summaryrefslogtreecommitdiffstats
path: root/src/2geom/sbasis-to-bezier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/sbasis-to-bezier.cpp')
-rw-r--r--src/2geom/sbasis-to-bezier.cpp584
1 files changed, 584 insertions, 0 deletions
diff --git a/src/2geom/sbasis-to-bezier.cpp b/src/2geom/sbasis-to-bezier.cpp
new file mode 100644
index 0000000..5580956
--- /dev/null
+++ b/src/2geom/sbasis-to-bezier.cpp
@@ -0,0 +1,584 @@
+/*
+ * Symmetric Power Basis - Bernstein Basis conversion routines
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ * Nathan Hurst <njh@mail.csse.monash.edu.au>
+ *
+ * Copyright 2007-2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#include <2geom/sbasis-to-bezier.h>
+#include <2geom/d2.h>
+#include <2geom/choose.h>
+#include <2geom/path-sink.h>
+#include <2geom/exception.h>
+#include <2geom/convex-hull.h>
+
+#include <iostream>
+
+
+
+
+namespace Geom
+{
+
+/*
+ * Symmetric Power Basis - Bernstein Basis conversion routines
+ *
+ * some remark about precision:
+ * interval [0,1], subdivisions: 10^3
+ * - bezier_to_sbasis : up to degree ~72 precision is at least 10^-5
+ * up to degree ~87 precision is at least 10^-3
+ * - sbasis_to_bezier : up to order ~63 precision is at least 10^-15
+ * precision is at least 10^-14 even beyond order 200
+ *
+ * interval [-1,1], subdivisions: 10^3
+ * - bezier_to_sbasis : up to degree ~21 precision is at least 10^-5
+ * up to degree ~24 precision is at least 10^-3
+ * - sbasis_to_bezier : up to order ~11 precision is at least 10^-5
+ * up to order ~13 precision is at least 10^-3
+ *
+ * interval [-10,10], subdivisions: 10^3
+ * - bezier_to_sbasis : up to degree ~7 precision is at least 10^-5
+ * up to degree ~8 precision is at least 10^-3
+ * - sbasis_to_bezier : up to order ~3 precision is at least 10^-5
+ * up to order ~4 precision is at least 10^-3
+ *
+ * references:
+ * this implementation is based on the following article:
+ * J.Sanchez-Reyes - The Symmetric Analogue of the Polynomial Power Basis
+ */
+
+/** Changes the basis of p to be bernstein.
+ \param p the Symmetric basis polynomial
+ \returns the Bernstein basis polynomial
+
+ if the degree is even q is the order in the symmetrical power basis,
+ if the degree is odd q is the order + 1
+ n is always the polynomial degree, i. e. the Bezier order
+ sz is the number of bezier handles.
+*/
+void sbasis_to_bezier (Bezier & bz, SBasis const& sb, size_t sz)
+{
+ assert(sb.size() > 0);
+
+ size_t q, n;
+ bool even;
+ if (sz == 0)
+ {
+ q = sb.size();
+ if (sb[q-1][0] == sb[q-1][1])
+ {
+ even = true;
+ --q;
+ n = 2*q;
+ }
+ else
+ {
+ even = false;
+ n = 2*q-1;
+ }
+ }
+ else
+ {
+ q = (sz > 2*sb.size()-1) ? sb.size() : (sz+1)/2;
+ n = sz-1;
+ even = false;
+ }
+ bz.clear();
+ bz.resize(n+1);
+ for (size_t k = 0; k < q; ++k)
+ {
+ int Tjk = 1;
+ for (size_t j = k; j < n-k; ++j) // j <= n-k-1
+ {
+ bz[j] += (Tjk * sb[k][0]);
+ bz[n-j] += (Tjk * sb[k][1]); // n-k <-> [k][1]
+ // assert(Tjk == binomial(n-2*k-1, j-k));
+ binomial_increment_k(Tjk, n-2*k-1, j-k);
+ }
+ }
+ if (even)
+ {
+ bz[q] += sb[q][0];
+ }
+ // the resulting coefficients are with respect to the scaled Bernstein
+ // basis so we need to divide them by (n, j) binomial coefficient
+ int bcj = n;
+ for (size_t j = 1; j < n; ++j)
+ {
+ bz[j] /= bcj;
+ // assert(bcj == binomial(n, j));
+ binomial_increment_k(bcj, n, j);
+ }
+ bz[0] = sb[0][0];
+ bz[n] = sb[0][1];
+}
+
+void sbasis_to_bezier(D2<Bezier> &bz, D2<SBasis> const &sb, size_t sz)
+{
+ if (sz == 0) {
+ sz = std::max(sb[X].size(), sb[Y].size())*2;
+ }
+ sbasis_to_bezier(bz[X], sb[X], sz);
+ sbasis_to_bezier(bz[Y], sb[Y], sz);
+}
+
+/** Changes the basis of p to be Bernstein.
