summaryrefslogtreecommitdiffstats
path: root/src/toys/conic-6.cpp
blob: 90da67119554fd6d7ab8c9097e2e466c42bf7f6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#include <iostream>
#include <2geom/path.h>
#include <2geom/svg-path-parser.h>
#include <2geom/path-intersection.h>
#include <2geom/basic-intersection.h>
#include <2geom/pathvector.h>
#include <2geom/exception.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/path-intersection.h>
#include <2geom/nearest-time.h>
#include <2geom/line.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/sbasis-to-bezier.h>

#include <cstdlib>
#include <map>
#include <vector>
#include <algorithm>
#include <optional>

#include <toys/path-cairo.h>
#include <toys/toy-framework-2.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/ord.h>

#include <2geom/conicsec.h>

std::vector<Geom::RatQuad> xAx_to_RatQuads(Geom::xAx const &/*C*/, Geom::Rect const &/*bnd*/) {
    // find points on boundary
    // if there are exactly 0 points return
    // if there are exactly 2 points fit ratquad and return
    // if there are an odd number, split bnd on the point with the smallest dot(unit_vector(grad), rect_edge)
    // sort into clockwise order ABCD
    // compute corresponding tangents
    // test boundary points against the line through A
    // if all on one side
    //
    // if A,X and Y,Z
    // ratquad from A,X and Y,Z
    return std::vector<Geom::RatQuad>();
}



using namespace Geom;
using namespace std;


// File: convert.h
#include <sstream>
#include <stdexcept>
 
class BadConversion : public std::runtime_error {
public:
    BadConversion(const std::string& s)
        : std::runtime_error(s)
    { }
};
 
template <typename T>
inline std::string stringify(T x)
{
    std::ostringstream o;
    if (!(o << x))
        throw BadConversion("stringify(T)");
    return o.str();
}

namespace Geom{
xAx degen;
};

void draw_hull(cairo_t*cr, RatQuad rq) {
    cairo_move_to(cr, rq.P[0]);
    cairo_line_to(cr, rq.P[1]);
    cairo_line_to(cr, rq.P[2]);
    cairo_stroke(cr);
}
  


void draw(cairo_t* cr, xAx C, Rect bnd) {
    if(bnd[1].extent() < 5) return;
    vector<double> prev_rts;
    double py = bnd[Y].min();
    for(int i = 0; i < 100; i++) {
        double t = i/100.;
        double y = bnd[Y].valueAt(t);
        vector<double> rts = C.roots(Point(1, 0), Point(0, y));
        int top = 0;
        for(unsigned j = 0; j < rts.size(); j++) {
            if(bnd[0].contains(rts[j])) {
                rts[top] = rts[j];
                top++;
            }
        }
        rts.erase(rts.begin()+top, rts.end());
        
        if(rts.size() == prev_rts.size()) {
            for(unsigned j = 0; j < rts.size(); j++) {
                cairo_move_to(cr, prev_rts[j], py);
                cairo_line_to(cr, rts[j], y);
                cairo_stroke(cr);
            }
/*        } else if(prev_rts.size() == 1) {
            for(unsigned j = 0; j < rts.size(); j++) {
                cairo_move_to(cr, prev_rts[0], py);
                cairo_line_to(cr, rts[j], y);
                cairo_stroke(cr);
            }
        } else if(rts.size() == 1) {
            for(unsigned j = 0; j < prev_rts.size(); j++) {
                cairo_move_to(cr, prev_rts[j], py);
                cairo_line_to(cr, rts[0], y);
                cairo_stroke(cr);
                }*/
        } else {
            draw(cr, C, Rect(bnd[0], Interval(py, y)));
            /*for(unsigned j = 0; j < rts.size(); j++) {
                cairo_move_to(cr, rts[j], y);
                cairo_rel_line_to(cr, 1,1);
                }*/
        }
        prev_rts = rts;
        py = y;
    }
}

template <typename T>
static T det(T a, T b, T c, T d) {
    return a*d - b*c;
}

template <typename T>
static T det(T M[2][2]) {
    return M[0][0]*M[1][1] - M[1][0]*M[0][1];
}

template <typename T>
static T det3(T M[3][3]) {
    return ( M[0][0] * det(M[1][1], M[1][2],
                           M[2][1], M[2][2])
             -M[1][0] * det(M[0][1], M[0][2],
                            M[2][1], M[2][2])
             +M[2][0] * det(M[0][1], M[0][2],
                            M[1][1], M[1][2]));
}

class Conic6: public Toy {
    PointSetHandle C1H, C2H;
    std::vector<Slider> sliders;
    Point    mouse_sampler;

    void mouse_moved(GdkEventMotion* e) override {
        mouse_sampler = Point(e->x, e->y);
        Toy::mouse_moved(e);
    }
    
    void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override {
        cairo_set_source_rgba (cr, 0., 0., 0, 1);
        cairo_set_line_width (cr, 1);
        Rect screen_rect(Interval(10, width-10), Interval(10, height-10));
        
        Geom::xAx C1 = xAx::fromPoints(C1H.pts);
        ::draw(cr, C1, screen_rect);
        *notify << C1;
        
        Geom::xAx C2 = xAx::fromPoints(C2H.pts);
        ::draw(cr, C2, screen_rect);
        *notify << C2;


        SBasis T(Linear(-1,1));
        SBasis S(Linear(1,1));
        SBasis C[3][3] = {{T*C1.c[0]+S*C2.c[0], (T*C1.c[1]+S*C2.c[1])/2, (T*C1.c[3]+S*C2.c[3])/2},
                          {(T*C1.c[1]+S*C2.c[1])/2, T*C1.c[2]+S*C2.c[2], (T*C1.c[4]+S*C2.c[4])/2},
                          {(T*C1.c[3]+S*C2.c[3])/2, (T*C1.c[4]+S*C2.c[4])/2, T*C1.c[5]+S*C2.c[5]}};
    
        SBasis D = det3(C);
        std::vector<double> rts = Geom::roots(D);
        if(rts.empty()) {
            T = Linear(1,1);
            S = Linear(-1,1);
            SBasis C[3][3] = {{T*C1.c[0]+S*C2.c[0], (T*C1.c[1]+S*C2.c[1])/2, (T*C1.c[3]+S*C2.c[3])/2},
                              {(T*C1.c[1]+S*C2.c[1])/2, T*C1.c[2]+S*C2.c[2], (T*C1.c[4]+S*C2.c[4])/2},
                              {(T*C1.c[3]+S*C2.c[3])/2, (T*C1.c[4]+S*C2.c[4])/2, T*C1.c[5]+S*C2.c[5]}};
        
            D = det3(C);
            rts = Geom::roots(D);
        }
        // at this point we have a T and S and perhaps some roots that represent our degenerate conic
        // Let's just pick one randomly (can we do better?)
        //for(unsigned i = 0; i < rts.size(); i++) {
        if(!rts.empty()) {
            cairo_save(cr);

            unsigned i = 0;
            double t = T.valueAt(rts[i]);
            double s = S.valueAt(rts[i]);
            *notify << t << "; " << s << std::endl;
            /*double C0[3][3] = {{t*C1.c[0]+s*C2.c[0], (t*C1.c[1]+s*C2.c[1])/2, (t*C1.c[3]+s*C2.c[3])/2},
                               {(t*C1.c[1]+s*C2.c[1])/2, t*C1.c[2]+s*C2.c[2], (t*C1.c[4]+s*C2.c[4])/2},
                               {(t*C1.c[3]+s*C2.c[3])/2, (t*C1.c[4]+s*C2.c[4])/2, t*C1.c[5]+s*C2.c[5]}};*/
            xAx xC0 = C1*t + C2*s;
            //::draw(cr, xC0, screen_rect); // degen
            
            std::optional<Point> oB0 = xC0.bottom();
            
            Point B0 = *oB0;
            //*notify << B0 << " = " << C1.gradient(B0);
            draw_circ(cr, B0);
            
            Point n0, n1;
            // Are these just the eigenvectors of A11?
            if(fabs(xC0.c[0]) > fabs(xC0.c[2])) {
                double b = 0.5*xC0.c[1]/xC0.c[0];
                double c = xC0.c[2]/xC0.c[0];
                double d =  std::sqrt(b*b-c);
                n0 = Point(1, b+d);
                n1 = Point(1, b-d);
            } else {
                
                double b = 0.5*xC0.c[1]/xC0.c[2];
                double c = xC0.c[0]/xC0.c[2];
                double d =  std::sqrt(b*b-c);
                n0 = Point(b+d, 1);
                n1 = Point(b-d, 1);
            }
            cairo_set_source_rgb(cr, 0.7, 0.7, 0.7);
            
            Line L0 = Line::from_origin_and_vector(B0, rot90(n0));
            draw_line(cr, L0, screen_rect);
            Line L1 = Line::from_origin_and_vector(B0, rot90(n1));
            draw_line(cr, L1, screen_rect);
            
            cairo_set_source_rgb(cr, 1, 0., 0.);
            rts = C1.roots(L0);
            for(double rt : rts) {
                Point P = L0.pointAt(rt);
                draw_cross(cr, P);
                *notify << C1.valueAt(P) << "; " << C2.valueAt(P) << "\n";
            }
            rts = C1.roots(L1);
            for(double rt : rts) {
                Point P = L1.pointAt(rt);
                draw_cross(cr, P);
                *notify << C1.valueAt(P) << "; "<< C2.valueAt(P) << "\n";
            }
            cairo_stroke(cr);
            cairo_restore(cr);
        }

        ::draw(cr, C1*sliders[0].value() + C2*sliders[1].value(), screen_rect);
        
        std::vector<Point> res = intersect(C1, C2);
        for(auto & re : res) {
            draw_circ(cr, re);
        }
        
        cairo_stroke(cr);
	
        //*notify << "w = " << w << "; lambda = " << rq.lambda() << "\n";
        Toy::draw(cr, notify, width, height, save, timer_stream);
    }

public:
    Conic6() {
        for(int j = 0; j < 5; j++){
            C1H.push_back(uniform()*400, 100+ uniform()*300);
            C2H.push_back(uniform()*400, 100+ uniform()*300);
        }
        handles.push_back(&C1H);
        handles.push_back(&C2H);
        sliders.emplace_back(-1.0, 1.0, 0, 0.0, "a");
        sliders.emplace_back(-1.0, 1.0, 0, 0.0, "b");
        sliders.emplace_back(0.0, 5.0, 0, 0.0, "c");
        handles.push_back(&(sliders[0]));
        handles.push_back(&(sliders[1]));
        handles.push_back(&(sliders[2]));
        sliders[0].geometry(Point(50, 20), 250);
        sliders[1].geometry(Point(50, 50), 250);
        sliders[2].geometry(Point(50, 80), 250);
    }

    void first_time(int /*argc*/, char**/* argv*/) override {

    }
};

int main(int argc, char **argv) {
    init(argc, argv, new Conic6());
    return 0;
}

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4:fileencoding=utf-8:textwidth=99 :