summaryrefslogtreecommitdiffstats
path: root/src/2geom/conic_section_clipper_impl.cpp
blob: 8b0445ef6cee340895c823abb797f0b6fa84b4ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/* Conic section clipping with respect to a rectangle
 *
 * Authors:
 *      Marco Cecchetti <mrcekets at gmail>
 *
 * Copyright 2009  authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#include <optional>

#ifndef CLIP_WITH_CAIRO_SUPPORT
    #include <2geom/conic_section_clipper.h>
#endif

namespace Geom
{

/*
 *  Find rectangle-conic crossing points. They are returned in the
 *  "crossing_points" parameter.
 *  The method returns true if the conic section intersects at least one
 *  of the four lines passing through rectangle edges, else it returns false.
 */
bool CLIPPER_CLASS::intersect (std::vector<Point> & crossing_points) const
{
    crossing_points.clear();

    std::vector<double> rts;
    std::vector<Point> cpts;
    // rectangle corners
    enum {TOP_LEFT, TOP_RIGHT, BOTTOM_RIGHT, BOTTOM_LEFT};

    bool no_crossing = true;

    // right edge
    cs.roots (rts, R.right(), X);
    if (!rts.empty())
    {
        no_crossing = false;
        DBGPRINT ("CLIP: right: rts[0] = ", rts[0])
        DBGPRINTIF ((rts.size() == 2), "CLIP: right: rts[1] = ", rts[1])

        Point corner1 = R.corner(TOP_RIGHT);
        Point corner2 = R.corner(BOTTOM_RIGHT);

        for (double rt : rts)
        {
            if (rt < R.top() || rt > R.bottom())  continue;
            Point P (R.right(), rt);
            if (are_near (P, corner1))
                P = corner1;
            else if (are_near (P, corner2))
                P = corner2;

            cpts.push_back (P);
        }
        if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
        {
            cpts[0] = middle_point (cpts[0], cpts[1]);
            cpts.pop_back();
        }
    }

    // top edge
    cs.roots (rts, R.top(), Y);
    if (!rts.empty())
    {
        no_crossing = false;
        DBGPRINT ("CLIP: top: rts[0] = ", rts[0])
        DBGPRINTIF ((rts.size() == 2), "CLIP: top: rts[1] = ", rts[1])

        Point corner1 = R.corner(TOP_RIGHT);
        Point corner2 = R.corner(TOP_LEFT);

        for (double rt : rts)
        {
            if (rt < R.left() || rt > R.right())  continue;
            Point P (rt, R.top());
            if (are_near (P, corner1))
                P = corner1;
            else if (are_near (P, corner2))
                P = corner2;

            cpts.push_back (P);
        }
        if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
        {
            cpts[0] = middle_point (cpts[0], cpts[1]);
            cpts.pop_back();
        }
    }

    // left edge
    cs.roots (rts, R.left(), X);
    if (!rts.empty())
    {
        no_crossing = false;
        DBGPRINT ("CLIP: left: rts[0] = ", rts[0])
        DBGPRINTIF ((rts.size() == 2), "CLIP: left: rts[1] = ", rts[1])

        Point corner1 = R.corner(TOP_LEFT);
        Point corner2 = R.corner(BOTTOM_LEFT);

        for (double rt : rts)
        {
            if (rt < R.top() || rt > R.bottom())  continue;
            Point P (R.left(), rt);
            if (are_near (P, corner1))
                P = corner1;
            else if (are_near (P, corner2))
                P = corner2;

            cpts.push_back (P);
        }
        if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
        {
            cpts[0] = middle_point (cpts[0], cpts[1]);
            cpts.pop_back();
        }
    }

    // bottom edge
    cs.roots (rts, R.bottom(), Y);
    if (!rts.empty())
    {
        no_crossing = false;
        DBGPRINT ("CLIP: bottom: rts[0] = ", rts[0])
        DBGPRINTIF ((rts.size() == 2), "CLIP: bottom: rts[1] = ", rts[1])

        Point corner1 = R.corner(BOTTOM_RIGHT);
        Point corner2 = R.corner(BOTTOM_LEFT);

        for (double rt : rts)
        {
            if (rt < R.left() || rt > R.right())  continue;
            Point P (rt, R.bottom());
            if (are_near (P, corner1))
                P = corner1;
            else if (are_near (P, corner2))
                P = corner2;

            cpts.push_back (P);
        }
        if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
        {
            cpts[0] = middle_point (cpts[0], cpts[1]);
            cpts.pop_back();
        }
    }

    DBGPRINT ("CLIP: intersect: crossing_points.size (with duplicates) = ",
              cpts.size())

    // remove duplicates
    std::sort (cpts.begin(), cpts.end(), Point::LexLess<X>());
    cpts.erase (std::unique (cpts.begin(), cpts.end()), cpts.end());


    // Order crossing points on the rectangle edge clockwise, so two consecutive
    // crossing points would be the end points of a conic arc all inside or all
    // outside the rectangle.
    std::map<double, size_t> cp_angles;
    for (size_t i = 0; i < cpts.size(); ++i)
    {
        cp_angles.insert (std::make_pair (cs.angle_at (cpts[i]), i));
    }

    std::map<double, size_t>::const_iterator pos;
    for (pos = cp_angles.begin(); pos != cp_angles.end(); ++pos)
    {
        crossing_points.push_back (cpts[pos->second]);
    }

    DBGPRINT ("CLIP: intersect: crossing_points.size = ", crossing_points.size())
    DBGPRINTCOLL ("CLIP: intersect: crossing_points:", crossing_points)

    return no_crossing;
}  // end function intersect



inline
double signed_triangle_area (Point const& p1, Point const& p2, Point const& p3)
{
    return (cross(p2, p3) - cross(p1, p3) + cross(p1, p2));
}


/*
 * Test if two crossing points are the end points of a conic arc inner to the
 * rectangle. In such a case the method returns true, else it returns false.
 * Moreover by the parameter "M" it returns a point inner to the conic arc
 * with the given end-points.
 *
 */
bool CLIPPER_CLASS::are_paired (Point& M, const Point & P1, const Point & P2) const
{
    using std::swap;

    /*
     *  we looks for the points on the conic whose tangent is parallel to the
     *  arc chord P1P2, they will be extrema of the conic arc P1P2 wrt the
     *  direction orthogonal to the chord
     */
    Point dir = P2 - P1;
    DBGPRINT ("CLIP: are_paired: first point:  ", P1)
    DBGPRINT ("CLIP: are_paired: second point: ", P2)

    double grad0 = 2 * cs.coeff(0) * dir[0] + cs.coeff(1) * dir[1];
    double grad1 = cs.coeff(1) * dir[0] + 2 * cs.coeff(2) * dir[1];
    double grad2 = cs.coeff(3) * dir[0] + cs.coeff(4) * dir[1];


    /*
     *  such points are found intersecating the conic section with the line
     *  orthogonal to "grad": the derivative wrt the "dir" direction
     */
    Line gl (grad0, grad1, grad2);
    std::vector<double> rts;
    rts = cs.roots (gl);
    DBGPRINT ("CLIP: are_paired: extrema: rts.size() = ", rts.size())



    std::vector<Point> extrema;
    for (double rt : rts)
    {
        extrema.push_back (gl.pointAt (rt));
    }

    if (extrema.size() == 2)
    {
        // in case we are dealing with an hyperbola we could have two extrema
        // on the same side wrt the line passing through P1 and P2, but
        // only the nearer extremum is on the arc P1P2
        double side0 = signed_triangle_area (P1, extrema[0], P2);
        double side1 = signed_triangle_area (P1, extrema[1], P2);

        if (sgn(side0) == sgn(side1))
        {
            if (std::fabs(side0) > std::fabs(side1)) {
                swap(extrema[0], extrema[1]);
            }
            extrema.pop_back();
        }
    }

    std::vector<Point> inner_points;
    for (auto & i : extrema)
    {
        if (!R.contains (i))  continue;
        // in case we are dealing with an ellipse tangent to two orthogonal
        // rectangle edges we could have two extrema on opposite sides wrt the
        // line passing through P1P2 and both inner the rectangle; anyway, since
        // we order the crossing points clockwise we have only one extremum
        // that follows such an ordering wrt P1 and P2;
        // remark: the other arc will be selected when we test for the arc P2P1.
        double P1angle = cs.angle_at (P1);
        double P2angle = cs.angle_at (P2);
        double Qangle = cs.angle_at (i);
        if (P1angle < P2angle && !(P1angle <= Qangle && Qangle <= P2angle))
            continue;
        if (P1angle > P2angle && !(P1angle <= Qangle || Qangle <= P2angle))
            continue;

        inner_points.push_back (i);
    }

    if (inner_points.size() > 1)
    {
        THROW_LOGICALERROR ("conic section clipper: "
                            "more than one extremum found");
    }
    else if (inner_points.size() == 1)
    {
        M = inner_points.front();
        return true;
    }

    return false;
}


/*
 *  Pair the points contained in the "crossing_points" vector; the paired points
 *  are put in the paired_points vector so that given a point with an even index
 *  and the next one they are the end points of a conic arc that is inner to the
 *  rectangle. In the "inner_points" are returned points that are inner to the
 *  arc, where the inner point with index k is related to the arc with end
 *  points with indexes 2k, 2k+1. In case there are unpaired points the are put
 *  in to the "single_points" vector.
 */
void CLIPPER_CLASS::pairing (std::vector<Point> & paired_points,
                       std::vector<Point> & inner_points,
                       const std::vector<Point> & crossing_points)
{
    paired_points.clear();
    paired_points.reserve (crossing_points.size());

    inner_points.clear();
    inner_points.reserve (crossing_points.size() / 2);

    single_points.clear();

    // to keep trace of which crossing points have been paired
    std::vector<bool> paired (crossing_points.size(), false);

    Point M;

    // by the way we have ordered crossing points we need to test one point wrt
    // the next point only, for pairing; moreover the last point need to be
    // tested wrt the first point; pay attention: one point can be paired both
    // with the previous and the next one: this is not an error, think of
    // crossing points that are tangent to the rectangle edge (and inner);
    for (size_t i = 0; i < crossing_points.size(); ++i)
    {
        // we need to test the last point wrt the first one
        size_t j = (i == 0) ? (crossing_points.size() - 1) : (i-1);
        if (are_paired (M, crossing_points[j], crossing_points[i]))
        {
#ifdef CLIP_WITH_CAIRO_SUPPORT
            cairo_set_source_rgba(cr, 0.1, 0.1, 0.8, 1.0);
            draw_line_seg (cr, crossing_points[j], crossing_points[i]);
            draw_handle (cr, crossing_points[j]);
            draw_handle (cr, crossing_points[i]);
            draw_handle (cr, M);
            cairo_stroke (cr);
#endif
            paired[j] = paired[i] = true;
            paired_points.push_back (crossing_points[j]);
            paired_points.push_back (crossing_points[i]);
            inner_points.push_back (M);
        }
    }

    // some point are not paired with any point, e.g. a crossing point tangent
    // to a rectangle edge but with the conic arc outside the rectangle
    for (size_t i = 0; i < paired.size(); ++i)
    {
        if (!paired[i])
            single_points.push_back (crossing_points[i]);
    }
    DBGPRINTCOLL ("single_points", single_points)

}


/*
 *  This method clip the section conic wrt the rectangle and returns the inner
 *  conic arcs as a vector of RatQuad objects by the "arcs" parameter.
 */
bool CLIPPER_CLASS::clip (std::vector<RatQuad> & arcs)
{
    using std::swap;

    arcs.clear();
    std::vector<Point> crossing_points;
    std::vector<Point> paired_points;
    std::vector<Point> inner_points;

    Line l1, l2;
    if (cs.decompose (l1, l2))
    {
        bool inner_empty = true;

        DBGINFO ("CLIP: degenerate section conic")

        std::optional<LineSegment> ls1 = Geom::clip (l1, R);
        if (ls1)
        {
            if (ls1->isDegenerate())
            {
                single_points.push_back (ls1->initialPoint());
            }
            else
            {
                Point M = middle_point (*ls1);
                arcs.emplace_back(ls1->initialPoint(), M, ls1->finalPoint(), 1);
                inner_empty = false;
            }
        }

        std::optional<LineSegment> ls2 = Geom::clip (l2, R);
        if (ls2)
        {
            if (ls2->isDegenerate())
            {
                single_points.push_back (ls2->initialPoint());
            }
            else
            {
                Point M = middle_point (*ls2);
                arcs.emplace_back(ls2->initialPoint(), M, ls2->finalPoint(), 1);
                inner_empty = false;
            }
        }

        return !inner_empty;
    }


    bool no_crossing = intersect (crossing_points);

    // if the only crossing point is a rectangle corner than the section conic
    // is all outside the rectangle
    if (crossing_points.size() == 1)
    {
        for (size_t i = 0; i < 4; ++i)
        {
            if (crossing_points[0] == R.corner(i))
            {
                single_points.push_back (R.corner(i));
                return false;
            }
        }
    }

    // if the conic does not cross any line passing through a rectangle edge or
    // it is tangent to only one edge then it is an ellipse
    if (no_crossing
            || (crossing_points.size() == 1 && single_points.empty()))
    {
        // if the ellipse centre is inside the rectangle
        // then so it is the ellipse
        std::optional<Point> c = cs.centre();
        if (c && R.contains (*c))
        {
            DBGPRINT ("CLIP: ellipse with centre", *c)
            // we set paired and inner points by finding the ellipse
            // intersection with its axes; this choice let us having a more
            // accurate RatQuad parametric arc
            paired_points.resize(4);
            std::vector<double> rts;
            double angle = cs.axis_angle();
            Line axis1 (*c, angle);
            rts = cs.roots (axis1);
            if (rts[0] > rts[1])  swap (rts[0], rts[1]);
            paired_points[0] = axis1.pointAt (rts[0]);
            paired_points[1] = axis1.pointAt (rts[1]);
            paired_points[2] = paired_points[1];
            paired_points[3] = paired_points[0];
            Line axis2 (*c, angle + M_PI/2);
            rts = cs.roots (axis2);
            if (rts[0] > rts[1])  swap (rts[0], rts[1]);
            inner_points.push_back (axis2.pointAt (rts[0]));
            inner_points.push_back (axis2.pointAt (rts[1]));
        }
        else if (crossing_points.size() == 1)
        {
            // so we have a tangent crossing point but the ellipse is outside
            // the rectangle
            single_points.push_back (crossing_points[0]);
        }
    }
    else
    {
        // in case the conic section intersects any of the four lines passing
        // through the rectangle edges but it does not cross any rectangle edge
        // then the conic is all outer of the rectangle
        if (crossing_points.empty()) return false;
        // else we need to pair crossing points, and to find an arc inner point
        // in order to generate a RatQuad object
        pairing (paired_points, inner_points, crossing_points);
    }


    // we split arcs until the end-point distance is less than a given value,
    // in this way the RatQuad parametrization is enough accurate
    std::list<Point> points;
    std::list<Point>::iterator sp, ip, fp;
    for (size_t i = 0, j = 0; i < paired_points.size(); i += 2, ++j)
    {
        //DBGPRINT ("CLIP: clip: P = ", paired_points[i])
        //DBGPRINT ("CLIP: clip: M = ", inner_points[j])
        //DBGPRINT ("CLIP: clip: Q = ", paired_points[i+1])

        // in case inner point and end points are near is better not split
        // the conic arc further or we could get a degenerate RatQuad object
        if (are_near (paired_points[i], inner_points[j], 1e-4)
                && are_near (paired_points[i+1], inner_points[j], 1e-4))
        {
            arcs.push_back (cs.toRatQuad (paired_points[i],
                                          inner_points[j],
                                          paired_points[i+1]));
            continue;
        }

        // populate the list
        points.push_back(paired_points[i]);
        points.push_back(inner_points[j]);
        points.push_back(paired_points[i+1]);

        // an initial unconditioned splitting
        sp = points.begin();
        ip = sp; ++ip;
        fp = ip; ++fp;
        rsplit (points, sp, ip, size_t(1u));
        rsplit (points, ip, fp, size_t(1u));

        // length conditioned split
        sp = points.begin();
        fp = sp; ++fp;
        while (fp != points.end())
        {
            rsplit (points, sp, fp, 100.0);
            sp = fp;
            ++fp;
        }

        sp = points.begin();
        ip = sp; ++ip;
        fp = ip; ++fp;
        //DBGPRINT ("CLIP: points ", j)
        //DBGPRINT ("CLIP: points.size = ", points.size())
        while (ip != points.end())
        {
#ifdef CLIP_WITH_CAIRO_SUPPORT
            cairo_set_source_rgba(cr, 0.1, 0.1, 0.8, 1.0);
            draw_handle (cr, *sp);
            draw_handle (cr, *ip);
            cairo_stroke (cr);
#endif
            //std::cerr << "CLIP: arc: [" << *sp << ", " << *ip << ", "
            //          << *fp << "]" << std::endl;
            arcs.push_back (cs.toRatQuad (*sp, *ip, *fp));
            sp = fp;
            ip = sp; ++ip;
            fp = ip; ++fp;
        }
        points.clear();
    }
    DBGPRINT ("CLIP: arcs.size() = ", arcs.size())
    return (arcs.size() != 0);
} // end method clip


} // end namespace geom




/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :