1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
#include <2geom/crossing.h>
#include <2geom/path.h>
namespace Geom {
//bool edge_involved_in(Edge const &e, Crossing const &c) {
// if(e.path == c.a) {
// if(e.time == c.ta) return true;
// } else if(e.path == c.b) {
// if(e.time == c.tb) return true;
// }
// return false;
//}
double wrap_dist(double from, double to, double size, bool rev) {
if(rev) {
if(to > from) {
return from + (size - to);
} else {
return from - to;
}
} else {
if(to < from) {
return to + (size - from);
} else {
return to - from;
}
}
}
/*
CrossingGraph create_crossing_graph(PathVector const &p, Crossings const &crs) {
std::vector<Point> locs;
CrossingGraph ret;
for(unsigned i = 0; i < crs.size(); i++) {
Point pnt = p[crs[i].a].pointAt(crs[i].ta);
unsigned j = 0;
for(; j < locs.size(); j++) {
if(are_near(pnt, locs[j])) break;
}
if(j == locs.size()) {
ret.push_back(CrossingNode());
locs.push_back(pnt);
}
ret[j].add_edge(Edge(crs[i].a, crs[i].ta, false));
ret[j].add_edge(Edge(crs[i].a, crs[i].ta, true));
ret[j].add_edge(Edge(crs[i].b, crs[i].tb, false));
ret[j].add_edge(Edge(crs[i].b, crs[i].tb, true));
}
for(unsigned i = 0; i < ret.size(); i++) {
for(unsigned j = 0; j < ret[i].edges.size(); j++) {
unsigned pth = ret[i].edges[j].path;
double t = ret[i].edges[j].time;
bool rev = ret[i].edges[j].reverse;
double size = p[pth].size()+1;
double best = size;
unsigned bix = ret.size();
for(unsigned k = 0; k < ret.size(); k++) {
for(unsigned l = 0; l < ret[k].edges.size(); l++) {
if(ret[i].edges[j].path == ret[k].edges[l].path && (k != i || l != j)) {
double d = wrap_dist(t, ret[i].edges[j].time, size, rev);
if(d < best) {
best = d;
bix = k;
}
}
}
}
if(bix == ret.size()) {
std::cout << "couldn't find an adequate next-crossing node";
bix = i;
}
ret[i].edges[j].node = bix;
}
}
return ret;
*/
/* Various incoherent code bits
// list of sets of edges, each set corresponding to those emanating from the path
CrossingGraph ret;
std::vector<Edge> edges(crs.size());
std::vector<std::vector<bool> > used;
unsigned i, j;
do {
first_false(used, i, j);
CrossingNode cn;
do {
unsigned di = i, dj = j;
crossing_dual(di, dj);
if(!used[di,dj]) {
}
}
} while(!used[i,j])
for(unsigned j = 0; j < crs[i].size(); j++) {
edges.push_back(Edge(i, crs[i][j].getOtherTime(i), false));
edges.push_back(Edge(i, crs[i][j].getOtherTime(i), true));
}
std::sort(edges.begin(), edges.end(), TimeOrder());
for(unsigned j = 0; j < edges.size(); ) {
CrossingNode cn;
double t = edges[j].time;
while(j < edges.size() && are_near(edges[j].time, t)) {
cn.edges.push_back(edges[j]);
}
}
*/
//}
// provide specific method for Paths because paths can be closed or open. Path::size() is named somewhat wrong...
std::vector<Rect> bounds(Path const &a) {
std::vector<Rect> rs;
for (unsigned i = 0; i < a.size_default(); i++) {
OptRect bb = a[i].boundsFast();
if (bb) {
rs.push_back(*bb);
}
}
return rs;
}
void merge_crossings(Crossings &a, Crossings &b, unsigned i) {
Crossings n;
sort_crossings(b, i);
n.resize(a.size() + b.size());
std::merge(a.begin(), a.end(), b.begin(), b.end(), n.begin(), CrossingOrder(i));
a = n;
}
void offset_crossings(Crossings &cr, double a, double b) {
for(auto & i : cr) {
i.ta += a;
i.tb += b;
}
}
Crossings reverse_ta(Crossings const &cr, std::vector<double> max) {
Crossings ret;
for(const auto & i : cr) {
double mx = max[i.a];
ret.push_back(Crossing(i.ta > mx+0.01 ? (1 - (i.ta - mx) + mx) : mx - i.ta,
i.tb, !i.dir));
}
return ret;
}
Crossings reverse_tb(Crossings const &cr, unsigned split, std::vector<double> max) {
Crossings ret;
for(const auto & i : cr) {
double mx = max[i.b - split];
ret.push_back(Crossing(i.ta, i.tb > mx+0.01 ? (1 - (i.tb - mx) + mx) : mx - i.tb,
!i.dir));
}
return ret;
}
CrossingSet reverse_ta(CrossingSet const &cr, unsigned split, std::vector<double> max) {
CrossingSet ret;
for(unsigned i = 0; i < cr.size(); i++) {
Crossings res = reverse_ta(cr[i], max);
if(i < split) std::reverse(res.begin(), res.end());
ret.push_back(res);
}
return ret;
}
CrossingSet reverse_tb(CrossingSet const &cr, unsigned split, std::vector<double> max) {
CrossingSet ret;
for(unsigned i = 0; i < cr.size(); i++) {
Crossings res = reverse_tb(cr[i], split, max);
if(i >= split) std::reverse(res.begin(), res.end());
ret.push_back(res);
}
return ret;
}
// Delete any duplicates in a vector of crossings
// A crossing is considered to be a duplicate when it has both t_a and t_b near to another crossing's t_a and t_b
// For example, duplicates will be found when calculating the intersections of a linesegment with a polygon, if the
// endpoint of that line coincides with a cusp node of the polygon. In that case, an intersection will be found of
// the linesegment with each of the polygon's linesegments extending from the cusp node (i.e. two intersections)
void delete_duplicates(Crossings &crs) {
Crossings::reverse_iterator rit = crs.rbegin();
for (rit = crs.rbegin(); rit!= crs.rend(); ++rit) {
Crossings::reverse_iterator rit2 = rit;
while (++rit2 != crs.rend()) {
if (Geom::are_near((*rit).ta, (*rit2).ta) && Geom::are_near((*rit).tb, (*rit2).tb)) {
crs.erase((rit + 1).base()); // This +1 and .base() construction is needed to convert to a regular iterator
break; // out of while loop, and continue with next iteration of for loop
}
}
}
}
void clean(Crossings &/*cr_a*/, Crossings &/*cr_b*/) {
/* if(cr_a.empty()) return;
//Remove anything with dupes
for(Eraser<Crossings> i(&cr_a); !i.ended(); i++) {
const Crossing cur = *i;
Eraser<Crossings> next(i);
next++;
if(are_near(cur, *next)) {
cr_b.erase(std::find(cr_b.begin(), cr_b.end(), cur));
for(i = next; near(*i, cur); i++) {
cr_b.erase(std::find(cr_b.begin(), cr_b.end(), *i));
}
continue;
}
}
*/
}
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|