summaryrefslogtreecommitdiffstats
path: root/include/2geom/orphan-code/linearN.h
blob: bb27c306063f5f9f9717e835f3871461989a8e9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/**
 * @file
 * @brief  LinearN fragment function class
 *//*
 *  Authors:
 *   JF Barraud <jf.barraud@gmail.com>
 *   Nathan Hurst <njh@mail.csse.monash.edu.au>
 *   Michael Sloan <mgsloan@gmail.com>
 *
 * Copyright (C) 2006-2007 authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#ifndef SEEN_LINEARN_H
#define SEEN_LINEARN_H
#include <2geom/interval.h>
#include <2geom/math-utils.h>
#include <2geom/linear.h> //for conversion purpose ( + lerp() )

#include <iostream>

namespace Geom{

//TODO: define this only once!! (see linear.h)
inline double lerpppp(double t, double a, double b) { return a*(1-t) + b*t; }

template<unsigned n>
class SBasisN;

template<unsigned n>
class LinearN{
public:
    double a[1<<n];// 1<<n is 2^n
    LinearN() {
        for (unsigned i=0; i < (1<<n); i++){
            a[i] = 0.;
        }
    }
    LinearN(double aa[]) {
        for (unsigned i=0; i < (1<<n); i++){
            a[i] = aa[i];
        }
    }
    LinearN(double c) {
        for (unsigned i=0; i<(1<<n); i++){
            a[i] = c;
        }
    }
    LinearN(LinearN<n-1> const &aa, LinearN<n-1> const &b, unsigned var=0) {
//         for (unsigned i=0; i<(1<<n-1); i++){
//             a[i] = aa[i];
//             a[i+(1<<(n-1))] = b[i];
//         }
        unsigned mask = (1<<var)-1;
        for (unsigned i=0; i < (1<<(n-1)); i++){
            unsigned low_i = i & mask, high_i = i & ~mask;
            unsigned idx0 = (high_i<<1)|low_i;
            unsigned idx1 = (high_i<<1)|(1<<var)|low_i;
            a[idx0] = aa[i];
            a[idx1] = b[i];
        }

    }
    double operator[](const int i) const {
        assert( i >= 0 );
        assert( i < (1<<n) );
        return a[i];
    }
    double& operator[](const int i) {
        assert(i >= 0);
        assert(i < (1<<n) );
        return a[i];
    }

    //IMPL: FragmentConcept
    typedef double output_type;
    unsigned input_dim() const {return n;}
    inline bool isZero() const { 
        for (unsigned i=0; i < (1<<n); i++){
            if (a[i] != 0) return false;
        }
        return true; }
    inline bool isConstant() const { 
        for (unsigned i=1; i < (1<<n); i++){
            if (a[i] != a[0]) return false;
        }
        return true; }
    inline bool isConstant(unsigned var) const { 
        unsigned mask = (1<<var)-1;
        for (unsigned i=0; i < (1<<(n-1)); i++){
            unsigned low_i = i & mask, high_i = i & ~mask;
            unsigned idx0 = (high_i<<1)|low_i;
            unsigned idx1 = (high_i<<1)|(1<<var)|low_i;
            if (a[idx0] != a[idx1]) return false;
        }
        return true; 
    }
    inline bool isFinite() const {
        for (unsigned i=0; i < (1<<n); i++){
            if ( !std::isfinite(a[i]) ) return false;
        }
        return true; }
    //value if k-th variable is set to 0.
    inline LinearN<n-1> at0(unsigned k=0) const {
        LinearN<n-1> res;
        unsigned mask = (1<<k)-1;
        for (unsigned i=0; i < (1<<(n-1)); i++){
            unsigned low_i = i & mask, high_i = i & ~mask;
            unsigned idx = (high_i<<1)|low_i;
            res[i] = a[idx];
        }
        return res;
    }
    //value if k-th variable is set to 1.
    inline LinearN<n-1> at1(unsigned k=0) const {
        LinearN<n-1> res;
        for (unsigned i=0; i < (1<<(n-1)); i++){
            unsigned mask = (1<<k)-1;
            unsigned low_i = i & mask, high_i = i & ~mask;
            unsigned idx = (high_i<<1)|(1<<k)|low_i;
            res[i] = a[idx];
        }
        return res;
    }
    inline double atCorner(unsigned k) const {
        assert( k < (1<<n) );
        return a[k];
    }
    inline double atCorner(double t[]) const { 
        unsigned k=0;
        for(unsigned i=0; i<n; i++){
            if (t[i] == 1.) k = k | (1<<i);
            else assert( t[i] == 0. );
        }
        return atCorner(k);
    }
    inline LinearN<n-1> partialEval(double t, unsigned var=0 ) const {
        LinearN<n-1> res;
        res = at0(var)*(1-t) + at1(var)*t;
        return res;
    }
    
    //fixed and flags are used for recursion.
    inline double valueAt(double t[], unsigned fixed=0, unsigned flags=0 ) const {
        if (fixed == n) {
            return a[flags]; 
        }else{
            double a0 = valueAt(t, fixed+1, flags);
            double a1 = valueAt(t, fixed+1, flags|(1<<fixed));
            return lerpppp( t[fixed], a0, a1 );
        }
    }
    inline double operator()(double t[]) const { return valueAt(t); }

    //defined in sbasisN.h
    inline SBasisN<n> toSBasisN() const;

    inline OptInterval bounds_exact() const {
        double min=a[0], max=a[0];
        for (unsigned i=1; i < (1<<n); i++){
            if (a[i] < min) min = a[i];
            if (a[i] > max) max = a[i];
        }
        return Interval(min, max); 
    }
    inline OptInterval bounds_fast() const { return bounds_exact(); }
    //inline OptInterval bounds_local(double u, double v) const { return Interval(valueAt(u), valueAt(v)); }
};

//LinearN<0> are doubles. Specialize them out.
template<>
class LinearN<0>{
public:
    double d;
    LinearN () {}
    LinearN(double d) :d(d) {}
    operator double() const { return d; }
    double operator[](const int i) const {assert (i==0); return d;}
    double& operator[](const int i) {assert (i==0); return d;}
    typedef double output_type;
    unsigned input_dim() const {return 0;}
    inline bool isZero() const { return d==0; }
    inline bool isConstant() const { return true; }
    inline bool isFinite() const { return std::isfinite(d); }
};

//LinearN<1> are usual Linear. Allow conversion.
Linear toLinear(LinearN<1> f){
    return Linear(f[0],f[1]);
}



//inline Linear reverse(Linear const &a) { return Linear(a[1], a[0]); }

//IMPL: AddableConcept
template<unsigned n>
inline LinearN<n> operator+(LinearN<n> const & a, LinearN<n> const & b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] + b[i];
    }
    return res;
}
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const & a, LinearN<n> const & b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] - b[i];
    }
    return res;
}
template<unsigned n>
inline LinearN<n>& operator+=(LinearN<n> & a, LinearN<n> const & b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] += b[i];
    }
    return a;
}
template<unsigned n>
inline LinearN<n>& operator-=(LinearN<n> & a, LinearN<n> const & b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] -= b[i];
    }
    return a;
}
//IMPL: OffsetableConcept
template<unsigned n>
inline LinearN<n> operator+(LinearN<n> const & a, double b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] + b;
    }
    return res;
}
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const & a, double b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] - b;
    }
    return res;
}
template<unsigned n>
inline LinearN<n>& operator+=(LinearN<n> & a, double b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] += b;
    }
    return a;
}
template<unsigned n>
inline LinearN<n>& operator-=(LinearN<n> & a, double b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] -= b;
    }
    return a;
}
//IMPL: boost::EqualityComparableConcept
template<unsigned n>
inline bool operator==(LinearN<n> const & a, LinearN<n> const & b) {
    for (unsigned i=0; i < (1<<n); i++){
        if (a[i] != b[i]) return false;
    }
    return true;
}
template<unsigned n>
inline bool operator!=(LinearN<n> const & a, LinearN<n> const & b) {
    return !(a==b);
}
//IMPL: ScalableConcept
template<unsigned n>
inline LinearN<n> operator-(LinearN<n> const &a) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = -a[i];
    }
    return res;
}
template<unsigned n>
inline LinearN<n> operator*(LinearN<n> const & a, double b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] * b;
    }
    return res;
}
template<unsigned n>
inline LinearN<n> operator/(LinearN<n> const & a, double b) {
    LinearN<n> res;
    for (unsigned i=0; i < (1<<n); i++){
        res[i] = a[i] / b;
    }
    return res;
}
template<unsigned n>
inline LinearN<n> operator*=(LinearN<n> & a, double b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] *= b;
    }
    return a;
}
template<unsigned n>
inline LinearN<n> operator/=(LinearN<n> & a, double b) {
    for (unsigned i=0; i < (1<<n); i++){
        a[i] /= b;
    }
    return a;
}

template<unsigned n>
void setToVariable(LinearN<n> &x, unsigned k){;
    x = LinearN<n>(0.);
    unsigned mask = 1<<k;
    for (unsigned i=0; i < (1<<n); i++){
        if ( i & mask ) x[i] = 1;
    }
}

template<unsigned n>
inline std::ostream &operator<< (std::ostream &out_file, const LinearN<n> &bo) {
    out_file << "{";
    for (unsigned i=0; i < (1<<n); i++){
        out_file << bo[i]<<(i == (1<<n)-1 ? "}" : ",");
    }
    return out_file;
}


}
#endif //SEEN_LINEAR_H

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :