summaryrefslogtreecommitdiffstats
path: root/src/toys/curve-intersection-by-implicitization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/toys/curve-intersection-by-implicitization.cpp')
-rw-r--r--src/toys/curve-intersection-by-implicitization.cpp300
1 files changed, 300 insertions, 0 deletions
diff --git a/src/toys/curve-intersection-by-implicitization.cpp b/src/toys/curve-intersection-by-implicitization.cpp
new file mode 100644
index 0000000..e071911
--- /dev/null
+++ b/src/toys/curve-intersection-by-implicitization.cpp
@@ -0,0 +1,300 @@
+/*
+ * Show off crossings between two D2<SBasis> curves.
+ * The intersection points are found by using implicitization tecnique.
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#include <toys/path-cairo.h>
+#include <toys/toy-framework-2.h>
+#include <2geom/d2.h>
+#include <2geom/sbasis-poly.h>
+#include <2geom/numeric/linear_system.h>
+#include <2geom/symbolic/implicit.h>
+
+
+using namespace Geom;
+
+/*
+ * helper routines
+ */
+void poly_to_mvpoly1(SL::MVPoly1 & p, Geom::Poly const& q)
+{
+ for (size_t i = 0; i < q.size(); ++i)
+ {
+ p.coefficient(i, q[i]);
+ }
+ p.normalize();
+}
+
+void mvpoly1_to_poly(Geom::Poly & p, SL::MVPoly1 const& q)
+{
+ p.resize(q.get_poly().size());
+ for (size_t i = 0; i < q.get_poly().size(); ++i)
+ {
+ p[i] = q[i];
+ }
+}
+
+
+/*
+ * intersection_info
+ * structure utilized to store intersection info
+ *
+ * p - the intersection point
+ * t0 - the parameter t value at which the first curve pass through p
+ * t1 - the parameter t value at which the first curve pass through p
+ */
+struct intersection_info
+{
+ intersection_info()
+ {}
+
+ intersection_info(Point const& _p, Coord _t0, Coord _t1)
+ : p(_p), t0(_t0), t1(_t1)
+ {}
+
+ Point p;
+ Coord t0, t1;
+};
+
+typedef std::vector<intersection_info> intersections_info;
+
+
+
+/*
+ * intersection algorithm
+ */
+void intersect(intersections_info& xs, D2<SBasis> const& A, D2<SBasis> const& B)
+{
+ using std::swap;
+
+ // supposing implicitization the most expensive step
+ // we perform a call to intersect with curve arguments swapped
+ if (A[0].size() > B[0].size())
+ {
+ intersect(xs, B, A);
+ for (auto & x : xs)
+ swap(x.t0, x.t1);
+
+ return;
+ }
+
+ // convert A from symmetric power basis to power basis
+ Geom::Poly A0 = sbasis_to_poly(A[0]);
+ Geom::Poly A1 = sbasis_to_poly(A[1]);
+
+ // convert to MultiPoly type
+ SL::MVPoly1 Af, Ag;
+ poly_to_mvpoly1(Af, A0);
+ poly_to_mvpoly1(Ag, A1);
+
+ // compute a basis of the ideal related to the curve A
+ // in vector form
+ Geom::SL::basis_type b;
+ // if we compute the micro-basis the bezout matrix is made up
+ // by one only entry so we can't do the inversion step.
+ if (A0.size() == 3)
+ {
+ make_initial_basis(b, Af, Ag);
+ }
+ else
+ {
+ microbasis(b, Af, Ag);
+ }
+
+ // we put the basis in of the form of two independent moving line
+ Geom::SL::MVPoly3 p, q;
+ basis_to_poly(p, b[0]);
+ basis_to_poly(q, b[1]);
+
+ // compute the Bezout matrix and the implicit equation of the curve A
+ Geom::SL::Matrix<Geom::SL::MVPoly2> BZ = make_bezout_matrix(p, q);
+ SL::MVPoly2 ic = determinant_minor(BZ);
+ ic.normalize();
+
+
+ // convert B from symmetric power basis to power basis
+ Geom::Poly B0 = sbasis_to_poly(B[0]);
+ Geom::Poly B1 = sbasis_to_poly(B[1]);
+
+ // convert to MultiPoly type
+ SL::MVPoly1 Bf, Bg;
+ poly_to_mvpoly1(Bf, B0);
+ poly_to_mvpoly1(Bg, B1);
+
+ // evaluate the implicit equation of A on B
+ // so we get an s(t) polynomial that give us
+ // the t values for B at which intersection happens
+ SL::MVPoly1 s = ic(Bf, Bg);
+
+ // convert s(t) to Poly type, in order to use the real_solve function
+ Geom::Poly z;
+ mvpoly1_to_poly(z, s);
+
+ // compute t values for the curve B at which intersection happens
+ std::vector<double> sol = solve_reals(z);
+
+ // filter the found solutions wrt the domain interval [0,1] of B
+ // and compute the related point coordinates
+ std::vector<double> pt;
+ pt.reserve(sol.size());
+ std::vector<Point> points;
+ points.reserve(sol.size());
+ for (double & i : sol)
+ {
+ if (i >= 0 && i <= 1)
+ {
+ pt.push_back(i);
+ points.push_back(B(pt.back()));
+ }
+ }
+
+ // case: A is parametrized by polynomial of degree 1
+ // we compute the t values of A at the intersection points
+ // and filter the results wrt the domain interval [0,1]
+ double t;
+ xs.clear();
+ xs.reserve(pt.size());
+ if (A0.size() == 2)
+ {
+ for (size_t i = 0; i < points.size(); ++i)
+ {
+ t = (points[i][X] - A0[0]) / A0[1];
+ if (t >= 0 && t <= 1)
+ {
+ xs.push_back(intersection_info(points[i], t, pt[i]));
+ }
+ }
+ return;
+ }
+
+ // general case
+ // we compute the value of the parameter t of A at each intersection point
+ // and we filter the final result wrt the domain interval [0,1]
+ // the computation is performed by using the inversion formula for each point
+ // As reference see:
+ // Sederberger - Computer Aided Geometric Design
+ // par 16.5 - Implicitization and Inversion
+ size_t n = BZ.rows();
+ Geom::NL::Matrix BZN(n, n);
+ Geom::NL::MatrixView BZV(BZN, 0, 0, n-1, n-1);
+ Geom::NL::VectorView cv = BZN.column_view(n-1);
+ Geom::NL::VectorView bv(cv, n-1);
+ Geom::NL::LinearSystem ls(BZV, bv);
+ for (size_t i = 0; i < points.size(); ++i)
+ {
+ // evaluate the first main minor of order n-1 at each intersection point
+ polynomial_matrix_evaluate(BZN, BZ, points[i]);
+ // solve the linear system with the powers of t as unknowns
+ ls.SV_solve();
+ // the last element contains the t value
+ t = -ls.solution()[n-2];
+ // filter with respect to the domain of A
+ if (t >= 0 && t <= 1)
+ {
+ xs.push_back(intersection_info(points[i], t, pt[i]));
+ }
+ }
+}
+
+
+
+class IntersectImplicit : public Toy
+{
+
+ void draw( cairo_t *cr, std::ostringstream *notify,
+ int width, int height, bool save, std::ostringstream *timer_stream) override
+ {
+ cairo_set_line_width (cr, 0.3);
+ cairo_set_source_rgba (cr, 0.8, 0., 0, 1);
+ D2<SBasis> A = pshA.asBezier();
+ cairo_d2_sb(cr, A);
+ cairo_stroke(cr);
+ cairo_set_source_rgba (cr, 0.0, 0., 0, 1);
+ D2<SBasis> B = pshB.asBezier();
+ cairo_d2_sb(cr, B);
+ cairo_stroke(cr);
+
+ intersect(xs, A, B);
+ for (auto & x : xs)
+ {
+ draw_handle(cr, x.p);
+ }
+
+ Toy::draw(cr, notify, width, height, save,timer_stream);
+ }
+
+
+public:
+ IntersectImplicit(unsigned int _A_bez_ord, unsigned int _B_bez_ord)
+ : A_bez_ord(_A_bez_ord), B_bez_ord(_B_bez_ord)
+ {
+ handles.push_back(&pshA);
+ for (unsigned int i = 0; i <= A_bez_ord; ++i)
+ pshA.push_back(Geom::Point(uniform()*400, uniform()*400));
+ handles.push_back(&pshB);
+ for (unsigned int i = 0; i <= B_bez_ord; ++i)
+ pshB.push_back(Geom::Point(uniform()*400, uniform()*400));
+
+ }
+
+private:
+ unsigned int A_bez_ord, B_bez_ord;
+ PointSetHandle pshA, pshB;
+ intersections_info xs;
+};
+
+
+int main(int argc, char **argv)
+{
+ unsigned int A_bez_ord = 4;
+ unsigned int B_bez_ord = 6;
+ if(argc > 1)
+ sscanf(argv[1], "%d", &A_bez_ord);
+ if(argc > 2)
+ sscanf(argv[2], "%d", &B_bez_ord);
+
+
+ init( argc, argv, new IntersectImplicit(A_bez_ord, B_bez_ord));
+ return 0;
+}
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+ */
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :