summaryrefslogtreecommitdiffstats
path: root/src/2geom/polynomial.cpp
blob: 9737bd0fcde34d0fce483fb7ff9e21eebdb88f00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/**
 * \file
 * \brief Polynomial in canonical (monomial) basis
 *//*
 * Authors:
 *    MenTaLguY <mental@rydia.net>
 *    Krzysztof Kosiński <tweenk.pl@gmail.com>
 * 
 * Copyright 2007-2015 Authors
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 */

#include <algorithm>
#include <2geom/polynomial.h>
#include <2geom/math-utils.h>
#include <math.h>

#ifdef HAVE_GSL
#include <gsl/gsl_poly.h>
#endif

namespace Geom {

#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif

Poly Poly::operator*(const Poly& p) const {
    Poly result; 
    result.resize(degree() +  p.degree()+1);
    
    for(unsigned i = 0; i < size(); i++) {
        for(unsigned j = 0; j < p.size(); j++) {
            result[i+j] += (*this)[i] * p[j];
        }
    }
    return result;
}

/*double Poly::eval(double x) const {
    return gsl_poly_eval(&coeff[0], size(), x);
    }*/

void Poly::normalize() {
    while(back() == 0)
        pop_back();
}

void Poly::monicify() {
    normalize();
    
    double scale = 1./back(); // unitize
    
    for(unsigned i = 0; i < size(); i++) {
        (*this)[i] *= scale;
    }
}


#ifdef HAVE_GSL
std::vector<std::complex<double> > solve(Poly const & pp) {
    Poly p(pp);
    p.normalize();
    gsl_poly_complex_workspace * w 
        = gsl_poly_complex_workspace_alloc (p.size());
       
    gsl_complex_packed_ptr z = new double[p.degree()*2];
    double* a = new double[p.size()];
    for(unsigned int i = 0; i < p.size(); i++)
        a[i] = p[i];
    std::vector<std::complex<double> > roots;
    //roots.resize(p.degree());
    
    gsl_poly_complex_solve (a, p.size(), w, z);
    delete[]a;
     
    gsl_poly_complex_workspace_free (w);
     
    for (unsigned int i = 0; i < p.degree(); i++) {
        roots.emplace_back(z[2*i] ,z[2*i+1]);
        //printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]);
    }    
    delete[] z;
    return roots;
}

std::vector<double > solve_reals(Poly const & p) {
    std::vector<std::complex<double> > roots = solve(p);
    std::vector<double> real_roots;
    
    for(auto & root : roots) {
        if(root.imag() == 0) // should be more lenient perhaps
            real_roots.push_back(root.real());
    }
    return real_roots;
}
#endif

double polish_root(Poly const & p, double guess, double tol) {
    Poly dp = derivative(p);
    
    double fn = p(guess);
    while(fabs(fn) > tol) {
        guess -= fn/dp(guess);
        fn = p(guess);
    }
    return guess;
}

Poly integral(Poly const & p) {
    Poly result;
    
    result.reserve(p.size()+1);
    result.push_back(0); // arbitrary const
    for(unsigned i = 0; i < p.size(); i++) {
        result.push_back(p[i]/(i+1));
    }
    return result;

}

Poly derivative(Poly const & p) {
    Poly result;
    
    if(p.size() <= 1)
        return Poly(0);
    result.reserve(p.size()-1);
    for(unsigned i = 1; i < p.size(); i++) {
        result.push_back(i*p[i]);
    }
    return result;
}

Poly compose(Poly const & a, Poly const & b) {
    Poly result;
    
    for(unsigned i = a.size(); i > 0; i--) {
        result = Poly(a[i-1]) + result * b;
    }
    return result;
    
}

/* This version is backwards - dividing taylor terms
Poly divide(Poly const &a, Poly const &b, Poly &r) {
    Poly c;
    r = a; // remainder
    
    const unsigned k = a.size();
    r.resize(k, 0);
    c.resize(k, 0);

    for(unsigned i = 0; i < k; i++) {
        double ci = r[i]/b[0];
        c[i] += ci;
        Poly bb = ci*b;
        std::cout << ci <<"*" << b << ", r= " << r << std::endl;
        r -= bb.shifted(i);
    }
    
    return c;
}
*/

Poly divide(Poly const &a, Poly const &b, Poly &r) {
    Poly c;
    r = a; // remainder
    assert(b.size() > 0);
    
    const unsigned k = a.degree();
    const unsigned l = b.degree();
    c.resize(k, 0.);
    
    for(unsigned i = k; i >= l; i--) {
        //assert(i >= 0);
        double ci = r.back()/b.back();
        c[i-l] += ci;
        Poly bb = ci*b;
        //std::cout << ci <<"*(" << b.shifted(i-l) << ") = " 
        //          << bb.shifted(i-l) << "     r= " << r << std::endl;
        r -= bb.shifted(i-l);
        r.pop_back();
    }
    //std::cout << "r= " << r << std::endl;
    r.normalize();
    c.normalize();
    
    return c;
}

Poly gcd(Poly const &a, Poly const &b, const double /*tol*/) {
    if(a.size() < b.size())
        return gcd(b, a);
    if(b.size() <= 0)
        return a;
    if(b.size() == 1)
        return a;
    Poly r;
    divide(a, b, r);
    return gcd(b, r);
}




std::vector<Coord> solve_quadratic(Coord a, Coord b, Coord c)
{
    std::vector<Coord> result;

    if (a == 0) {
        // linear equation
        if (b == 0) return result;
        result.push_back(-c/b);
        return result;
    }

    Coord delta = b*b - 4*a*c;

    if (delta == 0) {
        // one root
        result.push_back(-b / (2*a));
    } else if (delta > 0) {
        // two roots
        Coord delta_sqrt = sqrt(delta);

        // Use different formulas depending on sign of b to preserve
        // numerical stability. See e.g.:
        // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
        int sign = b >= 0 ? 1 : -1;
        Coord t = -0.5 * (b + sign * delta_sqrt);
        result.push_back(t / a);
        result.push_back(c / t);
    }
    // no roots otherwise

    std::sort(result.begin(), result.end());
    return result;
}


std::vector<Coord> solve_cubic(Coord a, Coord b, Coord c, Coord d)
{
    // based on:
    // http://mathworld.wolfram.com/CubicFormula.html

    if (a == 0) {
        return solve_quadratic(b, c, d);
    }
    if (d == 0) {
        // divide by x
        std::vector<Coord> result = solve_quadratic(a, b, c);
        result.push_back(0);
        std::sort(result.begin(), result.end());
        return result;
    }

    std::vector<Coord> result;

    // 1. divide everything by a to bring to canonical form
    b /= a;
    c /= a;
    d /= a;

    // 2. eliminate x^2 term: x^3 + 3Qx - 2R = 0
    Coord Q = (3*c - b*b) / 9;
    Coord R = (-27 * d + b * (9*c - 2*b*b)) / 54;

    // 3. compute polynomial discriminant
    Coord D = Q*Q*Q + R*R;
    Coord term1 = b/3;

    if (D > 0) {
        // only one real root
        Coord S = cbrt(R + sqrt(D));
        Coord T = cbrt(R - sqrt(D));
        result.push_back(-b/3 + S + T);
    } else if (D == 0) {
        // 3 real roots, 2 of which are equal
        Coord rroot = cbrt(R);
        result.reserve(3);
        result.push_back(-term1 + 2*rroot);
        result.push_back(-term1 - rroot);
        result.push_back(-term1 - rroot);
    } else {
        // 3 distinct real roots
        assert(Q < 0);
        Coord theta = acos(R / sqrt(-Q*Q*Q));
        Coord rroot = 2 * sqrt(-Q);
        result.reserve(3);
        result.push_back(-term1 + rroot * cos(theta / 3));
        result.push_back(-term1 + rroot * cos((theta + 2*M_PI) / 3));
        result.push_back(-term1 + rroot * cos((theta + 4*M_PI) / 3));
    }

    std::sort(result.begin(), result.end());
    return result;
}


/*Poly divide_out_root(Poly const & p, double x) {
    assert(1);
    }*/

} //namespace Geom

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :