1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
import unittest
import math
from random import randint, uniform
import cy2geom
from cy2geom import Point, IntPoint
from cy2geom import Interval, IntInterval, OptInterval, OptIntInterval
from cy2geom import Affine
from cy2geom import Translate, Scale, Rotate, VShear, HShear, Zoom
from cy2geom import Eigen
from cy2geom import Curve
from cy2geom import Linear
from cy2geom import SBasis, SBasisCurve
from cy2geom import Bezier, BezierCurve
from cy2geom import LineSegment, QuadraticBezier, CubicBezier
from cy2geom import HLineSegment, VLineSegment
from cy2geom import EllipticalArc
from cy2geom import Path
#TODO! move drawing elsewhere, it nice to see paths, but is not very suitable for automatic testing
draw = False
try:
import utils
except ImportError:
print "No drawing with Tk"
draw = False
class TestPrimitives(unittest.TestCase):
def curves_equal(self, C1, C2):
for i in range(101):
t = i/100.0
self.assertAlmostEqual(C1(t), C2(t))
def path(self, P):
for curve in P:
self.assertIsInstance(curve, Curve)
self.assertAlmostEqual(P(0), P.front()(0))
self.curves_equal(P.front(), P[0])
self.curves_equal(P.back_default(), P[P.size_default()-1])
self.curves_equal(P.back_open(), P.back())
self.assertEqual(P.size_open(), P.size())
self.assertFalse(P.empty() ^ (P.size()==0))
exact = P.bounds_exact().Rect
exact.expand_by(1e-5)
fast = P.bounds_fast().Rect
fast.expand_by(1e-5)
A1 = Affine(3, 1, 8, 3, 9, 9)
A2 = Rotate(0.231)
for i in range(100 * P.size_open() + 1):
t = i/100.0
self.assertTrue(exact.contains(P(t)))
self.assertTrue(fast.contains(P(t)))
self.assertAlmostEqual( (P*A1)(t) , P(t)*A1 )
self.assertAlmostEqual( (P*A2)(t) , P(t)*A2 )
self.assertAlmostEqual(P(t), P.point_at(t))
self.assertAlmostEqual(P(t).x, P.value_at(t, 0))
self.assertAlmostEqual(P(t).y, P.value_at(t, 1))
if P.closed():
self.curves_equal(P.back_default(), P.back_closed())
self.assertEqual(P.size_default(), P.size_closed())
else:
self.curves_equal(P.back_default(), P.back_open())
self.assertEqual(P.size_default(), P.size_open())
for i in range(10):
for root in P.roots(i, 0):
if root < P.size_default():
self.assertAlmostEqual(P.value_at(root, 0), i)
for root in P.roots(i, 1):
if root < P.size_default():
self.assertAlmostEqual(P.value_at(root, 1), i)
for t in P.all_nearest_times(P(0)):
self.assertAlmostEqual(P(t), P(0))
self.assertAlmostEqual(min(P.all_nearest_times( P(0) )), 0)
self.assertAlmostEqual(P.nearest_time(P(0), 0, 0.2), 0)
self.assertEqual( len(P.nearest_time_per_curve(Point())), P.size_default() )
t, distSq = P.nearest_time_and_dist_sq(Point(-1, -1), 0, P.size())
self.assertAlmostEqual(distSq**0.5, abs(P(t)-Point(-1, -1)) )
self.assertAlmostEqual(P.portion(0.3, 0.4)(0), P(0.3))
self.assertAlmostEqual( P.portion( interval=Interval(P.size(), P.size() * 2) / 3 )(0),
P(P.size()/3.0))
self.assertAlmostEqual(P(0.23), P.reverse()(P.size()-0.23))
self.assertAlmostEqual(P.initial_point(), P(0))
self.assertAlmostEqual(P.final_point(), P(P.size()))
def test_path(self):
a = Path()
a.append_curve( CubicBezier( Point(-7, -3), Point(2, 8), Point(2, 1), Point(-2, 0) ) )
self.assertEqual(a.size(), 1)
self.assertFalse(a.closed())
self.path(a)
a.close(True)
self.assertTrue(a.closed())
self.path(a)
a.close(False)
a.append_curve( LineSegment(a.final_point(), Point(3, 5)) )
self.assertEqual(a.size(), 2)
self.path(a)
a.append_SBasis( SBasis(3, 6)*SBasis(1, 0), SBasis(5, 2))
self.path(a)
a.append_curve(EllipticalArc(Point(), 1, 2, math.pi/6, True, True, Point(1, 1)), Path.STITCH_DISCONTINUOUS)
#Stitching adds new segment
self.assertEqual(a.size(), 5)
b = Path()
for c in a:
b.append_curve(c)
#TODO: This fails with STITCH_DISCONTINUOUS, but also does so in C++, so
#it's either correct behaviour or bug in 2geom
#~ self.path(b)
b.insert(2, LineSegment(b[2-1](1), b[2](0))) #, Path.STITCH_DISCONTINUOUS)
self.curves_equal(LineSegment(b[2-1](1), b[2](0)), b[2])
#TODO! fails on root finding
#self.path(b)
b.set_initial(a[2](1))
b.set_final(a[3](0))
a.insert_slice(3, b, 0, b.size())
self.assertEqual(a.size(), b.size()*2-1)
for i in range(b.size()):
self.curves_equal(a[3+i], b[i])
#Looks like bug:
# A = Path()
# A.append_curve( CubicBezier( Point(-7, -3), Point(2, 8), Point(2, 1), Point(-2, 0) ) )
# A.append_curve(EllipticalArc(Point(), 1, 2, math.pi/6, True, True, Point(1, 1)), Path.STITCH_DISCONTINUOUS)
# print A.roots(0, 1)
#Roots are [1.0, 2.768305708350847, 3.25], Point at second root is
#Point (2.32, -0.48)
#and third root is > 3 - it corresponds to root on closing segment, but A is open,
#and computing A(3.25) results in RangeError - this might be bug or feature.
self.path(a.portion(0.232, 3.12))
self.path(a.portion( interval=Interval(0.1, 4.7) ))
self.path(a.portion(0.232, 3.12).reverse())
b.clear()
self.assertTrue(b.empty())
aa = Path()
for c in a:
aa.append_curve(c)
a.erase(0)
self.assertEqual(a.size(), aa.size() - 1)
self.assertAlmostEqual(a(0), aa(1))
a.erase_last()
self.assertEqual(a.size(), aa.size() - 2)
self.assertAlmostEqual(a.final_point(), aa[aa.size()-2](1))
a.replace(3, QuadraticBezier(a(3), Point(), a(4)))
self.assertEqual(a.size(), aa.size() - 2)
cs = [LineSegment(Point(-0.5, 0), Point(0.5, 0)).transformed( Rotate(-math.pi/3 * i)*Translate(Point(0, math.sqrt(3)/2)*Rotate(-math.pi/3 * i)) ) for i in range(6)]
hexagon = Path.fromList(cs, stitching = Path.STITCH_DISCONTINUOUS, closed = True)
if draw:
utils.draw(hexagon, scale = 100)
#to = 5 because each corner contains one stitching segment
half_hexagon = Path.fromPath(hexagon, fr = 0, to = 5)
if draw:
utils.draw(half_hexagon, scale = 100)
half_hexagon.replace_slice(1, 5, LineSegment(half_hexagon(1), half_hexagon(5)))
self.assertEqual(half_hexagon.size(), 2)
self.assertAlmostEqual(half_hexagon(1.5), Point(0.5, 0))
half_hexagon.stitch_to(half_hexagon(0))
self.assertAlmostEqual(half_hexagon(2.5), Point())
a.start(Point(2, 2))
a.append_SBasis( SBasis(2, 6), SBasis(1, 5)*SBasis(2, 9) )
self.assertAlmostEqual(a(1), Point(6, 5*9))
l = Path.fromList([QuadraticBezier(Point(6, 5*9), Point(1, 2), Point(-2, .21))])
a.append_path(l)
self.assertAlmostEqual(a.final_point(), l.final_point())
k = Path.fromList([QuadraticBezier(Point(), Point(2, 1), Point(-2, .21)).reverse()])
k.append_portion_to(l, 0, 0.3)
self.assertAlmostEqual(l.final_point(), k(0.3))
def test_read_svgd(self):
p = Path.read_svgd("../toys/spiral.svgd")
if draw:
utils.draw(p[0], scale=0.4)
unittest.main()
|