+ \param p the D2 Symmetric basis polynomial
+ \returns the D2 Bernstein basis polynomial
+
+ sz is always the polynomial degree, i. e. the Bezier order
+*/
+void sbasis_to_bezier (std::vector<Point> & bz, D2<SBasis> const& sb, size_t sz)
+{
+ D2<Bezier> bez;
+ sbasis_to_bezier(bez, sb, sz);
+ bz = bezier_points(bez);
+}
+
+/** Changes the basis of p to be Bernstein.
+ \param p the D2 Symmetric basis polynomial
+ \returns the D2 Bernstein basis cubic polynomial
+
+Bezier is always cubic.
+For general asymmetric case, fit the SBasis function value at midpoint
+For parallel, symmetric case, find the point of closest approach to the midpoint
+For parallel, anti-symmetric case, fit the SBasis slope at midpoint
+*/
+void sbasis_to_cubic_bezier (std::vector<Point> & bz, D2<SBasis> const& sb)
+{
+ double delx[2], dely[2];
+ double xprime[2], yprime[2];
+ double midx = 0;
+ double midy = 0;
+ double midx_0, midy_0;
+ double numer[2], numer_0[2];
+ double denom;
+ double div;
+
+ if ((sb[X].size() == 0) || (sb[Y].size() == 0)) {
+ THROW_RANGEERROR("size of sb is too small");
+ }
+
+ sbasis_to_bezier(bz, sb, 4); // zeroth-order estimate
+ if ((sb[X].size() < 3) && (sb[Y].size() < 3))
+ return; // cubic bezier estimate is exact
+ Geom::ConvexHull bezhull(bz);
+
+// calculate first derivatives of x and y wrt t
+
+ for (int i = 0; i < 2; ++i) {
+ xprime[i] = sb[X][0][1] - sb[X][0][0];
+ yprime[i] = sb[Y][0][1] - sb[Y][0][0];
+ }
+ if (sb[X].size() > 1) {
+ xprime[0] += sb[X][1][0];
+ xprime[1] -= sb[X][1][1];
+ }
+ if (sb[Y].size() > 1) {
+ yprime[0] += sb[Y][1][0];
+ yprime[1] -= sb[Y][1][1];
+ }
+
+// calculate midpoint at t = 0.5
+
+ div = 2;
+ for (auto i : sb[X]) {
+ midx += (i[0] + i[1])/div;
+ div *= 4;
+ }
+
+ div = 2;
+ for (auto i : sb[Y]) {
+ midy += (i[0] + i[1])/div;
+ div *= 4;
+ }
+
+// is midpoint in hull: if not, the solution will be ill-conditioned, LP Bug 1428683
+
+ if (!bezhull.contains(Geom::Point(midx, midy)))
+ return;
+
+// calculate Bezier control arms
+
+ midx = 8*midx - 4*bz[0][X] - 4*bz[3][X]; // re-define relative to center
+ midy = 8*midy - 4*bz[0][Y] - 4*bz[3][Y];
+ midx_0 = sb[X].size() > 1 ? sb[X][1][0] + sb[X][1][1] : 0; // zeroth order estimate
+ midy_0 = sb[Y].size() > 1 ? sb[Y][1][0] + sb[Y][1][1] : 0;
+
+ if ((std::abs(xprime[0]) < EPSILON) && (std::abs(yprime[0]) < EPSILON)
+ && ((std::abs(xprime[1]) > EPSILON) || (std::abs(yprime[1]) > EPSILON))) { // degenerate handle at 0 : use distance of closest approach
+ numer[0] = midx*xprime[1] + midy*yprime[1];
+ denom = 3.0*(xprime[1]*xprime[1] + yprime[1]*yprime[1]);
+ delx[0] = 0;
+ dely[0] = 0;
+ delx[1] = -xprime[1]*numer[0]/denom;
+ dely[1] = -yprime[1]*numer[0]/denom;
+ } else if ((std::abs(xprime[1]) < EPSILON) && (std::abs(yprime[1]) < EPSILON)
+ && ((std::abs(xprime[0]) > EPSILON) || (std::abs(yprime[0]) > EPSILON))) { // degenerate handle at 1 : ditto
+ numer[1] = midx*xprime[0] + midy*yprime[0];
+ denom = 3.0*(xprime[0]*xprime[0] + yprime[0]*yprime[0]);
+ delx[0] = xprime[0]*numer[1]/denom;
+ dely[0] = yprime[0]*numer[1]/denom;
+ delx[1] = 0;
+ dely[1] = 0;
+ } else if (std::abs(xprime[1]*yprime[0] - yprime[1]*xprime[0]) > // general case : fit mid fxn value
+ 0.002 * std::abs(xprime[1]*xprime[0] + yprime[1]*yprime[0])) { // approx. 0.1 degree of angle
+ double test1 = (bz[1][Y] - bz[0][Y])*(bz[3][X] - bz[0][X]) - (bz[1][X] - bz[0][X])*(bz[3][Y] - bz[0][Y]);
+ double test2 = (bz[2][Y] - bz[0][Y])*(bz[3][X] - bz[0][X]) - (bz[2][X] - bz[0][X])*(bz[3][Y] - bz[0][Y]);
+ if (test1*test2 < 0) // reject anti-symmetric case, LP Bug 1428267 & Bug 1428683
+ return;
+ denom = 3.0*(xprime[1]*yprime[0] - yprime[1]*xprime[0]);
+ for (int i = 0; i < 2; ++i) {
+ numer_0[i] = xprime[1 - i]*midy_0 - yprime[1 - i]*midx_0;
+ numer[i] = xprime[1 - i]*midy - yprime[1 - i]*midx;
+ delx[i] = xprime[i]*numer[i]/denom;
+ dely[i] = yprime[i]*numer[i]/denom;
+ if (numer_0[i]*numer[i] < 0) // check for reversal of direction, LP Bug 1544680
+ return;
+ }
+ if (std::abs((numer[0] - numer_0[0])*numer_0[1]) > 10.0*std::abs((numer[1] - numer_0[1])*numer_0[0]) // check for asymmetry
+ || std::abs((numer[1] - numer_0[1])*numer_0[0]) > 10.0*std::abs((numer[0] - numer_0[0])*numer_0[1]))
+ return;
+ } else if ((xprime[0]*xprime[1] < 0) || (yprime[0]*yprime[1] < 0)) { // symmetric case : use distance of closest approach
+ numer[0] = midx*xprime[0] + midy*yprime[0];
+ denom = 6.0*(xprime[0]*xprime[0] + yprime[0]*yprime[0]);
+ delx[0] = xprime[0]*numer[0]/denom;
+ dely[0] = yprime[0]*numer[0]/denom;
+ delx[1] = -delx[0];
+ dely[1] = -dely[0];
+ } else { // anti-symmetric case : fit mid slope
+ // calculate slope at t = 0.5
+ midx = 0;
+ div = 1;
+ for (auto i : sb[X]) {
+ midx += (i[1] - i[0])/div;
+ div *= 4;
+ }
+ midy = 0;
+ div = 1;
+ for (auto i : sb[Y]) {
+ midy += (i[1] - i[0])/div;
+ div *= 4;
+ }
+ if (midx*yprime[0] != midy*xprime[0]) {
+ denom = midx*yprime[0] - midy*xprime[0];
+ numer[0] = midx*(bz[3][Y] - bz[0][Y]) - midy*(bz[3][X] - bz[0][X]);
+ for (int i = 0; i < 2; ++i) {
+ delx[i] = xprime[0]*numer[0]/denom;
+ dely[i] = yprime[0]*numer[0]/denom;
+ }
+ } else { // linear case
+ for (int i = 0; i < 2; ++i) {
+ delx[i] = (bz[3][X] - bz[0][X])/3;
+ dely[i] = (bz[3][Y] - bz[0][Y])/3;
+ }
+ }
+ }
+ bz[1][X] = bz[0][X] + delx[0];
+ bz[1][Y] = bz[0][Y] + dely[0];
+ bz[2][X] = bz[3][X] - delx[1];
+ bz[2][Y] = bz[3][Y] - dely[1];
+}
+
+/** Changes the basis of p to be sbasis.
