1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
/*
* Infinite Straight Line
*
* Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
* Nathan Hurst
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <algorithm>
#include <optional>
#include <2geom/line.h>
#include <2geom/math-utils.h>
namespace Geom
{
/**
* @class Line
* @brief Infinite line on a plane.
*
* A line is specified as two points through which it passes. Lines can be interpreted as functions
* \f$ f: (-\infty, \infty) \to \mathbb{R}^2\f$. Zero corresponds to the first (origin) point,
* one corresponds to the second (final) point. All other points are computed as a linear
* interpolation between those two: \f$p = (1-t) a + t b\f$. Many such functions have the same
* image and therefore represent the same lines; for example, adding \f$b-a\f$ to both points
* yields the same line.
*
* 2Geom can represent the same line in many ways by design: using a different representation
* would lead to precision loss. For example, a line from (1e30, 1e30) to (10,0) would actually
* evaluate to (0,0) at time 1 if it was stored as origin and normalized versor,
* or origin and angle.
*
* @ingroup Primitives
*/
/** @brief Set the line by solving the line equation.
* A line is a set of points that satisfies the line equation
* \f$Ax + By + C = 0\f$. This function changes the line so that its points
* satisfy the line equation with the given coefficients. */
void Line::setCoefficients (Coord a, Coord b, Coord c)
{
// degenerate case
if (a == 0 && b == 0) {
if (c != 0) {
THROW_LOGICALERROR("the passed coefficients give the empty set");
}
_initial = Point(0,0);
_final = Point(0,0);
return;
}
// The way final / initial points are set based on coefficients is somewhat unusual.
// This is done to make sure that calling coefficients() will give back
// (almost) the same values.
// vertical case
if (a == 0) {
// b must be nonzero
_initial = Point(-b/2, -c / b);
_final = _initial;
_final[X] = b/2;
return;
}
// horizontal case
if (b == 0) {
_initial = Point(-c / a, a/2);
_final = _initial;
_final[Y] = -a/2;
return;
}
// This gives reasonable results regardless of the magnitudes of a, b and c.
_initial = Point(-b/2,a/2);
_final = Point(b/2,-a/2);
Point offset(-c/(2*a), -c/(2*b));
_initial += offset;
_final += offset;
}
void Line::coefficients(Coord &a, Coord &b, Coord &c) const
{
Point v = vector().cw();
a = v[X];
b = v[Y];
c = cross(_initial, _final);
}
/** @brief Get the implicit line equation coefficients.
* Note that conversion to implicit form always causes loss of
* precision when dealing with lines that start far from the origin
* and end very close to it. It is recommended to normalize the line
* before converting it to implicit form.
* @return Vector with three values corresponding to the A, B and C
* coefficients of the line equation for this line. */
std::vector<Coord> Line::coefficients() const
{
std::vector<Coord> c(3);
coefficients(c[0], c[1], c[2]);
return c;
}
/** @brief Find intersection with an axis-aligned line.
* @param v Coordinate of the axis-aligned line
* @param d Which axis the coordinate is on. X means a vertical line, Y means a horizontal line.
* @return Time values at which this line intersects the query line. */
std::vector<Coord> Line::roots(Coord v, Dim2 d) const {
std::vector<Coord> result;
Coord r = root(v, d);
if (std::isfinite(r)) {
result.push_back(r);
}
return result;
}
Coord Line::root(Coord v, Dim2 d) const
{
assert(d == X || d == Y);
Point vs = vector();
if (vs[d] != 0) {
return (v - _initial[d]) / vs[d];
} else {
return nan("");
}
}
std::optional<LineSegment> Line::clip(Rect const &r) const
{
Point v = vector();
// handle horizontal and vertical lines first,
// since the root-based code below will break for them
for (unsigned i = 0; i < 2; ++i) {
Dim2 d = (Dim2) i;
Dim2 o = other_dimension(d);
if (v[d] != 0) continue;
if (r[d].contains(_initial[d])) {
Point a, b;
a[o] = r[o].min();
b[o] = r[o].max();
a[d] = b[d] = _initial[d];
if (v[o] > 0) {
return LineSegment(a, b);
} else {
return LineSegment(b, a);
}
} else {
return std::nullopt;
}
}
Interval xpart(root(r[X].min(), X), root(r[X].max(), X));
Interval ypart(root(r[Y].min(), Y), root(r[Y].max(), Y));
if (!xpart.isFinite() || !ypart.isFinite()) {
return std::nullopt;
}
OptInterval common = xpart & ypart;
if (common) {
Point p1 = pointAt(common->min()), p2 = pointAt(common->max());
LineSegment result(r.clamp(p1), r.clamp(p2));
return result;
} else {
return std::nullopt;
}
/* old implementation using coefficients:
if (fabs(b) > fabs(a)) {
p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p0[Y] < r[Y].min())
p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p0[Y] > r[Y].max())
p0 = Point((-c - b*r[Y].max())/a, r[Y].max());
p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
if (p1[Y] < r[Y].min())
p1 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p1[Y] > r[Y].max())
p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
} else {
p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p0[X] < r[X].min())
p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p0[X] > r[X].max())
p0 = Point(r[X].max(), (-c - a*r[X].max())/b);
p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
if (p1[X] < r[X].min())
p1 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p1[X] > r[X].max())
p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
}
return LineSegment(p0, p1); */
}
/** @brief Get a time value corresponding to a point.
* @param p Point on the line. If the point is not on the line,
* the returned value will be meaningless.
* @return Time value t such that \f$f(t) = p\f$.
* @see timeAtProjection */
Coord Line::timeAt(Point const &p) const
{
Point v = vector();
// degenerate case
if (v[X] == 0 && v[Y] == 0) {
return 0;
}
// use the coordinate that will give better precision
if (fabs(v[X]) > fabs(v[Y])) {
return (p[X] - _initial[X]) / v[X];
} else {
return (p[Y] - _initial[Y]) / v[Y];
}
}
/** @brief Create a transformation that maps one line to another.
* This will return a transformation \f$A\f$ such that
* \f$L_1(t) \cdot A = L_2(t)\f$, where \f$L_1\f$ is this line
* and \f$L_2\f$ is the line passed as the parameter. The returned
* transformation will preserve angles. */
Affine Line::transformTo(Line const &other) const
{
Affine result = Translate(-_initial);
result *= Rotate(angle_between(vector(), other.vector()));
result *= Scale(other.vector().length() / vector().length());
result *= Translate(other._initial);
return result;
}
std::vector<ShapeIntersection> Line::intersect(Line const &other) const
{
std::vector<ShapeIntersection> result;
Point v1 = vector();
Point v2 = other.vector();
Coord cp = cross(v1, v2);
if (cp == 0) return result;
Point odiff = other.initialPoint() - initialPoint();
Coord t1 = cross(odiff, v2) / cp;
Coord t2 = cross(odiff, v1) / cp;
result.emplace_back(*this, other, t1, t2);
return result;
}
std::vector<ShapeIntersection> Line::intersect(Ray const &r) const
{
Line other(r);
std::vector<ShapeIntersection> result = intersect(other);
filter_ray_intersections(result, false, true);
return result;
}
std::vector<ShapeIntersection> Line::intersect(LineSegment const &ls) const
{
Line other(ls);
std::vector<ShapeIntersection> result = intersect(other);
filter_line_segment_intersections(result, false, true);
return result;
}
void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
{
Interval unit(0, 1);
std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
while (i != last) {
if ((a && !unit.contains(i->first)) || (b && !unit.contains(i->second))) {
xs.erase((++i).base());
} else {
++i;
}
}
}
void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
{
Interval unit(0, 1);
std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
while (i != last) {
if ((a && i->first < 0) || (b && i->second < 0)) {
xs.erase((++i).base());
} else {
++i;
}
}
}
namespace detail
{
inline
OptCrossing intersection_impl(Point const &v1, Point const &o1,
Point const &v2, Point const &o2)
{
Coord cp = cross(v1, v2);
if (cp == 0) return OptCrossing();
Point odiff = o2 - o1;
Crossing c;
c.ta = cross(odiff, v2) / cp;
c.tb = cross(odiff, v1) / cp;
return c;
}
OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i)
{
using std::swap;
OptCrossing crossing =
intersection_impl(r1.vector(), r1.origin(),
l2.vector(), l2.origin() );
if (crossing) {
if (crossing->ta < 0) {
return OptCrossing();
} else {
if (i != 0) {
swap(crossing->ta, crossing->tb);
}
return crossing;
}
}
if (are_near(r1.origin(), l2)) {
THROW_INFINITESOLUTIONS();
} else {
return OptCrossing();
}
}
OptCrossing intersection_impl( LineSegment const& ls1,
Line const& l2,
unsigned int i )
{
using std::swap;
OptCrossing crossing =
intersection_impl(ls1.finalPoint() - ls1.initialPoint(),
ls1.initialPoint(),
l2.vector(),
l2.origin() );
if (crossing) {
if ( crossing->getTime(0) < 0
|| crossing->getTime(0) > 1 )
{
return OptCrossing();
} else {
if (i != 0) {
swap((*crossing).ta, (*crossing).tb);
}
return crossing;
}
}
if (are_near(ls1.initialPoint(), l2)) {
THROW_INFINITESOLUTIONS();
} else {
return OptCrossing();
}
}
OptCrossing intersection_impl( LineSegment const& ls1,
