1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
#include <2geom/path-intersection.h>
#include <2geom/ord.h>
//for path_direction:
#include <2geom/sbasis-geometric.h>
#include <2geom/line.h>
#ifdef HAVE_GSL
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multiroots.h>
#endif
namespace Geom {
/// Compute winding number of the path at the specified point
int winding(Path const &path, Point const &p) {
return path.winding(p);
}
/**
* This function should only be applied to simple paths (regions), as otherwise
* a boolean winding direction is undefined. It returns true for fill, false for
* hole. Defaults to using the sign of area when it reaches funny cases.
*/
bool path_direction(Path const &p) {
if(p.empty()) return false;
/*goto doh;
//could probably be more efficient, but this is a quick job
double y = p.initialPoint()[Y];
double x = p.initialPoint()[X];
Cmp res = cmp(p[0].finalPoint()[Y], y);
for(unsigned i = 1; i < p.size(); i++) {
Cmp final_to_ray = cmp(p[i].finalPoint()[Y], y);
Cmp initial_to_ray = cmp(p[i].initialPoint()[Y], y);
// if y is included, these will have opposite values, giving order.
Cmp c = cmp(final_to_ray, initial_to_ray);
if(c != EQUAL_TO) {
std::vector<double> rs = p[i].roots(y, Y);
for(unsigned j = 0; j < rs.size(); j++) {
double nx = p[i].valueAt(rs[j], X);
if(nx > x) {
x = nx;
res = c;
}
}
} else if(final_to_ray == EQUAL_TO) goto doh;
}
return res < 0;
doh:*/
//Otherwise fallback on area
Piecewise<D2<SBasis> > pw = p.toPwSb();
double area;
Point centre;
Geom::centroid(pw, centre, area);
return area > 0;
}
//pair intersect code based on njh's pair-intersect
/** A little sugar for appending a list to another */
template<typename T>
void append(T &a, T const &b) {
a.insert(a.end(), b.begin(), b.end());
}
/**
* Finds the intersection between the lines defined by A0 & A1, and B0 & B1.
* Returns through the last 3 parameters, returning the t-values on the lines
* and the cross-product of the deltas (a useful byproduct). The return value
* indicates if the time values are within their proper range on the line segments.
*/
bool
linear_intersect(Point const &A0, Point const &A1, Point const &B0, Point const &B1,
double &tA, double &tB, double &det) {
bool both_lines_non_zero = (!are_near(A0, A1)) && (!are_near(B0, B1));
// Cramer's rule as cross products
Point Ad = A1 - A0,
Bd = B1 - B0,
d = B0 - A0;
det = cross(Ad, Bd);
double det_rel = det; // Calculate the determinant of the normalized vectors
if (both_lines_non_zero) {
det_rel /= Ad.length();
det_rel /= Bd.length();
}
if( fabs(det_rel) < 1e-12 ) { // If the cross product is NEARLY zero,
// Then one of the linesegments might have length zero
if (both_lines_non_zero) {
// If that's not the case, then we must have either:
// - parallel lines, with no intersections, or
// - coincident lines, with an infinite number of intersections
// Either is quite useless, so we'll just bail out
return false;
} // Else, one of the linesegments is zero, and we might still be able to calculate a single intersection point
} // Else we haven't bailed out, and we'll try to calculate the intersections
double detinv = 1.0 / det;
tA = cross(d, Bd) * detinv;
tB = cross(d, Ad) * detinv;
return (tA >= 0.) && (tA <= 1.) && (tB >= 0.) && (tB <= 1.);
}
#if 0
typedef union dbl_64{
long long i64;
double d64;
};
static double EpsilonOf(double value)
{
dbl_64 s;
s.d64 = value;
if(s.i64 == 0)
{
s.i64++;
return s.d64 - value;
}
else if(s.i64-- < 0)
return s.d64 - value;
else
return value - s.d64;
}
#endif
#ifdef HAVE_GSL
struct rparams {
Curve const &A;
Curve const &B;
};
static int
intersect_polish_f (const gsl_vector * x, void *params,
gsl_vector * f)
{
const double x0 = gsl_vector_get (x, 0);
const double x1 = gsl_vector_get (x, 1);
Geom::Point dx = ((struct rparams *) params)->A(x0) -
((struct rparams *) params)->B(x1);
gsl_vector_set (f, 0, dx[0]);
gsl_vector_set (f, 1, dx[1]);
return GSL_SUCCESS;
}
#endif
static void
intersect_polish_root (Curve const &A, double &s, Curve const &B, double &t)
{
std::vector<Point> as, bs;
as = A.pointAndDerivatives(s, 2);
bs = B.pointAndDerivatives(t, 2);
Point F = as[0] - bs[0];
double best = dot(F, F);
for(int i = 0; i < 4; i++) {
/**
we want to solve
J*(x1 - x0) = f(x0)
|dA(s)[0] -dB(t)[0]| (X1 - X0) = A(s) - B(t)
|dA(s)[1] -dB(t)[1]|
**/
// We're using the standard transformation matricies, which is numerically rather poor. Much better to solve the equation using elimination.
Affine jack(as[1][0], as[1][1],
-bs[1][0], -bs[1][1],
0, 0);
Point soln = (F)*jack.inverse();
double ns = s - soln[0];
double nt = t - soln[1];
if (ns<0) ns=0;
else if (ns>1) ns=1;
if (nt<0) nt=0;
else if (nt>1) nt=1;
as = A.pointAndDerivatives(ns, 2);
bs = B.pointAndDerivatives(nt, 2);
F = as[0] - bs[0];
double trial = dot(F, F);
if (trial > best*0.1) // we have standards, you know
// At this point we could do a line search
break;
best = trial;
s = ns;
t = nt;
}
#ifdef HAVE_GSL
if(0) { // the GSL version is more accurate, but taints this with GPL
int status;
size_t iter = 0;
const size_t n = 2;
struct rparams p = {A, B};
gsl_multiroot_function f = {&intersect_polish_f, n, &p};
double x_init[2] = {s, t};
gsl_vector *x = gsl_vector_alloc (n);
gsl_vector_set (x, 0, x_init[0]);
gsl_vector_set (x, 1, x_init[1]);
const gsl_multiroot_fsolver_type *T = gsl_multiroot_fsolver_hybrids;
gsl_multiroot_fsolver *sol = gsl_multiroot_fsolver_alloc (T, 2);
gsl_multiroot_fsolver_set (sol, &f, x);
do
{
iter++;
status = gsl_multiroot_fsolver_iterate (sol);
if (status) /* check if solver is stuck */
break;
status =
gsl_multiroot_test_residual (sol->f, 1e-12);
}
while (status == GSL_CONTINUE && iter < 1000);
s = gsl_vector_get (sol->x, 0);
t = gsl_vector_get (sol->x, 1);
gsl_multiroot_fsolver_free (sol);
gsl_vector_free (x);
}
#endif
}
/**
* This uses the local bounds functions of curves to generically intersect two.
* It passes in the curves, time intervals, and keeps track of depth, while
* returning the results through the Crossings parameter.
*/
void pair_intersect(Curve const & A, double Al, double Ah,
Curve const & B, double Bl, double Bh,
Crossings &ret, unsigned depth = 0) {
// std::cout << depth << "(" << Al << ", " << Ah << ")\n";
OptRect Ar = A.boundsLocal(Interval(Al, Ah));
if (!Ar) return;
OptRect Br = B.boundsLocal(Interval(Bl, Bh));
if (!Br) return;
if(! Ar->intersects(*Br)) return;
//Checks the general linearity of the function
if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
//&& B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
double tA, tB, c;
if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
B.pointAt(Bl), B.pointAt(Bh),
tA, tB, c)) {
tA = tA * (Ah - Al) + Al;
tB = tB * (Bh - Bl) + Bl;
intersect_polish_root(A, tA,
B, tB);
if(depth % 2)
ret.push_back(Crossing(tB, tA, c < 0));
else
ret.push_back(Crossing(tA, tB, c > 0));
return;
}
}
if(depth > 12) return;
double mid = (Bl + Bh)/2;
pair_intersect(B, Bl, mid,
A, Al, Ah,
ret, depth+1);
pair_intersect(B, mid, Bh,
A, Al, Ah,
ret, depth+1);
}
Crossings pair_intersect(Curve const & A, Interval const &Ad,
Curve const & B, Interval const &Bd) {
Crossings ret;
pair_intersect(A, Ad.min(), Ad.max(), B, Bd.min(), Bd.max(), ret);
return ret;
}
/** A simple wrapper around pair_intersect */
Crossings SimpleCrosser::crossings(Curve const &a, Curve const &b) {
Crossings ret;
pair_intersect(a, 0, 1, b, 0, 1, ret);
return ret;
}
//same as below but curves not paths
void mono_intersect(Curve const &A, double Al, double Ah,
Curve const &B, double Bl, double Bh,
Crossings &ret, double tol = 0.1, unsigned depth = 0) {
if( Al >= Ah || Bl >= Bh) return;
//std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";
Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
//inline code that this implies? (without rect/interval construction)
Rect Ar = Rect(A0, A1), Br = Rect(B0, B1);
if(!Ar.intersects(Br) || A0 == A1 || B0 == B1) return;
if(depth > 12 || (Ar.maxExtent() < tol && Ar.maxExtent() < tol)) {
double tA, tB, c;
if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
B.pointAt(Bl), B.pointAt(Bh),
tA, tB, c)) {
tA = tA * (Ah - Al) + Al;
tB = tB * (Bh - Bl) + Bl;
intersect_polish_root(A, tA,
B, tB);
if(depth % 2)
ret.push_back(Crossing(tB, tA, c < 0));
else
ret.push_back(Crossing(tA, tB, c > 0));
return;
}
}
if(depth > 12) return;
double mid = (Bl + Bh)/2;
mono_intersect(B, Bl, mid,
A, Al, Ah,
ret, tol, depth+1);
mono_intersect(B, mid, Bh,
A, Al, Ah,
ret, tol, depth+1);
}
Crossings mono_intersect(Curve const & A, Interval const &Ad,
Curve const & B, Interval const &Bd) {
Crossings ret;
mono_intersect(A, Ad.min(), Ad.max(), B, Bd.min(), Bd.max(), ret);
return ret;
}
/**
* Takes two paths and time ranges on them, with the invariant that the
* paths are monotonic on the range. Splits A when the linear intersection
* doesn't exist or is inaccurate. Uses the fact that it is monotonic to
* do very fast local bounds.
*/
void mono_pair(Path const &A, double Al, double Ah,
Path const &B, double Bl, double Bh,
Crossings &ret, double /*tol*/, unsigned depth = 0) {
if( Al >= Ah || Bl >= Bh) return;
std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";
Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
//inline code that this implies? (without rect/interval construction)
Rect Ar = Rect(A0, A1), Br = Rect(B0, B1);
if(!Ar.intersects(Br) || A0 == A1 || B0 == B1) return;
if(depth > 12 || (Ar.maxExtent() < 0.1 && Ar.maxExtent() < 0.1)) {
double tA, tB, c;
if(linear_intersect(A0, A1, B0, B1,
tA, tB, c)) {
tA = tA * (Ah - Al) + Al;
tB = tB * (Bh - Bl) + Bl;
if(depth % 2)
ret.push_back(Crossing(tB, tA, c < 0));
else
ret.push_back(Crossing(tA, tB, c > 0));
return;
}
}
if(depth > 12) return;
double mid = (Bl + Bh)/2;
mono_pair(B, Bl, mid,
A, Al, Ah,
ret, depth+1);
mono_pair(B, mid, Bh,
A, Al, Ah,
ret, depth+1);
}
/** This returns the times when the x or y derivative is 0 in the curve. */
std::vector<double> curve_mono_splits(Curve const &d) {
Curve* deriv = d.derivative();
std::vector<double> rs = deriv->roots(0, X);
append(rs, deriv->roots(0, Y));
delete deriv;
std::sort(rs.begin(), rs.end());
return rs;
}
/** Convenience function to add a value to each entry in a vector of doubles. */
std::vector<double> offset_doubles(std::vector<double> const &x, double offs) {
std::vector<double> ret;
for(double i : x) {
ret.push_back(i + offs);
}
return ret;
}
/**
* Finds all the monotonic splits for a path. Only includes the split between
* curves if they switch derivative directions at that point.
*/
std::vector<double> path_mono_splits(Path const &p) {
std::vector<double> ret;
if(p.empty()) return ret;
int pdx = 2, pdy = 2; // Previous derivative direction
for(unsigned i = 0; i < p.size(); i++) {
std::vector<double> spl = offset_doubles(curve_mono_splits(p[i]), i);
int dx = p[i].initialPoint()[X] > (spl.empty() ? p[i].finalPoint()[X] : p.valueAt(spl.front(), X)) ? 1 : 0;
int dy = p[i].initialPoint()[Y] > (spl.empty() ? p[i].finalPoint()[Y] : p.valueAt(spl.front(), Y)) ? 1 : 0;
//The direction changed, include the split time
if(dx != pdx || dy != pdy) {
ret.push_back(i);
pdx = dx; pdy = dy;
}
append(ret, spl);
}
return ret;
}
/**
* Applies path_mono_splits to multiple paths, and returns the results such that
* time-set i corresponds to Path i.