+ \param p the Bernstein basis polynomial
+ \returns the Symmetric basis polynomial
+
+ if the degree is even q is the order in the symmetrical power basis,
+ if the degree is odd q is the order + 1
+ n is always the polynomial degree, i. e. the Bezier order
+*/
+void bezier_to_sbasis (SBasis & sb, Bezier const& bz)
+{
+ size_t n = bz.order();
+ size_t q = (n+1) / 2;
+ size_t even = (n & 1u) ? 0 : 1;
+ sb.clear();
+ sb.resize(q + even, Linear(0, 0));
+ int nck = 1;
+ for (size_t k = 0; k < q; ++k)
+ {
+ int Tjk = nck;
+ for (size_t j = k; j < q; ++j)
+ {
+ sb[j][0] += (Tjk * bz[k]);
+ sb[j][1] += (Tjk * bz[n-k]); // n-j <-> [j][1]
+ // assert(Tjk == sgn(j, k) * binomial(n-j-k, j-k) * binomial(n, k));
+ binomial_increment_k(Tjk, n-j-k, j-k);
+ binomial_decrement_n(Tjk, n-j-k, j-k+1);
+ Tjk = -Tjk;
+ }
+ Tjk = -nck;
+ for (size_t j = k+1; j < q; ++j)
+ {
+ sb[j][0] += (Tjk * bz[n-k]);
+ sb[j][1] += (Tjk * bz[k]); // n-j <-> [j][1]
+ // assert(Tjk == sgn(j, k) * binomial(n-j-k-1, j-k-1) * binomial(n, k));
+ binomial_increment_k(Tjk, n-j-k-1, j-k-1);
+ binomial_decrement_n(Tjk, n-j-k-1, j-k);
+ Tjk = -Tjk;
+ }
+ // assert(nck == binomial(n, k));
+ binomial_increment_k(nck, n, k);
+ }
+ if (even)
+ {
+ int Tjk = q & 1 ? -1 : 1;
+ for (size_t k = 0; k < q; ++k)
+ {
+ sb[q][0] += (Tjk * (bz[k] + bz[n-k]));
+ // assert(Tjk == sgn(q,k) * binomial(n, k));
+ binomial_increment_k(Tjk, n, k);
+ Tjk = -Tjk;
+ }
+ // assert(Tjk == binomial(n, q));
+ sb[q][0] += Tjk * bz[q];
+ sb[q][1] = sb[q][0];
+ }
+ sb[0][0] = bz[0];
+ sb[0][1] = bz[n];
+}
+
+/** Changes the basis of d2 p to be sbasis.