Ray const& r2,
unsigned int i )
{
using std::swap;
Point direction = ls1.finalPoint() - ls1.initialPoint();
OptCrossing crossing =
intersection_impl( direction,
ls1.initialPoint(),
r2.vector(),
r2.origin() );
if (crossing) {
if ( (crossing->getTime(0) < 0)
|| (crossing->getTime(0) > 1)
|| (crossing->getTime(1) < 0) )
{
return OptCrossing();
} else {
if (i != 0) {
swap(crossing->ta, crossing->tb);
}
return crossing;
}
}
if ( are_near(r2.origin(), ls1) ) {
bool eqvs = (dot(direction, r2.vector()) > 0);
if ( are_near(ls1.initialPoint(), r2.origin()) && !eqvs) {
crossing->ta = crossing->tb = 0;
return crossing;
} else if ( are_near(ls1.finalPoint(), r2.origin()) && eqvs) {
if (i == 0) {
crossing->ta = 1;
crossing->tb = 0;
} else {
crossing->ta = 0;
crossing->tb = 1;
}
return crossing;
} else {
THROW_INFINITESOLUTIONS();
}
} else if ( are_near(ls1.initialPoint(), r2) ) {
THROW_INFINITESOLUTIONS();
} else {
OptCrossing no_crossing;
return no_crossing;
}
}
} // end namespace detail
OptCrossing intersection(Line const& l1, Line const& l2)
{
OptCrossing c = detail::intersection_impl(
l1.vector(), l1.origin(),
l2.vector(), l2.origin());
if (!c && distance(l1.origin(), l2) == 0) {
THROW_INFINITESOLUTIONS();
}
return c;
}
OptCrossing intersection(Ray const& r1, Ray const& r2)
{
OptCrossing crossing =
detail::intersection_impl( r1.vector(), r1.origin(),
r2.vector(), r2.origin() );
if (crossing)
{
if ( crossing->ta < 0
|| crossing->tb < 0 )
{
OptCrossing no_crossing;
return no_crossing;
}
else
{
return crossing;
}
}
if ( are_near(r1.origin(), r2) || are_near(r2.origin(), r1) )
{
if ( are_near(r1.origin(), r2.origin())
&& !are_near(r1.vector(), r2.vector()) )
{
crossing->ta = crossing->tb = 0;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else
{
OptCrossing no_crossing;
return no_crossing;
}
}
OptCrossing intersection( LineSegment const& ls1, LineSegment const& ls2 )
{
Point direction1 = ls1.finalPoint() - ls1.initialPoint();
Point direction2 = ls2.finalPoint() - ls2.initialPoint();
OptCrossing crossing =
detail::intersection_impl( direction1,
ls1.initialPoint(),
direction2,
ls2.initialPoint() );
if (crossing)
{
if ( crossing->getTime(0) < 0
|| crossing->getTime(0) > 1
|| crossing->getTime(1) < 0
|| crossing->getTime(1) > 1 )
{
OptCrossing no_crossing;
return no_crossing;
}
else
{
return crossing;
}
}
bool eqvs = (dot(direction1, direction2) > 0);
if ( are_near(ls2.initialPoint(), ls1) )
{
if ( are_near(ls1.initialPoint(), ls2.initialPoint()) && !eqvs )
{
crossing->ta = crossing->tb = 0;
return crossing;
}
else if ( are_near(ls1.finalPoint(), ls2.initialPoint()) && eqvs )
{
crossing->ta = 1;
crossing->tb = 0;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else if ( are_near(ls2.finalPoint(), ls1) )
{
if ( are_near(ls1.finalPoint(), ls2.finalPoint()) && !eqvs )
{
crossing->ta = crossing->tb = 1;
return crossing;
}
else if ( are_near(ls1.initialPoint(), ls2.finalPoint()) && eqvs )
{
crossing->ta = 0;
crossing->tb = 1;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else
{
OptCrossing no_crossing;
return no_crossing;
}
}
Line make_angle_bisector_line(Line const& l1, Line const& l2)
{
OptCrossing crossing;
try
{
crossing = intersection(l1, l2);
}
catch(InfiniteSolutions const &e)
{
return l1;
}
if (!crossing)
{
THROW_RANGEERROR("passed lines are parallel");
}
Point O = l1.pointAt(crossing->ta);
Point A = l1.pointAt(crossing->ta + 1);
double angle = angle_between(l1.vector(), l2.vector());
Point B = (angle > 0) ? l2.pointAt(crossing->tb + 1)
: l2.pointAt(crossing->tb - 1);
return make_angle_bisector_line(A, O, B);
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/
|