summaryrefslogtreecommitdiffstats
path: root/src/2geom/line.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/line.cpp')
-rw-r--r--src/2geom/line.cpp610
1 files changed, 610 insertions, 0 deletions
diff --git a/src/2geom/line.cpp b/src/2geom/line.cpp
new file mode 100644
index 0000000..3db3039
--- /dev/null
+++ b/src/2geom/line.cpp
@@ -0,0 +1,610 @@
+/*
+ * Infinite Straight Line
+ *
+ * Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
+ * Nathan Hurst
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <algorithm>
+#include <optional>
+#include <2geom/line.h>
+#include <2geom/math-utils.h>
+
+namespace Geom
+{
+
+/**
+ * @class Line
+ * @brief Infinite line on a plane.
+ *
+ * A line is specified as two points through which it passes. Lines can be interpreted as functions
+ * \f$ f: (-\infty, \infty) \to \mathbb{R}^2\f$. Zero corresponds to the first (origin) point,
+ * one corresponds to the second (final) point. All other points are computed as a linear
+ * interpolation between those two: \f$p = (1-t) a + t b\f$. Many such functions have the same
+ * image and therefore represent the same lines; for example, adding \f$b-a\f$ to both points
+ * yields the same line.
+ *
+ * 2Geom can represent the same line in many ways by design: using a different representation
+ * would lead to precision loss. For example, a line from (1e30, 1e30) to (10,0) would actually
+ * evaluate to (0,0) at time 1 if it was stored as origin and normalized versor,
+ * or origin and angle.
+ *
+ * @ingroup Primitives
+ */
+
+/** @brief Set the line by solving the line equation.
+ * A line is a set of points that satisfies the line equation
+ * \f$Ax + By + C = 0\f$. This function changes the line so that its points
+ * satisfy the line equation with the given coefficients. */
+void Line::setCoefficients (Coord a, Coord b, Coord c)
+{
+ // degenerate case
+ if (a == 0 && b == 0) {
+ if (c != 0) {
+ THROW_LOGICALERROR("the passed coefficients give the empty set");
+ }
+ _initial = Point(0,0);
+ _final = Point(0,0);
+ return;
+ }
+
+ // The way final / initial points are set based on coefficients is somewhat unusual.
+ // This is done to make sure that calling coefficients() will give back
+ // (almost) the same values.
+
+ // vertical case
+ if (a == 0) {
+ // b must be nonzero
+ _initial = Point(-b/2, -c / b);
+ _final = _initial;
+ _final[X] = b/2;
+ return;
+ }
+
+ // horizontal case
+ if (b == 0) {
+ _initial = Point(-c / a, a/2);
+ _final = _initial;
+ _final[Y] = -a/2;
+ return;
+ }
+
+ // This gives reasonable results regardless of the magnitudes of a, b and c.
+ _initial = Point(-b/2,a/2);
+ _final = Point(b/2,-a/2);
+
+ Point offset(-c/(2*a), -c/(2*b));
+
+ _initial += offset;
+ _final += offset;
+}
+
+void Line::coefficients(Coord &a, Coord &b, Coord &c) const
+{
+ Point v = vector().cw();
+ a = v[X];
+ b = v[Y];
+ c = cross(_initial, _final);
+}
+
+/** @brief Get the implicit line equation coefficients.
+ * Note that conversion to implicit form always causes loss of
+ * precision when dealing with lines that start far from the origin
+ * and end very close to it. It is recommended to normalize the line
+ * before converting it to implicit form.
+ * @return Vector with three values corresponding to the A, B and C
+ * coefficients of the line equation for this line. */
+std::vector<Coord> Line::coefficients() const
+{
+ std::vector<Coord> c(3);
+ coefficients(c[0], c[1], c[2]);
+ return c;
+}
+
+/** @brief Find intersection with an axis-aligned line.
+ * @param v Coordinate of the axis-aligned line
+ * @param d Which axis the coordinate is on. X means a vertical line, Y means a horizontal line.
+ * @return Time values at which this line intersects the query line. */
+std::vector<Coord> Line::roots(Coord v, Dim2 d) const {
+ std::vector<Coord> result;
+ Coord r = root(v, d);
+ if (std::isfinite(r)) {
+ result.push_back(r);
+ }
+ return result;
+}
+
+Coord Line::root(Coord v, Dim2 d) const
+{
+ assert(d == X || d == Y);
+ Point vs = vector();
+ if (vs[d] != 0) {
+ return (v - _initial[d]) / vs[d];
+ } else {
+ return nan("");
+ }
+}
+
+std::optional<LineSegment> Line::clip(Rect const &r) const
+{
+ Point v = vector();
+ // handle horizontal and vertical lines first,
+ // since the root-based code below will break for them
+ for (unsigned i = 0; i < 2; ++i) {
+ Dim2 d = (Dim2) i;
+ Dim2 o = other_dimension(d);
+ if (v[d] != 0) continue;
+ if (r[d].contains(_initial[d])) {
+ Point a, b;
+ a[o] = r[o].min();
+ b[o] = r[o].max();
+ a[d] = b[d] = _initial[d];
+ if (v[o] > 0) {
+ return LineSegment(a, b);
+ } else {
+ return LineSegment(b, a);
+ }
+ } else {
+ return std::nullopt;
+ }
+ }
+
+ Interval xpart(root(r[X].min(), X), root(r[X].max(), X));
+ Interval ypart(root(r[Y].min(), Y), root(r[Y].max(), Y));
+ if (!xpart.isFinite() || !ypart.isFinite()) {
+ return std::nullopt;
+ }
+
+ OptInterval common = xpart & ypart;
+ if (common) {
+ Point p1 = pointAt(common->min()), p2 = pointAt(common->max());
+ LineSegment result(r.clamp(p1), r.clamp(p2));
+ return result;
+ } else {
+ return std::nullopt;
+ }
+
+ /* old implementation using coefficients:
+
+ if (fabs(b) > fabs(a)) {
+ p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
+ if (p0[Y] < r[Y].min())
+ p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
+ if (p0[Y] > r[Y].max())
+ p0 = Point((-c - b*r[Y].max())/a, r[Y].max());
+ p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
+ if (p1[Y] < r[Y].min())
+ p1 = Point((-c - b*r[Y].min())/a, r[Y].min());
+ if (p1[Y] > r[Y].max())
+ p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
+ } else {
+ p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
+ if (p0[X] < r[X].min())
+ p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
+ if (p0[X] > r[X].max())
+ p0 = Point(r[X].max(), (-c - a*r[X].max())/b);
+ p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
+ if (p1[X] < r[X].min())
+ p1 = Point(r[X].min(), (-c - a*r[X].min())/b);
+ if (p1[X] > r[X].max())
+ p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
+ }
+ return LineSegment(p0, p1); */
+}
+
+/** @brief Get a time value corresponding to a point.
+ * @param p Point on the line. If the point is not on the line,
+ * the returned value will be meaningless.
+ * @return Time value t such that \f$f(t) = p\f$.
+ * @see timeAtProjection */
+Coord Line::timeAt(Point const &p) const
+{
+ Point v = vector();
+ // degenerate case
+ if (v[X] == 0 && v[Y] == 0) {
+ return 0;
+ }
+
+ // use the coordinate that will give better precision
+ if (fabs(v[X]) > fabs(v[Y])) {
+ return (p[X] - _initial[X]) / v[X];
+ } else {
+ return (p[Y] - _initial[Y]) / v[Y];
+ }
+}
+
+/** @brief Create a transformation that maps one line to another.