+ \param p the d2 Bernstein basis polynomial
+ \returns the d2 Symmetric basis polynomial
+
+ if the degree is even q is the order in the symmetrical power basis,
+ if the degree is odd q is the order + 1
+ n is always the polynomial degree, i. e. the Bezier order
+*/
+void bezier_to_sbasis (D2<SBasis> & sb, std::vector<Point> const& bz)
+{
+ size_t n = bz.size() - 1;
+ size_t q = (n+1) / 2;
+ size_t even = (n & 1u) ? 0 : 1;
+ sb[X].clear();
+ sb[Y].clear();
+ sb[X].resize(q + even, Linear(0, 0));
+ sb[Y].resize(q + even, Linear(0, 0));
+ int nck = 1;
+ for (size_t k = 0; k < q; ++k)
+ {
+ int Tjk = nck;
+ for (size_t j = k; j < q; ++j)
+ {
+ sb[X][j][0] += (Tjk * bz[k][X]);
+ sb[X][j][1] += (Tjk * bz[n-k][X]);
+ sb[Y][j][0] += (Tjk * bz[k][Y]);
+ sb[Y][j][1] += (Tjk * bz[n-k][Y]);
+ // assert(Tjk == sgn(j, k) * binomial(n-j-k, j-k) * binomial(n, k));
+ binomial_increment_k(Tjk, n-j-k, j-k);
+ binomial_decrement_n(Tjk, n-j-k, j-k+1);
+ Tjk = -Tjk;
+ }
+ Tjk = -nck;
+ for (size_t j = k+1; j < q; ++j)
+ {
+ sb[X][j][0] += (Tjk * bz[n-k][X]);
+ sb[X][j][1] += (Tjk * bz[k][X]);
+ sb[Y][j][0] += (Tjk * bz[n-k][Y]);
+ sb[Y][j][1] += (Tjk * bz[k][Y]);
+ // assert(Tjk == sgn(j, k) * binomial(n-j-k-1, j-k-1) * binomial(n, k));
+ binomial_increment_k(Tjk, n-j-k-1, j-k-1);
+ binomial_decrement_n(Tjk, n-j-k-1, j-k);
+ Tjk = -Tjk;
+ }
+ // assert(nck == binomial(n, k));
+ binomial_increment_k(nck, n, k);
+ }
+ if (even)
+ {
+ int Tjk = q & 1 ? -1 : 1;
+ for (size_t k = 0; k < q; ++k)
+ {
+ sb[X][q][0] += (Tjk * (bz[k][X] + bz[n-k][X]));
+ sb[Y][q][0] += (Tjk * (bz[k][Y] + bz[n-k][Y]));
+ // assert(Tjk == sgn(q,k) * binomial(n, k));
+ binomial_increment_k(Tjk, n, k);
+ Tjk = -Tjk;
+ }
+ // assert(Tjk == binomial(n, q));
+ sb[X][q][0] += Tjk * bz[q][X];
+ sb[X][q][1] = sb[X][q][0];
+ sb[Y][q][0] += Tjk * bz[q][Y];
+ sb[Y][q][1] = sb[Y][q][0];
+ }
+ sb[X][0][0] = bz[0][X];
+ sb[X][0][1] = bz[n][X];
+ sb[Y][0][0] = bz[0][Y];
+ sb[Y][0][1] = bz[n][Y];
+}
+
+} // namespace Geom
+
+#if 0
+/*
+* This version works by inverting a reasonable upper bound on the error term after subdividing the
+* curve at $a$. We keep biting off pieces until there is no more curve left.
+*
+* Derivation: The tail of the power series is $a_ks^k + a_{k+1}s^{k+1} + \ldots = e$. A
+* subdivision at $a$ results in a tail error of $e*A^k, A = (1-a)a$. Let this be the desired
+* tolerance tol $= e*A^k$ and invert getting $A = e^{1/k}$ and $a = 1/2 - \sqrt{1/4 - A}$
+*/
+void
+subpath_from_sbasis_incremental(Geom::OldPathSetBuilder &pb, D2<SBasis> B, double tol, bool initial) {
+ const unsigned k = 2; // cubic bezier
+ double te = B.tail_error(k);
+ assert(B[0].std::isfinite());
+ assert(B[1].std::isfinite());
+
+ //std::cout << "tol = " << tol << std::endl;
+ while(1) {
+ double A = std::sqrt(tol/te); // pow(te, 1./k)
+ double a = A;
+ if(A < 1) {
+ A = std::min(A, 0.25);
+ a = 0.5 - std::sqrt(0.25 - A); // quadratic formula
+ if(a > 1) a = 1; // clamp to the end of the segment
+ } else
+ a = 1;
+ assert(a > 0);
+ //std::cout << "te = " << te << std::endl;
+ //std::cout << "A = " << A << "; a=" << a << std::endl;
+ D2<SBasis> Bs = compose(B, Linear(0, a));
+ assert(Bs.tail_error(k));
+ std::vector<Geom::Point> bez = sbasis_to_bezier(Bs, 2);
+ reverse(bez.begin(), bez.end());
+ if (initial) {
+ pb.start_subpath(bez[0]);
+ initial = false;
+ }
+ pb.push_cubic(bez[1], bez[2], bez[3]);
+
+// move to next piece of curve
+ if(a >= 1) break;
+ B = compose(B, Linear(a, 1));
+ te = B.tail_error(k);
+ }
+}
+
+#endif
+
+namespace Geom{
+
+/** Make a path from a d2 sbasis.