*/
std::vector<std::vector<double> > paths_mono_splits(PathVector const &ps) {
std::vector<std::vector<double> > ret;
for(const auto & p : ps)
ret.push_back(path_mono_splits(p));
return ret;
}
/**
* Processes the bounds for a list of paths and a list of splits on them, yielding a list of rects for each.
* Each entry i corresponds to path i of the input. The number of rects in each entry is guaranteed to be the
* number of splits for that path, subtracted by one.
*/
std::vector<std::vector<Rect> > split_bounds(PathVector const &p, std::vector<std::vector<double> > splits) {
std::vector<std::vector<Rect> > ret;
for(unsigned i = 0; i < p.size(); i++) {
std::vector<Rect> res;
for(unsigned j = 1; j < splits[i].size(); j++)
res.emplace_back(p[i].pointAt(splits[i][j-1]), p[i].pointAt(splits[i][j]));
ret.push_back(res);
}
return ret;
}
/**
* This is the main routine of "MonoCrosser", and implements a monotonic strategy on multiple curves.
* Finds crossings between two sets of paths, yielding a CrossingSet. [0, a.size()) of the return correspond
* to the sorted crossings of a with paths of b. The rest of the return, [a.size(), a.size() + b.size()],
* corresponds to the sorted crossings of b with paths of a.
*
* This function does two sweeps, one on the bounds of each path, and after that cull, one on the curves within.
* This leads to a certain amount of code complexity, however, most of that is factored into the above functions
*/
CrossingSet MonoCrosser::crossings(PathVector const &a, PathVector const &b) {
if(b.empty()) return CrossingSet(a.size(), Crossings());
CrossingSet results(a.size() + b.size(), Crossings());
if(a.empty()) return results;
std::vector<std::vector<double> > splits_a = paths_mono_splits(a), splits_b = paths_mono_splits(b);
std::vector<std::vector<Rect> > bounds_a = split_bounds(a, splits_a), bounds_b = split_bounds(b, splits_b);
std::vector<Rect> bounds_a_union, bounds_b_union;
for(auto & i : bounds_a) bounds_a_union.push_back(union_list(i));
for(auto & i : bounds_b) bounds_b_union.push_back(union_list(i));
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds_a_union, bounds_b_union);
Crossings n;
for(unsigned i = 0; i < cull.size(); i++) {
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
unsigned jc = j + a.size();
Crossings res;
//Sweep of the monotonic portions
std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bounds_a[i], bounds_b[j]);
for(unsigned k = 0; k < cull2.size(); k++) {
for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
unsigned l = cull2[k][lx];
mono_pair(a[i], splits_a[i][k-1], splits_a[i][k],
b[j], splits_b[j][l-1], splits_b[j][l],
res, .1);
}
}
for(auto & re : res) { re.a = i; re.b = jc; }
merge_crossings(results[i], res, i);
merge_crossings(results[i], res, jc);
}
}
return results;
}
/* This function is similar codewise to the MonoCrosser, the main difference is that it deals with
* only one set of paths and includes self intersection
CrossingSet crossings_among(PathVector const &p) {
CrossingSet results(p.size(), Crossings());
if(p.empty()) return results;
std::vector<std::vector<double> > splits = paths_mono_splits(p);
std::vector<std::vector<Rect> > prs = split_bounds(p, splits);
std::vector<Rect> rs;
for(unsigned i = 0; i < prs.size(); i++) rs.push_back(union_list(prs[i]));
std::vector<std::vector<unsigned> > cull = sweep_bounds(rs);
//we actually want to do the self-intersections, so add em in:
for(unsigned i = 0; i < cull.size(); i++) cull[i].push_back(i);
for(unsigned i = 0; i < cull.size(); i++) {
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
Crossings res;
//Sweep of the monotonic portions
std::vector<std::vector<unsigned> > cull2 = sweep_bounds(prs[i], prs[j]);
for(unsigned k = 0; k < cull2.size(); k++) {
for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
unsigned l = cull2[k][lx];
mono_pair(p[i], splits[i][k-1], splits[i][k],
p[j], splits[j][l-1], splits[j][l],
res, .1);
}
}
for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
merge_crossings(results[i], res, i);
merge_crossings(results[j], res, j);
}
}
return results;
}
*/
Crossings curve_self_crossings(Curve const &a) {
Crossings res;
std::vector<double> spl;
spl.push_back(0);
append(spl, curve_mono_splits(a));
spl.push_back(1);
for(unsigned i = 1; i < spl.size(); i++)
for(unsigned j = i+1; j < spl.size(); j++)
pair_intersect(a, spl[i-1], spl[i], a, spl[j-1], spl[j], res);
return res;
}
/*
void mono_curve_intersect(Curve const & A, double Al, double Ah,
Curve const & B, double Bl, double Bh,
Crossings &ret, unsigned depth=0) {
// std::cout << depth << "(" << Al << ", " << Ah << ")\n";
Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
//inline code that this implies? (without rect/interval construction)
if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
//Checks the general linearity of the function
if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
&& B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
double tA, tB, c;
if(linear_intersect(A0, A1, B0, B1, tA, tB, c)) {
tA = tA * (Ah - Al) + Al;
tB = tB * (Bh - Bl) + Bl;
if(depth % 2)
ret.push_back(Crossing(tB, tA, c < 0));
else
ret.push_back(Crossing(tA, tB, c > 0));
return;
}
}
if(depth > 12) return;
double mid = (Bl + Bh)/2;
mono_curve_intersect(B, Bl, mid,
A, Al, Ah,
ret, depth+1);
mono_curve_intersect(B, mid, Bh,
A, Al, Ah,
ret, depth+1);
}
std::vector<std::vector<double> > curves_mono_splits(Path const &p) {
std::vector<std::vector<double> > ret;
for(unsigned i = 0; i <= p.size(); i++) {
std::vector<double> spl;
spl.push_back(0);
append(spl, curve_mono_splits(p[i]));
spl.push_back(1);
ret.push_back(spl);
}
}
std::vector<std::vector<Rect> > curves_split_bounds(Path const &p, std::vector<std::vector<double> > splits) {
std::vector<std::vector<Rect> > ret;
for(unsigned i = 0; i < splits.size(); i++) {
std::vector<Rect> res;
for(unsigned j = 1; j < splits[i].size(); j++)
res.push_back(Rect(p.pointAt(splits[i][j-1]+i), p.pointAt(splits[i][j]+i)));
ret.push_back(res);
}
return ret;
}
Crossings path_self_crossings(Path const &p) {
Crossings ret;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
std::vector<std::vector<double> > spl = curves_mono_splits(p);
std::vector<std::vector<Rect> > bnds = curves_split_bounds(p, spl);
for(unsigned i = 0; i < cull.size(); i++) {
Crossings res;
for(unsigned k = 1; k < spl[i].size(); k++)
for(unsigned l = k+1; l < spl[i].size(); l++)
mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[i], spl[i][l-1], spl[i][l], res);
offset_crossings(res, i, i);
append(ret, res);
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
res.clear();
std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bnds[i], bnds[j]);
for(unsigned k = 0; k < cull2.size(); k++) {
for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
unsigned l = cull2[k][lx];
mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[j], spl[j][l-1], spl[j][l], res);
}
}
//if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
Crossings res2;
for(unsigned k = 0; k < res.size(); k++) {
if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
res.push_back(res[k]);
}
}
res = res2;
//}
offset_crossings(res, i, j);
append(ret, res);
}
}
return ret;
}
*/
Crossings self_crossings(Path const &p) {
Crossings ret;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
for(unsigned i = 0; i < cull.size(); i++) {
Crossings res = curve_self_crossings(p[i]);
offset_crossings(res, i, i);
append(ret, res);
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
res.clear();
pair_intersect(p[i], 0, 1, p[j], 0, 1, res);
//if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
Crossings res2;
for(auto & re : res) {
if(re.ta != 0 && re.ta != 1 && re.tb != 0 && re.tb != 1) {
res2.push_back(re);
}
}
res = res2;
//}
offset_crossings(res, i, j);
append(ret, res);
}
}
return ret;
}
void flip_crossings(Crossings &crs) {
for(auto & cr : crs)
cr = Crossing(cr.tb, cr.ta, cr.b, cr.a, !cr.dir);
}
CrossingSet crossings_among(PathVector const &p) {
CrossingSet results(p.size(), Crossings());
if(p.empty()) return results;
SimpleCrosser cc;
std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
for(unsigned i = 0; i < cull.size(); i++) {
Crossings res = self_crossings(p[i]);
for(auto & re : res) { re.a = re.b = i; }
merge_crossings(results[i], res, i);
flip_crossings(res);
merge_crossings(results[i], res, i);
for(unsigned jx = 0; jx < cull[i].size(); jx++) {
unsigned j = cull[i][jx];
Crossings res = cc.crossings(p[i], p[j]);
for(auto & re : res) { re.a = i; re.b = j; }
merge_crossings(results[i], res, i);
merge_crossings(results[j], res, j);
}
}
return results;
}
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|