+ * This will return a transformation \f$A\f$ such that
+ * \f$L_1(t) \cdot A = L_2(t)\f$, where \f$L_1\f$ is this line
+ * and \f$L_2\f$ is the line passed as the parameter. The returned
+ * transformation will preserve angles. */
+Affine Line::transformTo(Line const &other) const
+{
+ Affine result = Translate(-_initial);
+ result *= Rotate(angle_between(vector(), other.vector()));
+ result *= Scale(other.vector().length() / vector().length());
+ result *= Translate(other._initial);
+ return result;
+}
+
+std::vector<ShapeIntersection> Line::intersect(Line const &other) const
+{
+ std::vector<ShapeIntersection> result;
+
+ Point v1 = vector();
+ Point v2 = other.vector();
+ Coord cp = cross(v1, v2);
+ if (cp == 0) return result;
+
+ Point odiff = other.initialPoint() - initialPoint();
+ Coord t1 = cross(odiff, v2) / cp;
+ Coord t2 = cross(odiff, v1) / cp;
+ result.emplace_back(*this, other, t1, t2);
+ return result;
+}
+
+std::vector<ShapeIntersection> Line::intersect(Ray const &r) const
+{
+ Line other(r);
+ std::vector<ShapeIntersection> result = intersect(other);
+ filter_ray_intersections(result, false, true);
+ return result;
+}
+
+std::vector<ShapeIntersection> Line::intersect(LineSegment const &ls) const
+{
+ Line other(ls);
+ std::vector<ShapeIntersection> result = intersect(other);
+ filter_line_segment_intersections(result, false, true);
+ return result;
+}
+
+
+
+void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
+{
+ Interval unit(0, 1);
+ std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
+ while (i != last) {
+ if ((a && !unit.contains(i->first)) || (b && !unit.contains(i->second))) {
+ xs.erase((++i).base());
+ } else {
+ ++i;
+ }
+ }
+}
+
+void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
+{
+ Interval unit(0, 1);
+ std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
+ while (i != last) {
+ if ((a && i->first < 0) || (b && i->second < 0)) {
+ xs.erase((++i).base());
+ } else {
+ ++i;
+ }
+ }
+}
+
+namespace detail
+{
+
+inline
+OptCrossing intersection_impl(Point const &v1, Point const &o1,
+ Point const &v2, Point const &o2)
+{
+ Coord cp = cross(v1, v2);
+ if (cp == 0) return OptCrossing();
+
+ Point odiff = o2 - o1;
+
+ Crossing c;
+ c.ta = cross(odiff, v2) / cp;
+ c.tb = cross(odiff, v1) / cp;
+ return c;
+}
+
+
+OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i)
+{
+ using std::swap;
+
+ OptCrossing crossing =
+ intersection_impl(r1.vector(), r1.origin(),
+ l2.vector(), l2.origin() );
+
+ if (crossing) {
+ if (crossing->ta < 0) {
+ return OptCrossing();
+ } else {
+ if (i != 0) {
+ swap(crossing->ta, crossing->tb);
+ }
+ return crossing;
+ }
+ }
+ if (are_near(r1.origin(), l2)) {
+ THROW_INFINITESOLUTIONS();
+ } else {
+ return OptCrossing();
+ }
+}
+
+
+OptCrossing intersection_impl( LineSegment const& ls1,
+ Line const& l2,
+ unsigned int i )
+{
+ using std::swap;
+
+ OptCrossing crossing =
+ intersection_impl(ls1.finalPoint() - ls1.initialPoint(),
+ ls1.initialPoint(),
+ l2.vector(),
+ l2.origin() );
+
+ if (crossing) {
+ if ( crossing->getTime(0) < 0
+ || crossing->getTime(0) > 1 )
+ {
+ return OptCrossing();
+ } else {
+ if (i != 0) {
+ swap((*crossing).ta, (*crossing).tb);
+ }
+ return crossing;
+ }
+ }
+ if (are_near(ls1.initialPoint(), l2)) {
+ THROW_INFINITESOLUTIONS();
+ } else {
+ return OptCrossing();
+ }
+}
+
+
+OptCrossing intersection_impl( LineSegment const& ls1,
+ Ray const& r2,
+ unsigned int i )
+{
+ using std::swap;
+
+ Point direction = ls1.finalPoint() - ls1.initialPoint();
+ OptCrossing crossing =
+ intersection_impl( direction,
+ ls1.initialPoint(),
+ r2.vector(),
+ r2.origin() );
+
+ if (crossing) {
+ if ( (crossing->getTime(0) < 0)
+ || (crossing->getTime(0) > 1)
+ || (crossing->getTime(1) < 0) )
+ {
+ return OptCrossing();
+ } else {
+ if (i != 0) {
+ swap(crossing->ta, crossing->tb);
+ }
+ return crossing;
+ }
+ }
+
+ if ( are_near(r2.origin(), ls1) ) {
+ bool eqvs = (dot(direction, r2.vector()) > 0);
+ if ( are_near(ls1.initialPoint(), r2.origin()) && !eqvs) {
+ crossing->ta = crossing->tb = 0;
+ return crossing;
+ } else if ( are_near(ls1.finalPoint(), r2.origin()) && eqvs) {
+ if (i == 0) {
+ crossing->ta = 1;
+ crossing->tb = 0;
+ } else {
+ crossing->ta = 0;
+ crossing->tb = 1;
+ }
+ return crossing;
+ } else {
+ THROW_INFINITESOLUTIONS();
+ }
+ } else if ( are_near(ls1.initialPoint(), r2) ) {
+ THROW_INFINITESOLUTIONS();
+ } else {
+ OptCrossing no_crossing;
+ return no_crossing;
+ }
+}
+
+} // end namespace detail
+
+
+
+OptCrossing intersection(Line const& l1, Line const& l2)
+{
+ OptCrossing c = detail::intersection_impl(
+ l1.vector(), l1.origin(),
+ l2.vector(), l2.origin());
+
+ if (!c && distance(l1.origin(), l2) == 0) {
+ THROW_INFINITESOLUTIONS();
+ }
+ return c;
+}
+
+OptCrossing intersection(Ray const& r1, Ray const& r2)
+{
+ OptCrossing crossing =
+ detail::intersection_impl( r1.vector(), r1.origin(),
+ r2.vector(), r2.origin() );
+
+ if (crossing)
+ {
+ if ( crossing->ta < 0
+ || crossing->tb < 0 )
+ {
+ OptCrossing no_crossing;
+ return no_crossing;
+ }
+ else
+ {
+ return crossing;
+ }
+ }
+
+ if ( are_near(r1.origin(), r2) || are_near(r2.origin(), r1) )
+ {
+ if ( are_near(r1.origin(), r2.origin())
+ && !are_near(r1.vector(), r2.vector()) )
+ {
+ crossing->ta = crossing->tb = 0;
+ return crossing;
+ }
+ else
+ {
+ THROW_INFINITESOLUTIONS();
+ }
+ }
+ else
+ {
+ OptCrossing no_crossing;
+ return no_crossing;
+ }
+}
+
+
+OptCrossing intersection( LineSegment const& ls1, LineSegment const& ls2 )
+{
+ Point direction1 = ls1.finalPoint() - ls1.initialPoint();
+ Point direction2 = ls2.finalPoint() - ls2.initialPoint();
+ OptCrossing crossing =
+ detail::intersection_impl( direction1,
+ ls1.initialPoint(),
+ direction2,
+ ls2.initialPoint() );
+
+ if (crossing)
+ {
+ if ( crossing->getTime(0) < 0
+ || crossing->getTime(0) > 1
+ || crossing->getTime(1) < 0
+ || crossing->getTime(1) > 1 )
+ {
+ OptCrossing no_crossing;
+ return no_crossing;
+ }
+ else
+ {
+ return crossing;
+ }
+ }
+
+ bool eqvs = (dot(direction1, direction2) > 0);
+ if ( are_near(ls2.initialPoint(), ls1) )
+ {
+ if ( are_near(ls1.initialPoint(), ls2.initialPoint()) && !eqvs )
+ {
+ crossing->ta = crossing->tb = 0;
+ return crossing;
+ }
+ else if ( are_near(ls1.finalPoint(), ls2.initialPoint()) && eqvs )
+ {
+ crossing->ta = 1;
+ crossing->tb = 0;
+ return crossing;
+ }
+ else
+ {
+ THROW_INFINITESOLUTIONS();
+ }
+ }
+ else if ( are_near(ls2.finalPoint(), ls1) )
+ {
+ if ( are_near(ls1.finalPoint(), ls2.finalPoint()) && !eqvs )
+ {
+ crossing->ta = crossing->tb = 1;
+ return crossing;
+ }
+ else if ( are_near(ls1.initialPoint(), ls2.finalPoint()) && eqvs )
+ {
+ crossing->ta = 0;
+ crossing->tb = 1;
+ return crossing;
+ }
+ else
+ {
+ THROW_INFINITESOLUTIONS();
+ }
+ }
+ else
+ {
+ OptCrossing no_crossing;
+ return no_crossing;
+ }
+}
+
+Line make_angle_bisector_line(Line const& l1, Line const& l2)
+{
+ OptCrossing crossing;
+ try
+ {
+ crossing = intersection(l1, l2);
+ }
+ catch(InfiniteSolutions const &e)
+ {
+ return l1;
+ }
+ if (!crossing)
+ {
+ THROW_RANGEERROR("passed lines are parallel");
+ }
+ Point O = l1.pointAt(crossing->ta);
+ Point A = l1.pointAt(crossing->ta + 1);
+ double angle = angle_between(l1.vector(), l2.vector());
+ Point B = (angle > 0) ? l2.pointAt(crossing->tb + 1)
+ : l2.pointAt(crossing->tb - 1);
+
+ return make_angle_bisector_line(A, O, B);
+}
+
+
+
+
+} // end namespace Geom
+
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(substatement-open . 0))
+ indent-tabs-mode:nil
+ c-brace-offset:0
+ fill-column:99
+ End:
+ vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
+*/