+ \param p the d2 Symmetric basis polynomial
+ \returns a Path
+
+ If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
+*/
+void build_from_sbasis(Geom::PathBuilder &pb, D2<SBasis> const &B, double tol, bool only_cubicbeziers) {
+ if (!B.isFinite()) {
+ THROW_EXCEPTION("assertion failed: B.isFinite()");
+ }
+ if(tail_error(B, 3) < tol || sbasis_size(B) == 2) { // nearly cubic enough
+ if( !only_cubicbeziers && (sbasis_size(B) <= 1) ) {
+ pb.lineTo(B.at1());
+ } else {
+ std::vector<Geom::Point> bez;
+// sbasis_to_bezier(bez, B, 4);
+ sbasis_to_cubic_bezier(bez, B);
+ pb.curveTo(bez[1], bez[2], bez[3]);
+ }
+ } else {
+ build_from_sbasis(pb, compose(B, Linear(0, 0.5)), tol, only_cubicbeziers);
+ build_from_sbasis(pb, compose(B, Linear(0.5, 1)), tol, only_cubicbeziers);
+ }
+}
+
+/** Make a path from a d2 sbasis.
+ \param p the d2 Symmetric basis polynomial
+ \returns a Path
+
+ If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
+*/
+Path
+path_from_sbasis(D2<SBasis> const &B, double tol, bool only_cubicbeziers) {
+ PathBuilder pb;
+ pb.moveTo(B.at0());
+ build_from_sbasis(pb, B, tol, only_cubicbeziers);
+ pb.flush();
+ return pb.peek().front();
+}
+
+/** Make a path from a d2 sbasis.
+ \param p the d2 Symmetric basis polynomial
+ \returns a Path
+
+ If only_cubicbeziers is true, the resulting path may only contain CubicBezier curves.
+ TODO: some of this logic should be lifted into svg-path
+*/
+PathVector
+path_from_piecewise(Geom::Piecewise<Geom::D2<Geom::SBasis> > const &B, double tol, bool only_cubicbeziers) {
+ Geom::PathBuilder pb;
+ if(B.size() == 0) return pb.peek();
+ Geom::Point start = B[0].at0();
+ pb.moveTo(start);
+ for(unsigned i = 0; ; i++) {
+ if ( (i+1 == B.size())
+ || !are_near(B[i+1].at0(), B[i].at1(), tol) )
+ {
+ //start of a new path
+ if (are_near(start, B[i].at1()) && sbasis_size(B[i]) <= 1) {
+ pb.closePath();
+ //last line seg already there (because of .closePath())
+ goto no_add;
+ }
+ build_from_sbasis(pb, B[i], tol, only_cubicbeziers);
+ if (are_near(start, B[i].at1())) {
+ //it's closed, the last closing segment was not a straight line so it needed to be added, but still make it closed here with degenerate straight line.
+ pb.closePath();
+ }
+ no_add:
+ if (i+1 >= B.size()) {
+ break;
+ }
+ start = B[i+1].at0();
+ pb.moveTo(start);
+ } else {
+ build_from_sbasis(pb, B[i], tol, only_cubicbeziers);
+ }
+ }
+ pb.flush();
+ return pb.peek();
+}
+
+}
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :