wind = 0;
+ for (double t : ts) {
+ //std::cout << t << std::endl;
+ if ((t == 0 && ignore_0) || (t == 1 && ignore_1)) continue;
+ if (valueAt(t, X) > p[X]) { // root is ray intersection
+ Point tangent = unitTangentAt(t);
+ if (tangent[Y] > 0) {
+ // at the point of intersection, curve goes in +Y direction,
+ // so it winds in the direction of positive angles
+ ++wind;
+ } else if (tangent[Y] < 0) {
+ --wind;
+ }
+ }
+ }
+ return wind;
+ } catch (InfiniteSolutions const &e) {
+ // this means we encountered a line segment exactly coincident with the point
+ // skip, since this will be taken care of by endpoint roots in other segments
+ return 0;
+ }
+}
+
+std::vector<CurveIntersection> Curve::intersect(Curve const &/*other*/, Coord /*eps*/) const
+{
+ // TODO: approximate as Bezier
+ THROW_NOTIMPLEMENTED();
+}
+
+std::vector<CurveIntersection> Curve::intersectSelf(Coord eps) const
+{
+ /// Represents a sub-arc of the curve.
+ struct Subcurve
+ {
+ std::unique_ptr<Curve> curve;
+ Interval parameter_range;
+
+ Subcurve(Curve *piece, Coord from, Coord to)
+ : curve{piece}
+ , parameter_range{from, to}
+ {}
+ };
+
+ /// A closure to split the curve into portions at the prescribed split points.
+ auto const split_into_subcurves = [=](std::vector<Coord> const &splits) {
+ std::vector<Subcurve> result;
+ result.reserve(splits.size() + 1);
+ Coord previous = 0;
+ for (Coord split : splits) {
+ // Use global EPSILON since we're operating on normalized curve times.
+ if (split < EPSILON || split > 1.0 - EPSILON) {
+ continue;
+ }
+ result.emplace_back(portion(previous, split), previous, split);
+ previous = split;
+ }
+ result.emplace_back(portion(previous, 1.0), previous, 1.0);
+ return result;
+ };
+
+ /// A closure to find pairwise intersections between the passed subcurves.
+ auto const pairwise_intersect = [=](std::vector<Subcurve> const &subcurves) {
+ std::vector<CurveIntersection> result;
+ for (unsigned i = 0; i < subcurves.size(); i++) {
+ for (unsigned j = i + 1; j < subcurves.size(); j++) {
+ auto const xings = subcurves[i].curve->intersect(*subcurves[j].curve, eps);
+ for (auto const &xing : xings) {
+ // To avoid duplicate intersections, skip values at exactly 1.
+ if (xing.first == 1. || xing.second == 1.) {
+ continue;
+ }
+ Coord const ti = subcurves[i].parameter_range.valueAt(xing.first);
+ Coord const tj = subcurves[j].parameter_range.valueAt(xing.second);
+ result.emplace_back(ti, tj, xing.point());
+ }
+ }
+ }
+ std::sort(result.begin(), result.end());
+ return result;
+ };
+
+ // Monotonic segments cannot have self-intersections. Thus, we can split
+ // the curve at critical points of the X or Y coordinate and intersect
+ // the portions. However, there's the risk that a juncture between two
+ // adjacent portions is mistaken for an intersection due to numerical errors.
+ // Hence, we run the algorithm for both the X and Y coordinates and only
+ // keep the intersections that show up in both intersection lists.
+
+ // Find the critical points of both coordinates.
+ std::unique_ptr<Curve> deriv{derivative()};
+ auto const crits_x = deriv->roots(0, X);
+ auto const crits_y = deriv->roots(0, Y);
+ if (crits_x.empty() || crits_y.empty()) {
+ return {};
+ }
+
+ // Split into pieces in two ways and find self-intersections.
+ auto const pieces_x = split_into_subcurves(crits_x);
+ auto const pieces_y = split_into_subcurves(crits_y);
+ auto const crossings_from_x = pairwise_intersect(pieces_x);
+ auto const crossings_from_y = pairwise_intersect(pieces_y);
+ if (crossings_from_x.empty() || crossings_from_y.empty()) {
+ return {};
+ }
+
+ // Filter the results, only keeping self-intersections found by both approaches.
+ std::vector<CurveIntersection> result;
+ unsigned index_y = 0;
+ for (auto &&candidate_x : crossings_from_x) {
+ // Find a crossing corresponding to this one in the y-method collection.
+ while (index_y != crossings_from_y.size()) {
+ auto const gap = crossings_from_y[index_y].first - candidate_x.first;
+ if (std::abs(gap) < EPSILON) {
+ // We found the matching intersection!
+ result.emplace_back(candidate_x);
+ index_y++;
+ break;
+ } else if (gap < 0.0) {
+ index_y++;
+ } else {
+ break;
+ }
+ }
+ }
+ return result;
+}
+
+Point Curve::unitTangentAt(Coord t, unsigned n) const
+{
+ std::vector<Point> derivs = pointAndDerivatives(t, n);
+ for (unsigned deriv_n = 1; deriv_n < derivs.size(); deriv_n++) {
+ Coord length = derivs[deriv_n].length();
+ if ( ! are_near(length, 0) ) {
+ // length of derivative is non-zero, so return unit vector
+ return derivs[deriv_n] / length;
+ }
+ }
+ return Point (0,0);
+};
+
+void Curve::feed(PathSink &sink, bool moveto_initial) const
+{
+ std::vector<Point> pts;
+ sbasis_to_bezier(pts, toSBasis(), 2); //TODO: use something better!
+ if (moveto_initial) {
+ sink.moveTo(initialPoint());
+ }
+ sink.curveTo(pts[0], pts[1], pts[2]);
+}
+
+} // namespace Geom
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :