1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/**
* \file
* \brief Linear fragment function class
*
* Authors:
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* Michael Sloan <mgsloan@gmail.com>
*
* Copyright (C) 2006-2007 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef SEEN_LINEAR_OF_H
#define SEEN_LINEAR_OF_H
#include <2geom/interval.h>
#include <2geom/math-utils.h>
namespace Geom{
template <typename T>
inline T lerp(double t, T a, T b) { return a*(1-t) + b*t; }
template <typename T>
class SBasisOf;
template <typename T>
class HatOf{
public:
HatOf () {}
HatOf(T d) :d(d) {}
operator T() const { return d; }
T d;
};
template <typename T>
class TriOf{
public:
TriOf () {}
TriOf(double d) :d(d) {}
operator T() const { return d; }
T d;
};
//--------------------------------------------------------------------------
#ifdef USE_SBASIS_OF
template <typename T>
class LinearOf;
typedef Geom::LinearOf<double> Linear;
#endif
//--------------------------------------------------------------------------
template <typename T>
class LinearOf{
public:
T a[2];
LinearOf() {}
LinearOf(T aa, T b) {a[0] = aa; a[1] = b;}
//LinearOf(double aa, double b) {a[0] = T(aa); a[1] = T(b);}
LinearOf(HatOf<T> h, TriOf<T> t) {
a[0] = T(h) - T(t)/2;
a[1] = T(h) + T(t)/2;
}
LinearOf(HatOf<T> h) {
a[0] = T(h);
a[1] = T(h);
}
unsigned input_dim(){return T::input_dim() + 1;}
T operator[](const int i) const {
assert(i >= 0);
assert(i < 2);
return a[i];
}
T& operator[](const int i) {
assert(i >= 0);
assert(i < 2);
return a[i];
}
//IMPL: FragmentConcept
typedef T output_type;
inline bool isZero() const { return a[0].isZero() && a[1].isZero(); }
inline bool isConstant() const { return a[0] == a[1]; }
inline bool isFinite() const { return std::isfinite(a[0]) && std::isfinite(a[1]); }
inline T at0() const { return a[0]; }
inline T at1() const { return a[1]; }
inline T valueAt(double t) const { return lerp(t, a[0], a[1]); }
inline T operator()(double t) const { return valueAt(t); }
//defined in sbasis.h
inline SBasisOf<T> toSBasis() const;
//This is specific for T=double!!
inline OptInterval bounds_exact() const { return Interval(a[0], a[1]); }
inline OptInterval bounds_fast() const { return bounds_exact(); }
inline OptInterval bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
operator TriOf<T>() const {
return a[1] - a[0];
}
operator HatOf<T>() const {
return (a[1] + a[0])/2;
}
};
template <>
unsigned LinearOf<double>::input_dim(){return 1;}
template <>
inline OptInterval LinearOf<double>::bounds_exact() const { return Interval(a[0], a[1]); }
template <>
inline OptInterval LinearOf<double>::bounds_fast() const { return bounds_exact(); }
template <>
inline OptInterval LinearOf<double>::bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
template <>
inline bool LinearOf<double>::isZero() const { return a[0]==0 && a[1]==0; }
template <typename T>
inline LinearOf<T> reverse(LinearOf<T> const &a) { return LinearOf<T>(a[1], a[0]); }
//IMPL: AddableConcept
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, LinearOf<T> const & b) {
return LinearOf<T>(a[0] + b[0], a[1] + b[1]);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, LinearOf<T> const & b) {
return LinearOf<T>(a[0] - b[0], a[1] - b[1]);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, LinearOf<T> const & b) {
a[0] += b[0]; a[1] += b[1];
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, LinearOf<T> const & b) {
a[0] -= b[0]; a[1] -= b[1];
return a;
}
//IMPL: OffsetableConcept
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0] + b, a[1] + b);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0] - b, a[1] - b);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, double b) {
a[0] += b; a[1] += b;
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, double b) {
a[0] -= b; a[1] -= b;
return a;
}
/*
//We can in fact offset in coeff ring T...
template <typename T>
inline LinearOf<T> operator+(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0] + b, a[1] + b);
}
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0] - b, a[1] - b);
}
template <typename T>
inline LinearOf<T>& operator+=(LinearOf<T> & a, T b) {
a[0] += b; a[1] += b;
return a;
}
template <typename T>
inline LinearOf<T>& operator-=(LinearOf<T> & a, T b) {
a[0] -= b; a[1] -= b;
return a;
}
*/
//IMPL: boost::EqualityComparableConcept
template <typename T>
inline bool operator==(LinearOf<T> const & a, LinearOf<T> const & b) {
return a[0] == b[0] && a[1] == b[1];
}
template <typename T>
inline bool operator!=(LinearOf<T> const & a, LinearOf<T> const & b) {
return a[0] != b[0] || a[1] != b[1];
}
//IMPL: ScalableConcept
template <typename T>
inline LinearOf<T> operator-(LinearOf<T> const &a) {
return LinearOf<T>(-a[0], -a[1]);
}
template <typename T>
inline LinearOf<T> operator*(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0]*b, a[1]*b);
}
template <typename T>
inline LinearOf<T> operator/(LinearOf<T> const & a, double b) {
return LinearOf<T>(a[0]/b, a[1]/b);
}
template <typename T>
inline LinearOf<T> operator*=(LinearOf<T> & a, double b) {
a[0] *= b; a[1] *= b;
return a;
}
template <typename T>
inline LinearOf<T> operator/=(LinearOf<T> & a, double b) {
a[0] /= b; a[1] /= b;
return a;
}
/*
//We can in fact rescale in coeff ring T... (but not divide!)
template <typename T>
inline LinearOf<T> operator*(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0]*b, a[1]*b);
}
template <typename T>
inline LinearOf<T> operator/(LinearOf<T> const & a, T b) {
return LinearOf<T>(a[0]/b, a[1]/b);
}
template <typename T>
inline LinearOf<T> operator*=(LinearOf<T> & a, T b) {
a[0] *= b; a[1] *= b;
return a;
}
*/
};
#endif //SEEN_LINEAR_OF_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|