1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
#include <toys/toy-framework-2.h>
/*
* Copyright cilix42
* Kinematic template toy. The aim is to manipulate the cursor movement
* so that it stays closer to a given shape (e.g., a circle or a line).
* For details, see http://hci.uwaterloo.ca/Publications/Papers/uist222-fung.pdf
*
* Each kinematic template has a radius of action outside of which it
* has no effect (this is indicated by a red circle).
*/
#include <vector>
#include <2geom/point.h>
#include <2geom/transforms.h>
using std::vector;
using namespace Geom;
using namespace std;
// I feel a little uneasy using a Point for polar coords.
Point cartesian_to_polar(Point const &pt, Point const ¢er = Point(0,0)) {
Point rvec = pt - center;
// use atan2 unless you want to measure between two vectors
return Point(L2(rvec), atan2(rvec));
}
Point polar_to_cartesian(Point const &pt, Point const ¢er = Point(0,0)) {
return center + Point(pt[0],0) * Rotate(pt[1]);
}
class KinematicTemplate {
public:
KinematicTemplate(double const sx = 0.0, double const sy = 0.0, double const cx = 0.0, double const cy = 0.0);
~KinematicTemplate();
/*
* To facilitate the creation of templates, we can use different coordinates at each point
* (e.g., radial coordinates around a fixed center)
*/
virtual std::pair<Point, Point> local_coordinate_system(Point const &/*at*/) {
// Return standard cartesian coordinates
return std::make_pair(Point(1,0), Point(0,1));
}
virtual Point next_point(Point const &at, Point const &delta);// { return at; }
virtual void draw_visual_cue(cairo_t *cr);
Point const get_center() { return center; }
void set_center(Point const &pos) { center = pos; }
double get_radius_of_action() { return radius; }
void set_radius_of_action(double const r) { radius = r; }
void enlarge_radius_of_action(double const by) {
if (radius > -by)
radius += by;
else
radius = 0;
}
protected:
double sx, sy, cx, cy;
Point center;
double radius;
};
KinematicTemplate::KinematicTemplate(double const sx, double const sy, double const cx, double const cy)
: sx(sx),
sy(sy),
cx(cx),
cy(cy),
center(300,300),
radius(100)
{
}
KinematicTemplate::~KinematicTemplate()
{
}
Point
KinematicTemplate::next_point(Point const &last_pt, Point const &delta)
{
// Point new_pt = last_pushed + kinematic_delta(last_pushed, delta, 0);
/* Compute the "relative" coordinates w.r.t. the "local coordinate system" at the current point */
Point v = local_coordinate_system(last_pt).first;
Point w = local_coordinate_system(last_pt).second;
double dotv = dot(v, delta);
double dotw = dot(w, delta);
Point new_delta;
if (L2(last_pt + delta - center) < radius) {
/*
* We are within the radius of action of the kinematic template.
* Compute displacement w.r.t. the v/w-coordinate system.
*/
new_delta = (dotv*sx + cx)*v + (dotw*sy + cy)*w;
} else {
new_delta = delta;
}
return last_pt + new_delta;
}
void
KinematicTemplate::draw_visual_cue(cairo_t *cr) {
cairo_set_source_rgba (cr, 1, 0, 0, 1);
cairo_set_line_width (cr, 0.5);
cairo_new_sub_path(cr);
cairo_arc(cr, center[X], center[Y], radius, 0, M_PI*2);
cairo_stroke(cr);
}
class RadialKinematicTemplate : public KinematicTemplate {
public:
RadialKinematicTemplate(Point const ¢er, double const sx, double const sy, double const cx, double const cy);
std::pair<Point, Point> local_coordinate_system(Point const &at) override {
/* Return 'radial' coordinates around polar_center */
Point v = unit_vector(at - center);
return std::make_pair(v, rot90(v));
}
private:
Point radial_center;
};
RadialKinematicTemplate::RadialKinematicTemplate(Point const ¢er, double const sx, double const sy,
double const cx = 0.0, double const cy = 0.0)
: KinematicTemplate(sx, sy, cx, cy)
{
radial_center = center;
}
class GridKinematicTemplate : public KinematicTemplate {
public:
GridKinematicTemplate(double const sx = 0.0, double const sy = 0.0, double const cx = 0.0, double const cy = 0.0)
: KinematicTemplate(sx, sy, cx, cy) {};
Point next_point(Point const &at, Point const &delta) override;// { return at; }
};
Point
GridKinematicTemplate::next_point(Point const &at, Point const &delta) {
if (L2(at + delta - center) < radius) {
// we are within the radius of action
Point new_delta = delta;
if (fabs(delta[0]) > fabs(delta[1]))
new_delta[1] *= sy;
else
new_delta[0] *= sx;
return at + new_delta;
} else {
return at + delta;
}
}
// My idea was to compute the gradient of an arbitrary potential function as the transform. Probably the right way to do this is to use the hessian as the integrand -- njh
class ImplicitKinematicTemplate : public KinematicTemplate {
public:
ImplicitKinematicTemplate() {}
Point next_point(Point const &at, Point const &delta) override {
if (L2(at + delta - center) < radius) {
// we are within the radius of action
// the 0.7dx+1 includes a weakened version of the constraining force
// I can't help but think this is really a form of differential constraint solver, let's discuss.
return at + delta*Scale(0.7*sin(at[0]/10.0)+1, 0.7*cos(at[1]/10.0)+1);
} else {
return at + delta;
}
}
};
vector<KinematicTemplate*> kin;
KinematicTemplate *cur_kin;
std::string cur_choice = "A";
class KinematicTemplatesToy : public Toy {
enum menu_item_t
{
KT_HORIZONTAL = 0,
KT_VERTICAL,
KT_GRID,
KT_CIRCLE,
KT_RADIAL,
KT_CONVEYOR,
KT_IMP,
TOTAL_ITEMS // this one must be the last item
};
static const char* menu_items[TOTAL_ITEMS];
static const char keys[TOTAL_ITEMS];
Point cur, last_pushed;
vector<vector<Point>*> pts;
bool dragging_center; // to prevent drawing while dragging the center
void draw_menu( cairo_t * /*cr*/, std::ostringstream *notify,
int /*width*/, int /*height*/, bool /*save*/,
std::ostringstream */*timer_stream*/ )
{
*notify << std::endl;
for (int i = KT_HORIZONTAL; i < TOTAL_ITEMS; ++i)
{
*notify << " " << keys[i] << " - " << menu_items[i] << std::endl;
}
*notify << "+/- - enlarge/shrink radius of action" << endl << endl << endl << endl;
*notify << "Current choice: " << cur_choice << endl;
}
void draw(cairo_t *cr, std::ostringstream *notify, int width, int height, bool save, std::ostringstream *timer_stream) override {
cairo_set_source_rgba (cr, 0., 0.125, 0, 1);
cairo_set_line_width (cr, 1);
//draw_handle(cr, cur_kin->get_center());
draw_menu(cr, notify, width, height, save, timer_stream);
// draw all points accumulated so far
for (auto & pt : pts) {
if (pt->size() > 0) {
cairo_move_to(cr, (*pt)[0]);
}
for (auto & j : *pt) {
//cout << " --> drawing line to point #" << j << endl;
cairo_line_to(cr, j);
}
}
cairo_stroke(cr);
cur_kin->draw_visual_cue(cr);
Toy::draw(cr, notify, width, height, save,timer_stream);
}
void first_time(int /*argc*/, char** /*argv*/) override {
p1.pos = Point(200, 200);
handles.push_back(&p1);
pts.clear();
kin.push_back(new KinematicTemplate(1.0, 0.1)); // horizontal lines
kin.push_back(new KinematicTemplate(0.1, 1.0)); // horizontal lines
kin.push_back(new GridKinematicTemplate(0.1, 0.1));
kin.push_back(new RadialKinematicTemplate(p1.pos, 0.1, 1.0));
kin.push_back(new RadialKinematicTemplate(p1.pos, 1.0, 0.1));
kin.push_back(new KinematicTemplate(1.0, 0.1, 1, 0)); // horiz conveyor
kin.push_back(new ImplicitKinematicTemplate());
cur_kin = kin[0];
cur_kin->set_center(p1.pos);
dragging_center = false;
}
void mouse_pressed(GdkEventButton *e) override {
Point at(e->x, e->y);
if(L2(at - p1.pos) < 5) {
dragging_center = true;
} else {
if(e->button == 1) {
vector<Point> *vec = new vector<Point>;
vec->clear();
vec->push_back(at);
last_pushed = at;
pts.push_back(vec);
}
}
Toy::mouse_pressed(e);
}
void mouse_released(GdkEventButton */*e*/) override {
dragging_center = false;
}
void mouse_moved(GdkEventMotion* e) override {
if (!dragging_center) {
Point at(e->x, e->y);
Point delta = at - cur;
//cout << "Mouse moved to: " << at << " (difference: " << delta << ")" << endl;
if(e->state & GDK_BUTTON1_MASK) {
Point new_pt = cur_kin->next_point(last_pushed, delta);
pts.back()->push_back(new_pt);
last_pushed = new_pt;
}
cur = at;
} else {
cur_kin->set_center(p1.pos);
}
Toy::mouse_moved(e);
}
void key_hit(GdkEventKey *e) override
{
char choice = std::toupper(e->keyval);
// No need to copy and paste code
if(choice >= 'A' and choice < 'A' + TOTAL_ITEMS) {
cur_kin = kin[choice - 'A'];
cur_choice = choice;
} else
switch (choice)
{
case '+':
cur_kin->enlarge_radius_of_action(5);
break;
case '-':
cur_kin->enlarge_radius_of_action(-5);
break;
default:
break;
}
p1.pos = cur_kin->get_center();
redraw();
}
private:
PointHandle p1;
};
const char* KinematicTemplatesToy::menu_items[] =
{
"horizontal",
"vertical",
"grid",
"circular",
"radial",
"conveyor",
"implicit"
};
const char KinematicTemplatesToy::keys[] =
{
'A', 'B', 'C', 'D', 'E', 'F', 'G'
};
int main(int argc, char **argv) {
init(argc, argv, new KinematicTemplatesToy);
return 0;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|